Browse Source

quark: add support for SM 2 devices

todo: use nonce vectors for the second branch

GPU #0: Gigabyte GTX 460, 261.26 kH/s
accepted: 2/2 (diff 0.046), 254.36 kH/s yay!!!

Signed-off-by: Tanguy Pruvot <tanguy.pruvot@gmail.com>
2upstream
Tanguy Pruvot 9 years ago
parent
commit
2247605d23
  1. 1
      bench.cpp
  2. 4
      ccminer.cpp
  3. 4
      quark/cuda_bmw512_sm3.cuh
  4. 156
      quark/cuda_quark_compactionTest.cu
  5. 4
      quark/cuda_quark_groestl512_sm20.cu
  6. 141
      quark/quarkcoin.cu
  7. 3
      util.cpp

1
bench.cpp

@ -105,7 +105,6 @@ bool bench_algo_switch_next(int thr_id) @@ -105,7 +105,6 @@ bool bench_algo_switch_next(int thr_id)
if (algo == ALGO_JACKPOT) algo++; // compact shuffle
if (algo == ALGO_LYRA2v2) algo++;
if (algo == ALGO_NEOSCRYPT) algo++;
if (algo == ALGO_QUARK) algo++; // todo
if (algo == ALGO_WHIRLPOOLX) algo++;
}
// and unwanted ones...

4
ccminer.cpp

@ -333,8 +333,8 @@ struct option options[] = { @@ -333,8 +333,8 @@ struct option options[] = {
{ "no-stratum", 0, NULL, 1007 },
{ "no-autotune", 0, NULL, 1004 }, // scrypt
{ "interactive", 1, NULL, 1050 }, // scrypt
{ "launch-config", 0, NULL, 'l' }, // scrypt
{ "lookup-gap", 0, NULL, 'L' }, // scrypt
{ "launch-config", 1, NULL, 'l' }, // scrypt
{ "lookup-gap", 1, NULL, 'L' }, // scrypt
{ "texture-cache", 1, NULL, 1051 },// scrypt
{ "max-temp", 1, NULL, 1060 },
{ "max-diff", 1, NULL, 1061 },

4
quark/cuda_bmw512_sm3.cuh

@ -17,7 +17,7 @@ @@ -17,7 +17,7 @@
q[i+8] + ROTL64(q[i+9], 37) + q[i+10] + ROTL64(q[i+11], 43) + \
q[i+12] + ROTL64(q[i+13], 53) + (SHR(q[i+14],1) ^ q[i+14]) + (SHR(q[i+15],2) ^ q[i+15])
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 200 && __CUDA_ARCH__ < 500)
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 200 && __CUDA_ARCH__ < 500) || defined(_DEBUG)
__constant__ uint64_t d_constMem[16] = {
SPH_C64(0x8081828384858687),
SPH_C64(0x88898A8B8C8D8E8F),
@ -42,7 +42,7 @@ __constant__ uint64_t d_constMem[16] = { @@ -42,7 +42,7 @@ __constant__ uint64_t d_constMem[16] = {
# endif
#endif
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 500
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 500 || defined(_DEBUG))
__device__
void Compression512_30(uint64_t *msg, uint64_t *hash)

156
quark/cuda_quark_compactionTest.cu

@ -8,10 +8,8 @@ @@ -8,10 +8,8 @@
#include "cuda_helper.h"
#include <sm_30_intrinsics.h>
static uint32_t *d_tempBranch1Nonces[MAX_GPUS];
static uint32_t *d_numValid[MAX_GPUS];
static uint32_t *h_numValid[MAX_GPUS];
static uint32_t *d_tempBranch1Nonces[MAX_GPUS];
static uint32_t *d_partSum[2][MAX_GPUS]; // für bis zu vier partielle Summen
#if __CUDA_ARCH__ < 300
@ -43,32 +41,39 @@ cuda_compactTestFunction_t h_QuarkTrueFunction[MAX_GPUS], h_QuarkFalseFunction[M @@ -43,32 +41,39 @@ cuda_compactTestFunction_t h_QuarkTrueFunction[MAX_GPUS], h_QuarkFalseFunction[M
__host__
void quark_compactTest_cpu_init(int thr_id, uint32_t threads)
{
int dev_id = device_map[thr_id];
cuda_get_arch(thr_id);
cudaMemcpyFromSymbol(&h_QuarkTrueFunction[thr_id], d_QuarkTrueFunction, sizeof(cuda_compactTestFunction_t));
cudaMemcpyFromSymbol(&h_QuarkFalseFunction[thr_id], d_QuarkFalseFunction, sizeof(cuda_compactTestFunction_t));
// wir brauchen auch Speicherplatz auf dem Device
cudaMalloc(&d_tempBranch1Nonces[thr_id], sizeof(uint32_t) * threads * 2);
cudaMalloc(&d_numValid[thr_id], 2*sizeof(uint32_t));
cudaMallocHost(&h_numValid[thr_id], 2*sizeof(uint32_t));
uint32_t s1;
s1 = (threads / 256) * 2;
if (cuda_arch[dev_id] >= 300) {
uint32_t s1 = (threads / 256) * 2;
CUDA_SAFE_CALL(cudaMalloc(&d_tempBranch1Nonces[thr_id], sizeof(uint32_t) * threads * 2));
CUDA_SAFE_CALL(cudaMalloc(&d_partSum[0][thr_id], sizeof(uint32_t) * s1)); // BLOCKSIZE (Threads/Block)
CUDA_SAFE_CALL(cudaMalloc(&d_partSum[1][thr_id], sizeof(uint32_t) * s1)); // BLOCKSIZE (Threads/Block)
} else {
CUDA_SAFE_CALL(cudaMalloc(&d_tempBranch1Nonces[thr_id], sizeof(uint32_t) * threads));
}
cudaMalloc(&d_partSum[0][thr_id], sizeof(uint32_t) * s1); // BLOCKSIZE (Threads/Block)
cudaMalloc(&d_partSum[1][thr_id], sizeof(uint32_t) * s1); // BLOCKSIZE (Threads/Block)
cudaMallocHost(&h_numValid[thr_id], 2*sizeof(uint32_t));
}
// Because all alloc should have a free...
__host__
void quark_compactTest_cpu_free(int thr_id)
{
cudaFree(d_tempBranch1Nonces[thr_id]);
cudaFree(d_numValid[thr_id]);
cudaFree(d_partSum[0][thr_id]);
cudaFree(d_partSum[1][thr_id]);
int dev_id = device_map[thr_id];
cudaFreeHost(h_numValid[thr_id]);
if (cuda_arch[dev_id] >= 300) {
cudaFree(d_tempBranch1Nonces[thr_id]);
cudaFree(d_partSum[0][thr_id]);
cudaFree(d_partSum[1][thr_id]);
} else {
cudaFree(d_tempBranch1Nonces[thr_id]);
}
}
__global__
@ -124,7 +129,6 @@ void quark_compactTest_gpu_SCAN(uint32_t *data, const int width, uint32_t *parti @@ -124,7 +129,6 @@ void quark_compactTest_gpu_SCAN(uint32_t *data, const int width, uint32_t *parti
for (int i=1; i<=width; i*=2)
{
uint32_t n = __shfl_up((int)value, i, width);
if (lane_id >= i) value += n;
}
@ -207,14 +211,12 @@ void quark_compactTest_gpu_SCATTER(uint32_t *sum, uint32_t *outp, cuda_compactTe @@ -207,14 +211,12 @@ void quark_compactTest_gpu_SCATTER(uint32_t *sum, uint32_t *outp, cuda_compactTe
uint32_t value;
if (id < threads)
{
// uint32_t nounce = startNounce + id;
uint32_t *inpHash;
if(d_validNonceTable == NULL)
{
// keine Nonce-Liste
inpHash = &inpHashes[id<<4];
}else
{
} else {
// Nonce-Liste verfügbar
int nonce = d_validNonceTable[id] - startNounce;
actNounce = nonce;
@ -222,13 +224,11 @@ void quark_compactTest_gpu_SCATTER(uint32_t *sum, uint32_t *outp, cuda_compactTe @@ -222,13 +224,11 @@ void quark_compactTest_gpu_SCATTER(uint32_t *sum, uint32_t *outp, cuda_compactTe
}
value = (*testFunc)(inpHash);
}else
{
} else {
value = 0;
}
if( value )
{
if (value) {
int idx = sum[id];
if(idx > 0)
outp[idx-1] = startNounce + actNounce;
@ -271,12 +271,10 @@ void quark_compactTest_cpu_singleCompaction(int thr_id, uint32_t threads, uint32 @@ -271,12 +271,10 @@ void quark_compactTest_cpu_singleCompaction(int thr_id, uint32_t threads, uint32
d_tempBranch1Nonces[thr_id], 32, d_partSum[0][thr_id], function, orgThreads, startNounce, inpHashes, d_validNonceTable);
// weitere Scans
if(callThrid)
{
if(callThrid) {
quark_compactTest_gpu_SCAN<<<thr2,blockSize, 32*sizeof(uint32_t)>>>(d_partSum[0][thr_id], 32, d_partSum[1][thr_id]);
quark_compactTest_gpu_SCAN<<<1, thr2, 32*sizeof(uint32_t)>>>(d_partSum[1][thr_id], (thr2>32) ? 32 : thr2);
}else
{
} else {
quark_compactTest_gpu_SCAN<<<thr3,blockSize2, 32*sizeof(uint32_t)>>>(d_partSum[0][thr_id], (blockSize2>32) ? 32 : blockSize2);
}
@ -290,8 +288,7 @@ void quark_compactTest_cpu_singleCompaction(int thr_id, uint32_t threads, uint32 @@ -290,8 +288,7 @@ void quark_compactTest_cpu_singleCompaction(int thr_id, uint32_t threads, uint32
// Addieren
if(callThrid)
{
if(callThrid) {
quark_compactTest_gpu_ADD<<<thr2-1, blockSize>>>(d_partSum[0][thr_id]+blockSize, d_partSum[1][thr_id], blockSize*thr2);
}
quark_compactTest_gpu_ADD<<<thr1-1, blockSize>>>(d_tempBranch1Nonces[thr_id]+blockSize, d_partSum[0][thr_id], threads);
@ -304,6 +301,68 @@ void quark_compactTest_cpu_singleCompaction(int thr_id, uint32_t threads, uint32 @@ -304,6 +301,68 @@ void quark_compactTest_cpu_singleCompaction(int thr_id, uint32_t threads, uint32
cudaStreamSynchronize(NULL);
}
#ifdef __INTELLISENSE__
#define atomicAdd(x,n) ( *(x)+=n )
#endif
__global__ __launch_bounds__(128, 8)
void quark_filter_gpu_sm2(const uint32_t threads, const uint32_t* d_hash, uint32_t* d_branch2, uint32_t* d_NonceBranch, uint32_t &count)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
const uint32_t offset = thread * 16U; // 64U / sizeof(uint32_t);
uint4 *psrc = (uint4*) (&d_hash[offset]);
d_NonceBranch[thread] = ((uint8_t*)psrc)[0] & 0x8;
if (d_NonceBranch[thread]) return;
//uint32_t off_br = atomicAdd(&count, 1) * 16U;
// uint4 = 4x uint32_t = 16 bytes
uint4 *pdst = (uint4*) (&d_branch2[offset]);
pdst[0] = psrc[0];
pdst[1] = psrc[1];
pdst[2] = psrc[2];
pdst[3] = psrc[3];
}
}
__global__ __launch_bounds__(128, 8)
void quark_merge_gpu_sm2(const uint32_t threads, uint32_t* d_hash, uint32_t* d_branch2, uint32_t* const d_NonceBranch)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads && !d_NonceBranch[thread])
{
const uint32_t offset = thread * 16U; // 64U / sizeof(uint32_t);
uint4 *pdst = (uint4*) (&d_hash[offset]);
uint4 *psrc = (uint4*) (&d_branch2[offset]);
pdst[0] = psrc[0];
pdst[1] = psrc[1];
pdst[2] = psrc[2];
pdst[3] = psrc[3];
}
}
__host__
uint32_t quark_filter_cpu_sm2(const int thr_id, const uint32_t threads, const uint32_t *inpHashes, uint32_t* d_branch2)
{
uint32_t branch2_nonces = 0;
const uint32_t threadsperblock = 128;
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
// copy all hashes in the right branch buffer
quark_filter_gpu_sm2 <<<grid, block>>> (threads, inpHashes, d_branch2, d_tempBranch1Nonces[thr_id], branch2_nonces);
return branch2_nonces;
}
__host__
void quark_merge_cpu_sm2(const int thr_id, const uint32_t threads, uint32_t *outpHashes, uint32_t* d_branch2)
{
const uint32_t threadsperblock = 128;
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
// copy second branch hashes to d_hash
quark_merge_gpu_sm2 <<<grid, block>>> (threads, outpHashes, d_branch2, d_tempBranch1Nonces[thr_id]);
}
////// ACHTUNG: Diese funktion geht aktuell nur mit threads > 65536 (Am besten 256 * 1024 oder 256*2048)
__host__
void quark_compactTest_cpu_dualCompaction(int thr_id, uint32_t threads, uint32_t *nrm, uint32_t *d_nonces1,
@ -311,37 +370,6 @@ void quark_compactTest_cpu_dualCompaction(int thr_id, uint32_t threads, uint32_t @@ -311,37 +370,6 @@ void quark_compactTest_cpu_dualCompaction(int thr_id, uint32_t threads, uint32_t
{
quark_compactTest_cpu_singleCompaction(thr_id, threads, &nrm[0], d_nonces1, h_QuarkTrueFunction[thr_id], startNounce, inpHashes, d_validNonceTable);
quark_compactTest_cpu_singleCompaction(thr_id, threads, &nrm[1], d_nonces2, h_QuarkFalseFunction[thr_id], startNounce, inpHashes, d_validNonceTable);
/*
// threadsPerBlock ausrechnen
int blockSize = 256;
int thr1 = threads / blockSize;
int thr2 = threads / (blockSize*blockSize);
// 1
quark_compactTest_gpu_SCAN<<<thr1,blockSize, 32*sizeof(uint32_t)>>>(d_tempBranch1Nonces[thr_id], 32, d_partSum1[thr_id], h_QuarkTrueFunction[thr_id], threads, startNounce, inpHashes);
quark_compactTest_gpu_SCAN<<<thr2,blockSize, 32*sizeof(uint32_t)>>>(d_partSum1[thr_id], 32, d_partSum2[thr_id]);
quark_compactTest_gpu_SCAN<<<1, thr2, 32*sizeof(uint32_t)>>>(d_partSum2[thr_id], (thr2>32) ? 32 : thr2);
cudaStreamSynchronize(NULL);
cudaMemcpy(&nrm[0], &(d_partSum2[thr_id])[thr2-1], sizeof(uint32_t), cudaMemcpyDeviceToHost);
quark_compactTest_gpu_ADD<<<thr2-1, blockSize>>>(d_partSum1[thr_id]+blockSize, d_partSum2[thr_id], blockSize*thr2);
quark_compactTest_gpu_ADD<<<thr1-1, blockSize>>>(d_tempBranch1Nonces[thr_id]+blockSize, d_partSum1[thr_id], threads);
// 2
quark_compactTest_gpu_SCAN<<<thr1,blockSize, 32*sizeof(uint32_t)>>>(d_tempBranch2Nonces[thr_id], 32, d_partSum1[thr_id], h_QuarkFalseFunction[thr_id], threads, startNounce, inpHashes);
quark_compactTest_gpu_SCAN<<<thr2,blockSize, 32*sizeof(uint32_t)>>>(d_partSum1[thr_id], 32, d_partSum2[thr_id]);
quark_compactTest_gpu_SCAN<<<1, thr2, 32*sizeof(uint32_t)>>>(d_partSum2[thr_id], (thr2>32) ? 32 : thr2);
cudaStreamSynchronize(NULL);
cudaMemcpy(&nrm[1], &(d_partSum2[thr_id])[thr2-1], sizeof(uint32_t), cudaMemcpyDeviceToHost);
quark_compactTest_gpu_ADD<<<thr2-1, blockSize>>>(d_partSum1[thr_id]+blockSize, d_partSum2[thr_id], blockSize*thr2);
quark_compactTest_gpu_ADD<<<thr1-1, blockSize>>>(d_tempBranch2Nonces[thr_id]+blockSize, d_partSum1[thr_id], threads);
// Hier ist noch eine Besonderheit: in d_tempBranch1Nonces sind die element von 1...nrm1 die Interessanten
// Schritt 3: Scatter
quark_compactTest_gpu_SCATTER<<<thr1,blockSize,0>>>(d_tempBranch1Nonces[thr_id], d_nonces1, h_QuarkTrueFunction[thr_id], threads, startNounce, inpHashes);
quark_compactTest_gpu_SCATTER<<<thr1,blockSize,0>>>(d_tempBranch2Nonces[thr_id], d_nonces2, h_QuarkFalseFunction[thr_id], threads, startNounce, inpHashes);
cudaStreamSynchronize(NULL);
*/
}
__host__
@ -369,6 +397,6 @@ void quark_compactTest_single_false_cpu_hash_64(int thr_id, uint32_t threads, ui @@ -369,6 +397,6 @@ void quark_compactTest_single_false_cpu_hash_64(int thr_id, uint32_t threads, ui
quark_compactTest_cpu_singleCompaction(thr_id, threads, h_numValid[thr_id], d_nonces1, h_QuarkFalseFunction[thr_id], startNounce, inpHashes, d_validNonceTable);
cudaStreamSynchronize(NULL); // Das original braucht zwar etwas CPU-Last, ist an dieser Stelle aber evtl besser
cudaStreamSynchronize(NULL);
*nrm1 = h_numValid[thr_id][0];
}
}

4
quark/cuda_quark_groestl512_sm20.cu

@ -52,7 +52,7 @@ extern uint32_t T2dn_cpu[]; @@ -52,7 +52,7 @@ extern uint32_t T2dn_cpu[];
extern uint32_t T3up_cpu[];
extern uint32_t T3dn_cpu[];
#if __CUDA_ARCH__ < 300
#if __CUDA_ARCH__ < 300 || defined(_DEBUG)
__device__ __forceinline__
void quark_groestl512_perm_P(uint32_t *a, char *mixtabs)
@ -206,7 +206,7 @@ void quark_groestl512_perm_Q(uint32_t *a, char *mixtabs) @@ -206,7 +206,7 @@ void quark_groestl512_perm_Q(uint32_t *a, char *mixtabs)
__global__
void quark_groestl512_gpu_hash_64(uint32_t threads, uint32_t startNounce, uint32_t *g_hash, uint32_t *g_nonceVector)
{
#if __CUDA_ARCH__ < 300
#if __CUDA_ARCH__ < 300 || defined(_DEBUG)
extern __shared__ char mixtabs[];
if (threadIdx.x < 256)

141
quark/quarkcoin.cu

@ -13,7 +13,13 @@ extern "C" @@ -13,7 +13,13 @@ extern "C"
#include "cuda_helper.h"
#include "cuda_quark.h"
#include <stdio.h>
extern uint32_t quark_filter_cpu_sm2(const int thr_id, const uint32_t threads, const uint32_t *inpHashes, uint32_t* d_branch2);
extern void quark_merge_cpu_sm2(const int thr_id, const uint32_t threads, uint32_t *outpHashes, uint32_t* d_branch2);
static uint32_t *d_hash[MAX_GPUS];
static uint32_t* d_hash_br2[MAX_GPUS]; // SM 2
// Speicher zur Generierung der Noncevektoren für die bedingten Hashes
static uint32_t *d_branch1Nonces[MAX_GPUS];
@ -102,10 +108,10 @@ extern "C" void quarkhash(void *state, const void *input) @@ -102,10 +108,10 @@ extern "C" void quarkhash(void *state, const void *input)
#define TRACE(algo) { \
if (max_nonce == 1 && pdata[19] <= 1) { \
uint32_t* debugbuf = NULL; \
cudaMallocHost(&debugbuf, 8*sizeof(uint32_t)); \
cudaMemcpy(debugbuf, d_hash[thr_id], 8*sizeof(uint32_t), cudaMemcpyDeviceToHost); \
printf("quark %s %08x %08x %08x %08x...\n", algo, swab32(debugbuf[0]), swab32(debugbuf[1]), \
swab32(debugbuf[2]), swab32(debugbuf[3])); \
cudaMallocHost(&debugbuf, 32); \
cudaMemcpy(debugbuf, d_hash[thr_id], 32, cudaMemcpyDeviceToHost); \
printf("quark %s %08x %08x %08x %08x...%08x... \n", algo, swab32(debugbuf[0]), swab32(debugbuf[1]), \
swab32(debugbuf[2]), swab32(debugbuf[3]), swab32(debugbuf[7])); \
cudaFreeHost(debugbuf); \
} \
}
@ -121,9 +127,10 @@ extern "C" int scanhash_quark(int thr_id, struct work* work, uint32_t max_nonce, @@ -121,9 +127,10 @@ extern "C" int scanhash_quark(int thr_id, struct work* work, uint32_t max_nonce,
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
int dev_id = device_map[thr_id];
uint32_t throughput = cuda_default_throughput(thr_id, 1U << 20); // 256*4096
int dev_id = device_map[thr_id];
uint32_t def_thr = 1U << 20; // 256*4096
uint32_t throughput = cuda_default_throughput(thr_id, def_thr);
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
if (opt_benchmark)
@ -131,7 +138,7 @@ extern "C" int scanhash_quark(int thr_id, struct work* work, uint32_t max_nonce, @@ -131,7 +138,7 @@ extern "C" int scanhash_quark(int thr_id, struct work* work, uint32_t max_nonce,
if (!init[thr_id])
{
cudaSetDevice(device_map[thr_id]);
cudaSetDevice(dev_id);
cudaGetLastError();
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t) 64 * throughput));
@ -142,20 +149,19 @@ extern "C" int scanhash_quark(int thr_id, struct work* work, uint32_t max_nonce, @@ -142,20 +149,19 @@ extern "C" int scanhash_quark(int thr_id, struct work* work, uint32_t max_nonce,
quark_bmw512_cpu_init(thr_id, throughput);
quark_keccak512_cpu_init(thr_id, throughput);
quark_jh512_cpu_init(thr_id, throughput);
cuda_check_cpu_init(thr_id, throughput);
quark_compactTest_cpu_init(thr_id, throughput);
cudaMalloc(&d_branch1Nonces[thr_id], sizeof(uint32_t)*throughput);
cudaMalloc(&d_branch2Nonces[thr_id], sizeof(uint32_t)*throughput);
cudaMalloc(&d_branch3Nonces[thr_id], sizeof(uint32_t)*throughput);
CUDA_SAFE_CALL(cudaGetLastError());
if (device_sm[dev_id] < 300 || cuda_arch[dev_id] < 300) {
gpulog(LOG_ERR, thr_id, "Device SM 3.0 or more recent required!");
proper_exit(1);
return -1;
if (cuda_arch[dev_id] >= 300) {
cudaMalloc(&d_branch1Nonces[thr_id], sizeof(uint32_t)*throughput);
cudaMalloc(&d_branch2Nonces[thr_id], sizeof(uint32_t)*throughput);
cudaMalloc(&d_branch3Nonces[thr_id], sizeof(uint32_t)*throughput);
} else {
cudaMalloc(&d_hash_br2[thr_id], (size_t) 64 * throughput);
}
cuda_check_cpu_init(thr_id, throughput);
CUDA_SAFE_CALL(cudaGetLastError());
init[thr_id] = true;
}
@ -167,58 +173,95 @@ extern "C" int scanhash_quark(int thr_id, struct work* work, uint32_t max_nonce, @@ -167,58 +173,95 @@ extern "C" int scanhash_quark(int thr_id, struct work* work, uint32_t max_nonce,
do {
int order = 0;
uint32_t foundNonce;
uint32_t nrm1=0, nrm2=0, nrm3=0;
quark_blake512_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id]); order++;
TRACE("blake :");
// das ist der unbedingte Branch für BMW512
quark_bmw512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("bmw :");
quark_compactTest_single_false_cpu_hash_64(thr_id, throughput, pdata[19], d_hash[thr_id], NULL,
d_branch3Nonces[thr_id], &nrm3,
if (cuda_arch[dev_id] >= 300) {
quark_compactTest_single_false_cpu_hash_64(thr_id, throughput, pdata[19], d_hash[thr_id], NULL,
d_branch3Nonces[thr_id], &nrm3, order++);
// nur den Skein Branch weiterverfolgen
quark_skein512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++);
// das ist der unbedingte Branch für Groestl512
quark_groestl512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++);
// das ist der unbedingte Branch für JH512
quark_jh512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++);
// quarkNonces in branch1 und branch2 aufsplitten gemäss if (hash[0] & 0x8)
quark_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id],
d_branch1Nonces[thr_id], &nrm1,
d_branch2Nonces[thr_id], &nrm2,
order++);
// nur den Skein Branch weiterverfolgen
quark_skein512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++);
// das ist der bedingte Branch für Blake512
quark_blake512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++);
// das ist der unbedingte Branch für Groestl512
quark_groestl512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++);
// das ist der bedingte Branch für Bmw512
quark_bmw512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++);
// das ist der unbedingte Branch für JH512
quark_jh512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++);
// das ist der unbedingte Branch für Keccak512
quark_keccak512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++);
// quarkNonces in branch1 und branch2 aufsplitten gemäss if (hash[0] & 0x8)
quark_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id],
d_branch1Nonces[thr_id], &nrm1,
d_branch2Nonces[thr_id], &nrm2,
order++);
// das ist der unbedingte Branch für Skein512
quark_skein512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++);
// das ist der bedingte Branch für Blake512
quark_blake512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++);
// quarkNonces in branch1 und branch2 aufsplitten gemäss if (hash[0] & 0x8)
quark_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id],
d_branch1Nonces[thr_id], &nrm1,
d_branch2Nonces[thr_id], &nrm2,
order++);
// das ist der bedingte Branch für Bmw512
quark_bmw512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++);
quark_keccak512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++);
quark_jh512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++);
// das ist der unbedingte Branch für Keccak512
quark_keccak512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++);
foundNonce = cuda_check_hash_branch(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++);
// das ist der unbedingte Branch für Skein512
quark_skein512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++);
} else {
/* algo permutations are made with 2 different buffers */
// quarkNonces in branch1 und branch2 aufsplitten gemäss if (hash[0] & 0x8)
quark_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id],
d_branch1Nonces[thr_id], &nrm1,
d_branch2Nonces[thr_id], &nrm2,
order++);
quark_filter_cpu_sm2(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]);
quark_groestl512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
quark_skein512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash_br2[thr_id], order++);
quark_merge_cpu_sm2(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]);
TRACE("perm1 :");
quark_keccak512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++);
quark_jh512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++);
quark_groestl512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("groestl:");
quark_jh512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("jh512 :");
quark_filter_cpu_sm2(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]);
quark_blake512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
quark_bmw512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash_br2[thr_id], order++);
quark_merge_cpu_sm2(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]);
TRACE("perm2 :");
quark_keccak512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("keccak :");
quark_skein512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("skein :");
quark_filter_cpu_sm2(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]);
quark_keccak512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
quark_jh512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash_br2[thr_id], order++);
quark_merge_cpu_sm2(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]);
TRACE("perm3 :");
CUDA_LOG_ERROR();
foundNonce = cuda_check_hash(thr_id, throughput, pdata[19], d_hash[thr_id]);
}
*hashes_done = pdata[19] - first_nonce + 1;
uint32_t foundNonce = cuda_check_hash_branch(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++);
if (foundNonce != UINT32_MAX)
if (foundNonce != UINT32_MAX)
{
uint32_t vhash[8];
be32enc(&endiandata[19], foundNonce);

3
util.cpp

@ -1852,7 +1852,6 @@ void do_gpu_tests(void) @@ -1852,7 +1852,6 @@ void do_gpu_tests(void)
#ifdef _DEBUG
unsigned long done;
char s[128] = { '\0' };
uchar buf[160];
struct work work;
memset(&work, 0, sizeof(work));
@ -1866,7 +1865,7 @@ void do_gpu_tests(void) @@ -1866,7 +1865,7 @@ void do_gpu_tests(void)
//scanhash_scrypt_jane(0, &work, NULL, 1, &done, &tv, &tv);
memset(work.data, 0, sizeof(work.data));
scanhash_lyra2(0, &work, 1, &done);
scanhash_quark(0, &work, 1, &done);
free(work_restart);
work_restart = NULL;

Loading…
Cancel
Save