Browse Source

myr-gr: remove unused allocated memory + pascal tweak

+ cleanup...
2upstream
Tanguy Pruvot 9 years ago
parent
commit
3fe4dda4c1
  1. 194
      cuda_myriadgroestl.cu
  2. 17
      myriadgroestl.cpp

194
cuda_myriadgroestl.cu

@ -5,6 +5,11 @@ @@ -5,6 +5,11 @@
#include "cuda_helper.h"
#ifdef __INTELLISENSE__
#define __CUDA_ARCH__ 500
#define __funnelshift_r(x,y,n) (x >> n)
#endif
#if __CUDA_ARCH__ >= 300
// 64 Registers Variant for Compute 3.0
#include "quark/groestl_functions_quad.h"
@ -21,11 +26,8 @@ __constant__ uint32_t myriadgroestl_gpu_msg[32]; @@ -21,11 +26,8 @@ __constant__ uint32_t myriadgroestl_gpu_msg[32];
// muss expandiert werden
__constant__ uint32_t myr_sha256_gpu_constantTable[64];
__constant__ uint32_t myr_sha256_gpu_constantTable2[64];
__constant__ uint32_t myr_sha256_gpu_hashTable[8];
uint32_t myr_sha256_cpu_hashTable[] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 };
uint32_t myr_sha256_cpu_constantTable[] = {
const uint32_t myr_sha256_cpu_constantTable[] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
@ -36,7 +38,7 @@ uint32_t myr_sha256_cpu_constantTable[] = { @@ -36,7 +38,7 @@ uint32_t myr_sha256_cpu_constantTable[] = {
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
};
uint32_t myr_sha256_cpu_w2Table[] = {
const uint32_t myr_sha256_cpu_w2Table[] = {
0x80000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000200,
0x80000000, 0x01400000, 0x00205000, 0x00005088, 0x22000800, 0x22550014, 0x05089742, 0xa0000020,
@ -44,9 +46,10 @@ uint32_t myr_sha256_cpu_w2Table[] = { @@ -44,9 +46,10 @@ uint32_t myr_sha256_cpu_w2Table[] = {
0x08b2b050, 0x9d7c4c27, 0x0ce2a393, 0x88e6e1ea, 0xa52b4335, 0x67a16f49, 0xd732016f, 0x4eeb2e91,
0x5dbf55e5, 0x8eee2335, 0xe2bc5ec2, 0xa83f4394, 0x45ad78f7, 0x36f3d0cd, 0xd99c05e8, 0xb0511dc7,
0x69bc7ac4, 0xbd11375b, 0xe3ba71e5, 0x3b209ff2, 0x18feee17, 0xe25ad9e7, 0x13375046, 0x0515089d,
0x4f0d0f04, 0x2627484e, 0x310128d2, 0xc668b434, 0x420841cc, 0x62d311b8, 0xe59ba771, 0x85a7a484 };
0x4f0d0f04, 0x2627484e, 0x310128d2, 0xc668b434, 0x420841cc, 0x62d311b8, 0xe59ba771, 0x85a7a484
};
#define SWAB32(x) ( ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24) )
#define SWAB32(x) cuda_swab32(x)
#if __CUDA_ARCH__ < 320
// Kepler (Compute 3.0)
@ -55,6 +58,7 @@ uint32_t myr_sha256_cpu_w2Table[] = { @@ -55,6 +58,7 @@ uint32_t myr_sha256_cpu_w2Table[] = {
// Kepler (Compute 3.5)
#define ROTR32(x, n) __funnelshift_r( (x), (x), (n) )
#endif
#define R(x, n) ((x) >> (n))
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
@ -65,28 +69,27 @@ uint32_t myr_sha256_cpu_w2Table[] = { @@ -65,28 +69,27 @@ uint32_t myr_sha256_cpu_w2Table[] = {
__device__ void myriadgroestl_gpu_sha256(uint32_t *message)
{
uint32_t W1[16];
uint32_t W2[16];
// Initialisiere die register a bis h mit der Hash-Tabelle
uint32_t regs[8];
uint32_t hash[8];
uint32_t regs[8], hash[8];
const uint32_t myr_sha256_gpu_hashTable[8] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
};
// pre
#pragma unroll 8
#pragma unroll 8
for (int k=0; k < 8; k++)
{
regs[k] = myr_sha256_gpu_hashTable[k];
hash[k] = regs[k];
}
#pragma unroll 16
for(int k=0;k<16;k++)
uint32_t W1[16];
#pragma unroll 16
for(int k=0; k<16; k++)
W1[k] = SWAB32(message[k]);
// Progress W1
#pragma unroll 16
for(int j=0;j<16;j++)
// Progress W1
#pragma unroll 16
for(int j=0; j<16; j++)
{
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j] + W1[j];
@ -98,24 +101,27 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message) @@ -98,24 +101,27 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
regs[4] += T1;
}
// Progress W2...W3
////// PART 1
#pragma unroll 2
for(int j=0;j<2;j++)
// Progress W2...W3
uint32_t W2[16];
////// PART 1
#pragma unroll 2
for(int j=0; j<2; j++)
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j];
#pragma unroll 5
#pragma unroll 5
for(int j=2;j<7;j++)
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j];
#pragma unroll 8
for(int j=7;j<15;j++)
#pragma unroll 8
for(int j=7; j<15; j++)
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j];
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
// Rundenfunktion
#pragma unroll 16
for(int j=0;j<16;j++)
// Round function
#pragma unroll 16
for(int j=0; j<16; j++)
{
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 16] + W2[j];
@ -127,23 +133,23 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message) @@ -127,23 +133,23 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
regs[4] += T1;
}
////// PART 2
#pragma unroll 2
for(int j=0;j<2;j++)
////// PART 2
#pragma unroll 2
for(int j=0; j<2; j++)
W1[j] = s1(W2[14+j]) + W2[9+j] + s0(W2[1+j]) + W2[j];
#pragma unroll 5
for(int j=2;j<7;j++)
#pragma unroll 5
for(int j=2; j<7; j++)
W1[j] = s1(W1[j-2]) + W2[9+j] + s0(W2[1+j]) + W2[j];
#pragma unroll 8
for(int j=7;j<15;j++)
#pragma unroll 8
for(int j=7; j<15; j++)
W1[j] = s1(W1[j-2]) + W1[j-7] + s0(W2[1+j]) + W2[j];
W1[15] = s1(W1[13]) + W1[8] + s0(W1[0]) + W2[15];
// Rundenfunktion
#pragma unroll 16
for(int j=0;j<16;j++)
// Round function
#pragma unroll 16
for(int j=0; j<16; j++)
{
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 32] + W1[j];
@ -155,23 +161,23 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message) @@ -155,23 +161,23 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
regs[4] += T1;
}
////// PART 3
#pragma unroll 2
for(int j=0;j<2;j++)
////// PART 3
#pragma unroll 2
for(int j=0; j<2; j++)
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j];
#pragma unroll 5
for(int j=2;j<7;j++)
#pragma unroll 5
for(int j=2; j<7; j++)
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j];
#pragma unroll 8
for(int j=7;j<15;j++)
#pragma unroll 8
for(int j=7; j<15; j++)
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j];
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
// Rundenfunktion
#pragma unroll 16
for(int j=0;j<16;j++)
// Round function
#pragma unroll 16
for(int j=0; j<16; j++)
{
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 48] + W2[j];
@ -183,20 +189,20 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message) @@ -183,20 +189,20 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
regs[4] += T1;
}
#pragma unroll 8
for(int k=0;k<8;k++)
#pragma unroll 8
for(int k=0; k<8; k++)
hash[k] += regs[k];
/////
///// Zweite Runde (wegen Msg-Padding)
///// 2nd Round (wegen Msg-Padding)
/////
#pragma unroll 8
for(int k=0;k<8;k++)
#pragma unroll 8
for(int k=0; k<8; k++)
regs[k] = hash[k];
// Progress W1
#pragma unroll 64
for(int j=0;j<64;j++)
// Progress W1
#pragma unroll 64
for(int j=0; j<64; j++)
{
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable2[j];
@ -208,14 +214,14 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message) @@ -208,14 +214,14 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
regs[4] += T1;
}
#pragma unroll 8
for(int k=0;k<8;k++)
#pragma unroll 8
for(int k=0; k<8; k++)
hash[k] += regs[k];
//// FERTIG
//// Close
#pragma unroll 8
for(int k=0;k<8;k++)
#pragma unroll 8
for(int k=0; k<8; k++)
message[k] = SWAB32(hash[k]);
}
@ -229,8 +235,9 @@ __global__ void __launch_bounds__(256, 4) @@ -229,8 +235,9 @@ __global__ void __launch_bounds__(256, 4)
{
// GROESTL
uint32_t paddedInput[8];
#pragma unroll 8
for(int k=0;k<8;k++) paddedInput[k] = myriadgroestl_gpu_msg[4*k+threadIdx.x%4];
#pragma unroll 8
for(int k=0; k<8; k++)
paddedInput[k] = myriadgroestl_gpu_msg[4*k+threadIdx.x%4];
uint32_t nounce = startNounce + thread;
if ((threadIdx.x % 4) == 3)
@ -249,8 +256,8 @@ __global__ void __launch_bounds__(256, 4) @@ -249,8 +256,8 @@ __global__ void __launch_bounds__(256, 4)
if ((threadIdx.x & 0x03) == 0)
{
uint32_t *outpHash = &hashBuffer[16 * thread];
#pragma unroll 16
for(int k=0;k<16;k++) outpHash[k] = out_state[k];
#pragma unroll 16
for(int k=0; k<16; k++) outpHash[k] = out_state[k];
}
}
#endif
@ -267,7 +274,8 @@ __global__ void @@ -267,7 +274,8 @@ __global__ void
uint32_t out_state[16];
uint32_t *inpHash = &hashBuffer[16 * thread];
#pragma unroll 16
#pragma unroll 16
for (int i=0; i < 16; i++)
out_state[i] = inpHash[i];
@ -276,7 +284,7 @@ __global__ void @@ -276,7 +284,7 @@ __global__ void
int i, position = -1;
bool rc = true;
#pragma unroll 8
#pragma unroll 8
for (i = 7; i >= 0; i--) {
if (out_state[i] > pTarget[i]) {
if(position < i) {
@ -292,8 +300,7 @@ __global__ void @@ -292,8 +300,7 @@ __global__ void
}
}
if(rc == true)
if(resNounce[0] > nounce)
if(rc && resNounce[0] > nounce)
resNounce[0] = nounce;
}
#endif
@ -303,44 +310,34 @@ __global__ void @@ -303,44 +310,34 @@ __global__ void
__host__
void myriadgroestl_cpu_init(int thr_id, uint32_t threads)
{
cudaMemcpyToSymbol( myr_sha256_gpu_hashTable,
myr_sha256_cpu_hashTable,
sizeof(uint32_t) * 8 );
cudaMemcpyToSymbol( myr_sha256_gpu_constantTable,
myr_sha256_cpu_constantTable,
sizeof(uint32_t) * 64 );
// zweite CPU-Tabelle bauen und auf die GPU laden
uint32_t temp[64];
for(int i=0;i<64;i++)
for(int i=0; i<64; i++)
temp[i] = myr_sha256_cpu_w2Table[i] + myr_sha256_cpu_constantTable[i];
cudaMemcpyToSymbol( myr_sha256_gpu_constantTable2,
temp,
sizeof(uint32_t) * 64 );
// Speicher für Gewinner-Nonce belegen
cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t));
cudaMemcpyToSymbol( myr_sha256_gpu_constantTable,
myr_sha256_cpu_constantTable,
sizeof(uint32_t) * 64 );
// Speicher für temporäreHashes
cudaMalloc(&d_outputHashes[thr_id], 16*sizeof(uint32_t)*threads);
cudaMalloc(&d_outputHashes[thr_id], (size_t) 64 * threads);
cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t));
}
__host__
void myriadgroestl_cpu_free(int thr_id)
{
cudaFree(d_resultNonce[thr_id]);
cudaFree(d_outputHashes[thr_id]);
cudaFree(d_resultNonce[thr_id]);
}
__host__
void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn)
{
// Nachricht expandieren und setzen
uint32_t msgBlock[32];
memset(msgBlock, 0, sizeof(uint32_t) * 32);
uint32_t msgBlock[32] = { 0 };
memcpy(&msgBlock[0], data, 80);
// Erweitere die Nachricht auf den Nachrichtenblock (padding)
@ -352,27 +349,20 @@ void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn) @@ -352,27 +349,20 @@ void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn)
// auf der GPU ausgeführt)
// Blockheader setzen (korrekte Nonce und Hefty Hash fehlen da drin noch)
cudaMemcpyToSymbol( myriadgroestl_gpu_msg,
msgBlock,
128);
cudaMemcpyToSymbol(myriadgroestl_gpu_msg, msgBlock, 128);
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t));
cudaMemcpyToSymbol( pTarget,
pTargetIn,
sizeof(uint32_t) * 8 );
cudaMemcpyToSymbol(pTarget, pTargetIn, 32);
}
__host__
void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, void *outputHashes, uint32_t *nounce)
void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *resNounce)
{
uint32_t threadsperblock = 256;
// Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle
// mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl
const int factor=4;
// Größe des dynamischen Shared Memory Bereichs
size_t shared_size = 0;
const int factor = 4;
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t));
// berechne wie viele Thread Blocks wir brauchen
@ -384,12 +374,12 @@ void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, @@ -384,12 +374,12 @@ void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce,
return;
}
myriadgroestl_gpu_hash_quad<<<grid, block, shared_size>>>(threads, startNounce, d_outputHashes[thr_id]);
myriadgroestl_gpu_hash_quad <<< grid, block >>> (threads, startNounce, d_outputHashes[thr_id]);
dim3 grid2((threads + threadsperblock-1)/threadsperblock);
myriadgroestl_gpu_hash_quad2<<<grid2, block, shared_size>>>(threads, startNounce, d_resultNonce[thr_id], d_outputHashes[thr_id]);
myriadgroestl_gpu_hash_quad2 <<< grid2, block >>> (threads, startNounce, d_resultNonce[thr_id], d_outputHashes[thr_id]);
// Strategisches Sleep Kommando zur Senkung der CPU Last
MyStreamSynchronize(NULL, 0, thr_id);
cudaMemcpy(nounce, d_resultNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost);
cudaMemcpy(resNounce, d_resultNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost);
}

17
myriadgroestl.cpp

@ -10,7 +10,7 @@ @@ -10,7 +10,7 @@
void myriadgroestl_cpu_init(int thr_id, uint32_t threads);
void myriadgroestl_cpu_free(int thr_id);
void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn);
void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, void *outputHashes, uint32_t *nounce);
void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *nounce);
void myriadhash(void *state, const void *input)
{
@ -37,18 +37,18 @@ int scanhash_myriad(int thr_id, struct work *work, uint32_t max_nonce, unsigned @@ -37,18 +37,18 @@ int scanhash_myriad(int thr_id, struct work *work, uint32_t max_nonce, unsigned
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t start_nonce = pdata[19];
uint32_t throughput = cuda_default_throughput(thr_id, 1U << 17);
int dev_id = device_map[thr_id];
int intensity = (device_sm[dev_id] >= 600) ? 20 : 18;
uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity);
if (init[thr_id]) throughput = min(throughput, max_nonce - start_nonce);
uint32_t *outputHash = (uint32_t*)malloc(throughput * 64);
if (opt_benchmark)
ptarget[7] = 0x0000ff;
// init
if(!init[thr_id])
{
cudaSetDevice(device_map[thr_id]);
cudaSetDevice(dev_id);
if (opt_cudaschedule == -1 && gpu_threads == 1) {
cudaDeviceReset();
// reduce cpu usage
@ -62,14 +62,13 @@ int scanhash_myriad(int thr_id, struct work *work, uint32_t max_nonce, unsigned @@ -62,14 +62,13 @@ int scanhash_myriad(int thr_id, struct work *work, uint32_t max_nonce, unsigned
for (int k=0; k < 20; k++)
be32enc(&endiandata[k], pdata[k]);
// Context mit dem Endian gedrehten Blockheader vorbereiten (Nonce wird später ersetzt)
myriadgroestl_cpu_setBlock(thr_id, endiandata, (void*)ptarget);
do {
// GPU
uint32_t foundNounce = UINT32_MAX;
myriadgroestl_cpu_hash(thr_id, throughput, pdata[19], outputHash, &foundNounce);
myriadgroestl_cpu_hash(thr_id, throughput, pdata[19], &foundNounce);
*hashes_done = pdata[19] - start_nonce + throughput;
@ -81,9 +80,8 @@ int scanhash_myriad(int thr_id, struct work *work, uint32_t max_nonce, unsigned @@ -81,9 +80,8 @@ int scanhash_myriad(int thr_id, struct work *work, uint32_t max_nonce, unsigned
if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget)) {
work_set_target_ratio(work, vhash);
pdata[19] = foundNounce;
free(outputHash);
return 1;
} else {
} else if (vhash[7] > ptarget[7]) {
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNounce);
}
}
@ -98,7 +96,6 @@ int scanhash_myriad(int thr_id, struct work *work, uint32_t max_nonce, unsigned @@ -98,7 +96,6 @@ int scanhash_myriad(int thr_id, struct work *work, uint32_t max_nonce, unsigned
*hashes_done = max_nonce - start_nonce;
free(outputHash);
return 0;
}

Loading…
Cancel
Save