Browse Source

myr-gr: handle a second nonce & more cleanup

2upstream
Tanguy Pruvot 8 years ago
parent
commit
06e2485128
  1. 207
      cuda_myriadgroestl.cu
  2. 28
      myriadgroestl.cpp

207
cuda_myriadgroestl.cu

@ -8,6 +8,7 @@
#ifdef __INTELLISENSE__ #ifdef __INTELLISENSE__
#define __CUDA_ARCH__ 500 #define __CUDA_ARCH__ 500
#define __funnelshift_r(x,y,n) (x >> n) #define __funnelshift_r(x,y,n) (x >> n)
#define atomicExch(p,x) x
#endif #endif
#if __CUDA_ARCH__ >= 300 #if __CUDA_ARCH__ >= 300
@ -17,10 +18,10 @@
#endif #endif
// globaler Speicher für alle HeftyHashes aller Threads // globaler Speicher für alle HeftyHashes aller Threads
__constant__ uint32_t pTarget[8]; // Single GPU
static uint32_t *d_outputHashes[MAX_GPUS]; static uint32_t *d_outputHashes[MAX_GPUS];
static uint32_t *d_resultNonce[MAX_GPUS]; static uint32_t *d_resultNonces[MAX_GPUS];
__constant__ uint32_t pTarget[2]; // Same for all GPU
__constant__ uint32_t myriadgroestl_gpu_msg[32]; __constant__ uint32_t myriadgroestl_gpu_msg[32];
// muss expandiert werden // muss expandiert werden
@ -67,33 +68,25 @@ const uint32_t myr_sha256_cpu_w2Table[] = {
#define s0(x) (ROTR32(x, 7) ^ ROTR32(x, 18) ^ R(x, 3)) #define s0(x) (ROTR32(x, 7) ^ ROTR32(x, 18) ^ R(x, 3))
#define s1(x) (ROTR32(x, 17) ^ ROTR32(x, 19) ^ R(x, 10)) #define s1(x) (ROTR32(x, 17) ^ ROTR32(x, 19) ^ R(x, 10))
__device__ void myriadgroestl_gpu_sha256(uint32_t *message) __device__ __forceinline__
void myriadgroestl_gpu_sha256(uint32_t *message)
{ {
uint32_t regs[8], hash[8];
const uint32_t myr_sha256_gpu_hashTable[8] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
};
// pre
#pragma unroll 8
for (int k=0; k < 8; k++)
{
regs[k] = myr_sha256_gpu_hashTable[k];
hash[k] = regs[k];
}
uint32_t W1[16]; uint32_t W1[16];
#pragma unroll 16 #pragma unroll
for(int k=0; k<16; k++) for(int k=0; k<16; k++)
W1[k] = SWAB32(message[k]); W1[k] = SWAB32(message[k]);
uint32_t regs[8] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
};
// Progress W1 // Progress W1
#pragma unroll 16 #pragma unroll
for(int j=0; j<16; j++) for(int j=0; j<16; j++)
{ {
uint32_t T1, T2; uint32_t T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j] + W1[j];
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j] + W1[j]; uint32_t T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7 #pragma unroll 7
for (int k=6; k >= 0; k--) regs[k+1] = regs[k]; for (int k=6; k >= 0; k--) regs[k+1] = regs[k];
@ -105,27 +98,26 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
uint32_t W2[16]; uint32_t W2[16];
////// PART 1 ////// PART 1
#pragma unroll 2 #pragma unroll
for(int j=0; j<2; j++) for(int j=0; j<2; j++)
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j]; W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j];
#pragma unroll 5 #pragma unroll 5
for(int j=2;j<7;j++) for(int j=2; j<7;j++)
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j]; W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j];
#pragma unroll 8 #pragma unroll
for(int j=7; j<15; j++) for(int j=7; j<15; j++)
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j]; W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j];
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15]; W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
// Round function // Round function
#pragma unroll 16 #pragma unroll
for(int j=0; j<16; j++) for(int j=0; j<16; j++)
{ {
uint32_t T1, T2; uint32_t T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 16] + W2[j];
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 16] + W2[j]; uint32_t T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7 #pragma unroll 7
for (int l=6; l >= 0; l--) regs[l+1] = regs[l]; for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
@ -134,26 +126,25 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
} }
////// PART 2 ////// PART 2
#pragma unroll 2 #pragma unroll
for(int j=0; j<2; j++) for(int j=0; j<2; j++)
W1[j] = s1(W2[14+j]) + W2[9+j] + s0(W2[1+j]) + W2[j]; W1[j] = s1(W2[14+j]) + W2[9+j] + s0(W2[1+j]) + W2[j];
#pragma unroll 5 #pragma unroll 5
for(int j=2; j<7; j++) for(int j=2; j<7; j++)
W1[j] = s1(W1[j-2]) + W2[9+j] + s0(W2[1+j]) + W2[j]; W1[j] = s1(W1[j-2]) + W2[9+j] + s0(W2[1+j]) + W2[j];
#pragma unroll 8 #pragma unroll
for(int j=7; j<15; j++) for(int j=7; j<15; j++)
W1[j] = s1(W1[j-2]) + W1[j-7] + s0(W2[1+j]) + W2[j]; W1[j] = s1(W1[j-2]) + W1[j-7] + s0(W2[1+j]) + W2[j];
W1[15] = s1(W1[13]) + W1[8] + s0(W1[0]) + W2[15]; W1[15] = s1(W1[13]) + W1[8] + s0(W1[0]) + W2[15];
// Round function // Round function
#pragma unroll 16 #pragma unroll
for(int j=0; j<16; j++) for(int j=0; j<16; j++)
{ {
uint32_t T1, T2; uint32_t T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 32] + W1[j];
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 32] + W1[j]; uint32_t T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7 #pragma unroll 7
for (int l=6; l >= 0; l--) regs[l+1] = regs[l]; for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
@ -162,26 +153,26 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
} }
////// PART 3 ////// PART 3
#pragma unroll 2 #pragma unroll
for(int j=0; j<2; j++) for(int j=0; j<2; j++)
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j]; W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j];
#pragma unroll 5 #pragma unroll 5
for(int j=2; j<7; j++) for(int j=2; j<7; j++)
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j]; W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j];
#pragma unroll 8 #pragma unroll
for(int j=7; j<15; j++) for(int j=7; j<15; j++)
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j]; W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j];
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15]; W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
// Round function // Round function
#pragma unroll 16 #pragma unroll
for(int j=0; j<16; j++) for(int j=0; j<16; j++)
{ {
uint32_t T1, T2; uint32_t T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 48] + W2[j];
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 48] + W2[j]; uint32_t T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7 #pragma unroll 7
for (int l=6; l >= 0; l--) regs[l+1] = regs[l]; for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
@ -189,6 +180,11 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
regs[4] += T1; regs[4] += T1;
} }
uint32_t hash[8] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
};
#pragma unroll 8 #pragma unroll 8
for(int k=0; k<8; k++) for(int k=0; k<8; k++)
hash[k] += regs[k]; hash[k] += regs[k];
@ -196,17 +192,16 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
///// /////
///// 2nd Round (wegen Msg-Padding) ///// 2nd Round (wegen Msg-Padding)
///// /////
#pragma unroll 8 #pragma unroll
for(int k=0; k<8; k++) for(int k=0; k<8; k++)
regs[k] = hash[k]; regs[k] = hash[k];
// Progress W1 // Progress W1
#pragma unroll 64 #pragma unroll
for(int j=0; j<64; j++) for(int j=0; j<64; j++)
{ {
uint32_t T1, T2; uint32_t T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable2[j];
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable2[j]; uint32_t T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7 #pragma unroll 7
for (int k=6; k >= 0; k--) regs[k+1] = regs[k]; for (int k=6; k >= 0; k--) regs[k+1] = regs[k];
@ -214,15 +209,48 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
regs[4] += T1; regs[4] += T1;
} }
#pragma unroll 8 #if 0
// Full sha hash
#pragma unroll
for(int k=0; k<8; k++) for(int k=0; k<8; k++)
hash[k] += regs[k]; hash[k] += regs[k];
//// Close #pragma unroll
#pragma unroll 8
for(int k=0; k<8; k++) for(int k=0; k<8; k++)
message[k] = SWAB32(hash[k]); message[k] = SWAB32(hash[k]);
#else
message[6] = SWAB32(hash[6] + regs[6]);
message[7] = SWAB32(hash[7] + regs[7]);
#endif
}
__global__
//__launch_bounds__(256, 6) // we want <= 40 regs
void myriadgroestl_gpu_hash_sha(uint32_t threads, uint32_t startNounce, uint32_t *hashBuffer, uint32_t *resNonces)
{
#if __CUDA_ARCH__ >= 300
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
const uint32_t nonce = startNounce + thread;
uint32_t out_state[16];
uint32_t *inpHash = &hashBuffer[16 * thread];
#pragma unroll 16
for (int i=0; i < 16; i++)
out_state[i] = inpHash[i];
myriadgroestl_gpu_sha256(out_state);
if (out_state[7] <= pTarget[1] && out_state[6] <= pTarget[0])
{
uint32_t tmp = atomicExch(&resNonces[0], nonce);
if (tmp != UINT32_MAX)
resNonces[1] = tmp;
}
}
#endif
} }
__global__ __global__
@ -248,7 +276,6 @@ void myriadgroestl_gpu_hash_quad(uint32_t threads, uint32_t startNounce, uint32_
to_bitslice_quad(paddedInput, msgBitsliced); to_bitslice_quad(paddedInput, msgBitsliced);
uint32_t state[8]; uint32_t state[8];
groestl512_progressMessage_quad(state, msgBitsliced); groestl512_progressMessage_quad(state, msgBitsliced);
uint32_t out_state[16]; uint32_t out_state[16];
@ -264,49 +291,6 @@ void myriadgroestl_gpu_hash_quad(uint32_t threads, uint32_t startNounce, uint32_
#endif #endif
} }
__global__
void myriadgroestl_gpu_hash_quad2(uint32_t threads, uint32_t startNounce, uint32_t *resNounce, uint32_t *hashBuffer)
{
#if __CUDA_ARCH__ >= 300
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint32_t nounce = startNounce + thread;
uint32_t out_state[16];
uint32_t *inpHash = &hashBuffer[16 * thread];
#pragma unroll 16
for (int i=0; i < 16; i++)
out_state[i] = inpHash[i];
myriadgroestl_gpu_sha256(out_state);
int i, position = -1;
bool rc = true;
#pragma unroll 8
for (i = 7; i >= 0; i--) {
if (out_state[i] > pTarget[i]) {
if(position < i) {
position = i;
rc = false;
}
}
if (out_state[i] < pTarget[i]) {
if(position < i) {
position = i;
rc = true;
}
}
}
if(rc && resNounce[0] > nounce)
resNounce[0] = nounce;
}
#endif
}
// Setup Function // Setup Function
__host__ __host__
void myriadgroestl_cpu_init(int thr_id, uint32_t threads) void myriadgroestl_cpu_init(int thr_id, uint32_t threads)
@ -315,9 +299,7 @@ void myriadgroestl_cpu_init(int thr_id, uint32_t threads)
for(int i=0; i<64; i++) for(int i=0; i<64; i++)
temp[i] = myr_sha256_cpu_w2Table[i] + myr_sha256_cpu_constantTable[i]; temp[i] = myr_sha256_cpu_w2Table[i] + myr_sha256_cpu_constantTable[i];
cudaMemcpyToSymbol( myr_sha256_gpu_constantTable2, cudaMemcpyToSymbol( myr_sha256_gpu_constantTable2, temp, sizeof(uint32_t) * 64 );
temp,
sizeof(uint32_t) * 64 );
cudaMemcpyToSymbol( myr_sha256_gpu_constantTable, cudaMemcpyToSymbol( myr_sha256_gpu_constantTable,
myr_sha256_cpu_constantTable, myr_sha256_cpu_constantTable,
@ -327,36 +309,26 @@ void myriadgroestl_cpu_init(int thr_id, uint32_t threads)
cuda_get_arch(thr_id); cuda_get_arch(thr_id);
cudaMalloc(&d_outputHashes[thr_id], (size_t) 64 * threads); cudaMalloc(&d_outputHashes[thr_id], (size_t) 64 * threads);
cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t)); cudaMalloc(&d_resultNonces[thr_id], 2 * sizeof(uint32_t));
} }
__host__ __host__
void myriadgroestl_cpu_free(int thr_id) void myriadgroestl_cpu_free(int thr_id)
{ {
cudaFree(d_outputHashes[thr_id]); cudaFree(d_outputHashes[thr_id]);
cudaFree(d_resultNonce[thr_id]); cudaFree(d_resultNonces[thr_id]);
} }
__host__ __host__
void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn) void myriadgroestl_cpu_setBlock(int thr_id, void *data, uint32_t *pTargetIn)
{ {
// Nachricht expandieren und setzen
uint32_t msgBlock[32] = { 0 }; uint32_t msgBlock[32] = { 0 };
memcpy(&msgBlock[0], data, 80); memcpy(&msgBlock[0], data, 80);
// Erweitere die Nachricht auf den Nachrichtenblock (padding)
// Unsere Nachricht hat 80 Byte
msgBlock[20] = 0x80; msgBlock[20] = 0x80;
msgBlock[31] = 0x01000000; msgBlock[31] = 0x01000000;
// groestl512 braucht hierfür keinen CPU-Code (die einzige Runde wird
// auf der GPU ausgeführt)
// Blockheader setzen (korrekte Nonce und Hefty Hash fehlen da drin noch)
cudaMemcpyToSymbol(myriadgroestl_gpu_msg, msgBlock, 128); cudaMemcpyToSymbol(myriadgroestl_gpu_msg, msgBlock, 128);
cudaMemcpyToSymbol(pTarget, &pTargetIn[6], 2 * sizeof(uint32_t));
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t));
cudaMemcpyToSymbol(pTarget, pTargetIn, 32);
} }
__host__ __host__
@ -364,26 +336,25 @@ void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce,
{ {
uint32_t threadsperblock = 256; uint32_t threadsperblock = 256;
cudaMemset(d_resultNonces[thr_id], 0xFF, 2 * sizeof(uint32_t));
// Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle // Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle
// mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl // mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl
const int factor = 4; const int factor = 4;
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t));
// berechne wie viele Thread Blocks wir brauchen
dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock)); dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock));
dim3 block(threadsperblock); dim3 block(threadsperblock);
if (device_sm[device_map[thr_id]] < 300) { int dev_id = device_map[thr_id];
if (device_sm[dev_id] < 300 || cuda_arch[dev_id] < 300) {
printf("Sorry, This algo is not supported by this GPU arch (SM 3.0 required)"); printf("Sorry, This algo is not supported by this GPU arch (SM 3.0 required)");
return; return;
} }
myriadgroestl_gpu_hash_quad <<< grid, block >>> (threads, startNounce, d_outputHashes[thr_id]); myriadgroestl_gpu_hash_quad <<< grid, block >>> (threads, startNounce, d_outputHashes[thr_id]);
dim3 grid2((threads + threadsperblock-1)/threadsperblock);
myriadgroestl_gpu_hash_quad2 <<< grid2, block >>> (threads, startNounce, d_resultNonce[thr_id], d_outputHashes[thr_id]);
// Strategisches Sleep Kommando zur Senkung der CPU Last dim3 grid2((threads + threadsperblock-1)/threadsperblock);
//MyStreamSynchronize(NULL, 0, thr_id); myriadgroestl_gpu_hash_sha <<< grid2, block >>> (threads, startNounce, d_outputHashes[thr_id], d_resultNonces[thr_id]);
cudaMemcpy(resNounce, d_resultNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost); cudaMemcpy(resNounce, d_resultNonces[thr_id], 2 * sizeof(uint32_t), cudaMemcpyDeviceToHost);
} }

28
myriadgroestl.cpp

@ -9,8 +9,8 @@
void myriadgroestl_cpu_init(int thr_id, uint32_t threads); void myriadgroestl_cpu_init(int thr_id, uint32_t threads);
void myriadgroestl_cpu_free(int thr_id); void myriadgroestl_cpu_free(int thr_id);
void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn); void myriadgroestl_cpu_setBlock(int thr_id, void *data, uint32_t *target);
void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *nounce); void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNonce, uint32_t *resNonces);
void myriadhash(void *state, const void *input) void myriadhash(void *state, const void *input)
{ {
@ -62,27 +62,37 @@ int scanhash_myriad(int thr_id, struct work *work, uint32_t max_nonce, unsigned
for (int k=0; k < 20; k++) for (int k=0; k < 20; k++)
be32enc(&endiandata[k], pdata[k]); be32enc(&endiandata[k], pdata[k]);
myriadgroestl_cpu_setBlock(thr_id, endiandata, (void*)ptarget); myriadgroestl_cpu_setBlock(thr_id, endiandata, ptarget);
do { do {
// GPU // GPU
uint32_t foundNounce = UINT32_MAX; uint32_t foundNonces[2] = { UINT32_MAX, UINT32_MAX };
myriadgroestl_cpu_hash(thr_id, throughput, pdata[19], &foundNounce); myriadgroestl_cpu_hash(thr_id, throughput, pdata[19], foundNonces);
*hashes_done = pdata[19] - start_nonce + throughput; *hashes_done = pdata[19] - start_nonce + throughput;
if (foundNounce < UINT32_MAX && bench_algo < 0) if (foundNonces[0] < UINT32_MAX && bench_algo < 0)
{ {
uint32_t _ALIGN(64) vhash[8]; uint32_t _ALIGN(64) vhash[8];
endiandata[19] = swab32(foundNounce); endiandata[19] = swab32(foundNonces[0]);
myriadhash(vhash, endiandata); myriadhash(vhash, endiandata);
if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget)) { if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget)) {
work_set_target_ratio(work, vhash); work_set_target_ratio(work, vhash);
pdata[19] = foundNounce; pdata[19] = foundNonces[0];
// search for another nonce
if (foundNonces[1] != UINT32_MAX) {
endiandata[19] = swab32(foundNonces[1]);
myriadhash(vhash, endiandata);
pdata[21] = foundNonces[1];
if(bn_hash_target_ratio(vhash, ptarget) > work->shareratio) {
work_set_target_ratio(work, vhash);
}
return 2;
}
return 1; return 1;
} else if (vhash[7] > ptarget[7]) { } else if (vhash[7] > ptarget[7]) {
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNounce); gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNonces[0]);
} }
} }

Loading…
Cancel
Save