|
|
@ -8,6 +8,7 @@ |
|
|
|
#ifdef __INTELLISENSE__ |
|
|
|
#ifdef __INTELLISENSE__ |
|
|
|
#define __CUDA_ARCH__ 500 |
|
|
|
#define __CUDA_ARCH__ 500 |
|
|
|
#define __funnelshift_r(x,y,n) (x >> n) |
|
|
|
#define __funnelshift_r(x,y,n) (x >> n) |
|
|
|
|
|
|
|
#define atomicExch(p,x) x |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
#if __CUDA_ARCH__ >= 300 |
|
|
|
#if __CUDA_ARCH__ >= 300 |
|
|
@ -17,10 +18,10 @@ |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
// globaler Speicher für alle HeftyHashes aller Threads |
|
|
|
// globaler Speicher für alle HeftyHashes aller Threads |
|
|
|
__constant__ uint32_t pTarget[8]; // Single GPU |
|
|
|
|
|
|
|
static uint32_t *d_outputHashes[MAX_GPUS]; |
|
|
|
static uint32_t *d_outputHashes[MAX_GPUS]; |
|
|
|
static uint32_t *d_resultNonce[MAX_GPUS]; |
|
|
|
static uint32_t *d_resultNonces[MAX_GPUS]; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__constant__ uint32_t pTarget[2]; // Same for all GPU |
|
|
|
__constant__ uint32_t myriadgroestl_gpu_msg[32]; |
|
|
|
__constant__ uint32_t myriadgroestl_gpu_msg[32]; |
|
|
|
|
|
|
|
|
|
|
|
// muss expandiert werden |
|
|
|
// muss expandiert werden |
|
|
@ -67,33 +68,25 @@ const uint32_t myr_sha256_cpu_w2Table[] = { |
|
|
|
#define s0(x) (ROTR32(x, 7) ^ ROTR32(x, 18) ^ R(x, 3)) |
|
|
|
#define s0(x) (ROTR32(x, 7) ^ ROTR32(x, 18) ^ R(x, 3)) |
|
|
|
#define s1(x) (ROTR32(x, 17) ^ ROTR32(x, 19) ^ R(x, 10)) |
|
|
|
#define s1(x) (ROTR32(x, 17) ^ ROTR32(x, 19) ^ R(x, 10)) |
|
|
|
|
|
|
|
|
|
|
|
__device__ void myriadgroestl_gpu_sha256(uint32_t *message) |
|
|
|
__device__ __forceinline__ |
|
|
|
|
|
|
|
void myriadgroestl_gpu_sha256(uint32_t *message) |
|
|
|
{ |
|
|
|
{ |
|
|
|
uint32_t regs[8], hash[8]; |
|
|
|
|
|
|
|
const uint32_t myr_sha256_gpu_hashTable[8] = { |
|
|
|
|
|
|
|
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 |
|
|
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// pre |
|
|
|
|
|
|
|
#pragma unroll 8 |
|
|
|
|
|
|
|
for (int k=0; k < 8; k++) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
regs[k] = myr_sha256_gpu_hashTable[k]; |
|
|
|
|
|
|
|
hash[k] = regs[k]; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uint32_t W1[16]; |
|
|
|
uint32_t W1[16]; |
|
|
|
#pragma unroll 16 |
|
|
|
#pragma unroll |
|
|
|
for(int k=0; k<16; k++) |
|
|
|
for(int k=0; k<16; k++) |
|
|
|
W1[k] = SWAB32(message[k]); |
|
|
|
W1[k] = SWAB32(message[k]); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uint32_t regs[8] = { |
|
|
|
|
|
|
|
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, |
|
|
|
|
|
|
|
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 |
|
|
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
// Progress W1 |
|
|
|
// Progress W1 |
|
|
|
#pragma unroll 16 |
|
|
|
#pragma unroll |
|
|
|
for(int j=0; j<16; j++) |
|
|
|
for(int j=0; j<16; j++) |
|
|
|
{ |
|
|
|
{ |
|
|
|
uint32_t T1, T2; |
|
|
|
uint32_t T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j] + W1[j]; |
|
|
|
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j] + W1[j]; |
|
|
|
uint32_t T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); |
|
|
|
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#pragma unroll 7 |
|
|
|
#pragma unroll 7 |
|
|
|
for (int k=6; k >= 0; k--) regs[k+1] = regs[k]; |
|
|
|
for (int k=6; k >= 0; k--) regs[k+1] = regs[k]; |
|
|
@ -105,27 +98,26 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message) |
|
|
|
uint32_t W2[16]; |
|
|
|
uint32_t W2[16]; |
|
|
|
|
|
|
|
|
|
|
|
////// PART 1 |
|
|
|
////// PART 1 |
|
|
|
#pragma unroll 2 |
|
|
|
#pragma unroll |
|
|
|
for(int j=0; j<2; j++) |
|
|
|
for(int j=0; j<2; j++) |
|
|
|
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j]; |
|
|
|
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j]; |
|
|
|
|
|
|
|
|
|
|
|
#pragma unroll 5 |
|
|
|
#pragma unroll 5 |
|
|
|
for(int j=2;j<7;j++) |
|
|
|
for(int j=2; j<7;j++) |
|
|
|
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j]; |
|
|
|
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j]; |
|
|
|
|
|
|
|
|
|
|
|
#pragma unroll 8 |
|
|
|
#pragma unroll |
|
|
|
for(int j=7; j<15; j++) |
|
|
|
for(int j=7; j<15; j++) |
|
|
|
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j]; |
|
|
|
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j]; |
|
|
|
|
|
|
|
|
|
|
|
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15]; |
|
|
|
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15]; |
|
|
|
|
|
|
|
|
|
|
|
// Round function |
|
|
|
// Round function |
|
|
|
#pragma unroll 16 |
|
|
|
#pragma unroll |
|
|
|
for(int j=0; j<16; j++) |
|
|
|
for(int j=0; j<16; j++) |
|
|
|
{ |
|
|
|
{ |
|
|
|
uint32_t T1, T2; |
|
|
|
uint32_t T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 16] + W2[j]; |
|
|
|
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 16] + W2[j]; |
|
|
|
uint32_t T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); |
|
|
|
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#pragma unroll 7 |
|
|
|
#pragma unroll 7 |
|
|
|
for (int l=6; l >= 0; l--) regs[l+1] = regs[l]; |
|
|
|
for (int l=6; l >= 0; l--) regs[l+1] = regs[l]; |
|
|
@ -134,26 +126,25 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message) |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
////// PART 2 |
|
|
|
////// PART 2 |
|
|
|
#pragma unroll 2 |
|
|
|
#pragma unroll |
|
|
|
for(int j=0; j<2; j++) |
|
|
|
for(int j=0; j<2; j++) |
|
|
|
W1[j] = s1(W2[14+j]) + W2[9+j] + s0(W2[1+j]) + W2[j]; |
|
|
|
W1[j] = s1(W2[14+j]) + W2[9+j] + s0(W2[1+j]) + W2[j]; |
|
|
|
#pragma unroll 5 |
|
|
|
#pragma unroll 5 |
|
|
|
for(int j=2; j<7; j++) |
|
|
|
for(int j=2; j<7; j++) |
|
|
|
W1[j] = s1(W1[j-2]) + W2[9+j] + s0(W2[1+j]) + W2[j]; |
|
|
|
W1[j] = s1(W1[j-2]) + W2[9+j] + s0(W2[1+j]) + W2[j]; |
|
|
|
|
|
|
|
|
|
|
|
#pragma unroll 8 |
|
|
|
#pragma unroll |
|
|
|
for(int j=7; j<15; j++) |
|
|
|
for(int j=7; j<15; j++) |
|
|
|
W1[j] = s1(W1[j-2]) + W1[j-7] + s0(W2[1+j]) + W2[j]; |
|
|
|
W1[j] = s1(W1[j-2]) + W1[j-7] + s0(W2[1+j]) + W2[j]; |
|
|
|
|
|
|
|
|
|
|
|
W1[15] = s1(W1[13]) + W1[8] + s0(W1[0]) + W2[15]; |
|
|
|
W1[15] = s1(W1[13]) + W1[8] + s0(W1[0]) + W2[15]; |
|
|
|
|
|
|
|
|
|
|
|
// Round function |
|
|
|
// Round function |
|
|
|
#pragma unroll 16 |
|
|
|
#pragma unroll |
|
|
|
for(int j=0; j<16; j++) |
|
|
|
for(int j=0; j<16; j++) |
|
|
|
{ |
|
|
|
{ |
|
|
|
uint32_t T1, T2; |
|
|
|
uint32_t T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 32] + W1[j]; |
|
|
|
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 32] + W1[j]; |
|
|
|
uint32_t T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); |
|
|
|
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#pragma unroll 7 |
|
|
|
#pragma unroll 7 |
|
|
|
for (int l=6; l >= 0; l--) regs[l+1] = regs[l]; |
|
|
|
for (int l=6; l >= 0; l--) regs[l+1] = regs[l]; |
|
|
@ -162,26 +153,26 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message) |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
////// PART 3 |
|
|
|
////// PART 3 |
|
|
|
#pragma unroll 2 |
|
|
|
#pragma unroll |
|
|
|
for(int j=0; j<2; j++) |
|
|
|
for(int j=0; j<2; j++) |
|
|
|
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j]; |
|
|
|
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j]; |
|
|
|
|
|
|
|
|
|
|
|
#pragma unroll 5 |
|
|
|
#pragma unroll 5 |
|
|
|
for(int j=2; j<7; j++) |
|
|
|
for(int j=2; j<7; j++) |
|
|
|
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j]; |
|
|
|
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j]; |
|
|
|
|
|
|
|
|
|
|
|
#pragma unroll 8 |
|
|
|
#pragma unroll |
|
|
|
for(int j=7; j<15; j++) |
|
|
|
for(int j=7; j<15; j++) |
|
|
|
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j]; |
|
|
|
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j]; |
|
|
|
|
|
|
|
|
|
|
|
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15]; |
|
|
|
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15]; |
|
|
|
|
|
|
|
|
|
|
|
// Round function |
|
|
|
// Round function |
|
|
|
#pragma unroll 16 |
|
|
|
#pragma unroll |
|
|
|
for(int j=0; j<16; j++) |
|
|
|
for(int j=0; j<16; j++) |
|
|
|
{ |
|
|
|
{ |
|
|
|
uint32_t T1, T2; |
|
|
|
uint32_t T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 48] + W2[j]; |
|
|
|
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 48] + W2[j]; |
|
|
|
uint32_t T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); |
|
|
|
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#pragma unroll 7 |
|
|
|
#pragma unroll 7 |
|
|
|
for (int l=6; l >= 0; l--) regs[l+1] = regs[l]; |
|
|
|
for (int l=6; l >= 0; l--) regs[l+1] = regs[l]; |
|
|
@ -189,6 +180,11 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message) |
|
|
|
regs[4] += T1; |
|
|
|
regs[4] += T1; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uint32_t hash[8] = { |
|
|
|
|
|
|
|
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, |
|
|
|
|
|
|
|
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 |
|
|
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
#pragma unroll 8 |
|
|
|
#pragma unroll 8 |
|
|
|
for(int k=0; k<8; k++) |
|
|
|
for(int k=0; k<8; k++) |
|
|
|
hash[k] += regs[k]; |
|
|
|
hash[k] += regs[k]; |
|
|
@ -196,17 +192,16 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message) |
|
|
|
///// |
|
|
|
///// |
|
|
|
///// 2nd Round (wegen Msg-Padding) |
|
|
|
///// 2nd Round (wegen Msg-Padding) |
|
|
|
///// |
|
|
|
///// |
|
|
|
#pragma unroll 8 |
|
|
|
#pragma unroll |
|
|
|
for(int k=0; k<8; k++) |
|
|
|
for(int k=0; k<8; k++) |
|
|
|
regs[k] = hash[k]; |
|
|
|
regs[k] = hash[k]; |
|
|
|
|
|
|
|
|
|
|
|
// Progress W1 |
|
|
|
// Progress W1 |
|
|
|
#pragma unroll 64 |
|
|
|
#pragma unroll |
|
|
|
for(int j=0; j<64; j++) |
|
|
|
for(int j=0; j<64; j++) |
|
|
|
{ |
|
|
|
{ |
|
|
|
uint32_t T1, T2; |
|
|
|
uint32_t T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable2[j]; |
|
|
|
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable2[j]; |
|
|
|
uint32_t T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); |
|
|
|
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#pragma unroll 7 |
|
|
|
#pragma unroll 7 |
|
|
|
for (int k=6; k >= 0; k--) regs[k+1] = regs[k]; |
|
|
|
for (int k=6; k >= 0; k--) regs[k+1] = regs[k]; |
|
|
@ -214,15 +209,48 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message) |
|
|
|
regs[4] += T1; |
|
|
|
regs[4] += T1; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
#pragma unroll 8 |
|
|
|
#if 0 |
|
|
|
|
|
|
|
// Full sha hash |
|
|
|
|
|
|
|
#pragma unroll |
|
|
|
for(int k=0; k<8; k++) |
|
|
|
for(int k=0; k<8; k++) |
|
|
|
hash[k] += regs[k]; |
|
|
|
hash[k] += regs[k]; |
|
|
|
|
|
|
|
|
|
|
|
//// Close |
|
|
|
#pragma unroll |
|
|
|
|
|
|
|
|
|
|
|
#pragma unroll 8 |
|
|
|
|
|
|
|
for(int k=0; k<8; k++) |
|
|
|
for(int k=0; k<8; k++) |
|
|
|
message[k] = SWAB32(hash[k]); |
|
|
|
message[k] = SWAB32(hash[k]); |
|
|
|
|
|
|
|
#else |
|
|
|
|
|
|
|
message[6] = SWAB32(hash[6] + regs[6]); |
|
|
|
|
|
|
|
message[7] = SWAB32(hash[7] + regs[7]); |
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__global__ |
|
|
|
|
|
|
|
//__launch_bounds__(256, 6) // we want <= 40 regs |
|
|
|
|
|
|
|
void myriadgroestl_gpu_hash_sha(uint32_t threads, uint32_t startNounce, uint32_t *hashBuffer, uint32_t *resNonces) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
#if __CUDA_ARCH__ >= 300 |
|
|
|
|
|
|
|
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
|
|
|
|
|
|
if (thread < threads) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
const uint32_t nonce = startNounce + thread; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uint32_t out_state[16]; |
|
|
|
|
|
|
|
uint32_t *inpHash = &hashBuffer[16 * thread]; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#pragma unroll 16 |
|
|
|
|
|
|
|
for (int i=0; i < 16; i++) |
|
|
|
|
|
|
|
out_state[i] = inpHash[i]; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
myriadgroestl_gpu_sha256(out_state); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (out_state[7] <= pTarget[1] && out_state[6] <= pTarget[0]) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
uint32_t tmp = atomicExch(&resNonces[0], nonce); |
|
|
|
|
|
|
|
if (tmp != UINT32_MAX) |
|
|
|
|
|
|
|
resNonces[1] = tmp; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
#endif |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
__global__ |
|
|
|
__global__ |
|
|
@ -248,7 +276,6 @@ void myriadgroestl_gpu_hash_quad(uint32_t threads, uint32_t startNounce, uint32_ |
|
|
|
to_bitslice_quad(paddedInput, msgBitsliced); |
|
|
|
to_bitslice_quad(paddedInput, msgBitsliced); |
|
|
|
|
|
|
|
|
|
|
|
uint32_t state[8]; |
|
|
|
uint32_t state[8]; |
|
|
|
|
|
|
|
|
|
|
|
groestl512_progressMessage_quad(state, msgBitsliced); |
|
|
|
groestl512_progressMessage_quad(state, msgBitsliced); |
|
|
|
|
|
|
|
|
|
|
|
uint32_t out_state[16]; |
|
|
|
uint32_t out_state[16]; |
|
|
@ -264,49 +291,6 @@ void myriadgroestl_gpu_hash_quad(uint32_t threads, uint32_t startNounce, uint32_ |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
__global__ |
|
|
|
|
|
|
|
void myriadgroestl_gpu_hash_quad2(uint32_t threads, uint32_t startNounce, uint32_t *resNounce, uint32_t *hashBuffer) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
#if __CUDA_ARCH__ >= 300 |
|
|
|
|
|
|
|
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
|
|
|
|
|
|
if (thread < threads) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
uint32_t nounce = startNounce + thread; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uint32_t out_state[16]; |
|
|
|
|
|
|
|
uint32_t *inpHash = &hashBuffer[16 * thread]; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#pragma unroll 16 |
|
|
|
|
|
|
|
for (int i=0; i < 16; i++) |
|
|
|
|
|
|
|
out_state[i] = inpHash[i]; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
myriadgroestl_gpu_sha256(out_state); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int i, position = -1; |
|
|
|
|
|
|
|
bool rc = true; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#pragma unroll 8 |
|
|
|
|
|
|
|
for (i = 7; i >= 0; i--) { |
|
|
|
|
|
|
|
if (out_state[i] > pTarget[i]) { |
|
|
|
|
|
|
|
if(position < i) { |
|
|
|
|
|
|
|
position = i; |
|
|
|
|
|
|
|
rc = false; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
if (out_state[i] < pTarget[i]) { |
|
|
|
|
|
|
|
if(position < i) { |
|
|
|
|
|
|
|
position = i; |
|
|
|
|
|
|
|
rc = true; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if(rc && resNounce[0] > nounce) |
|
|
|
|
|
|
|
resNounce[0] = nounce; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Setup Function |
|
|
|
// Setup Function |
|
|
|
__host__ |
|
|
|
__host__ |
|
|
|
void myriadgroestl_cpu_init(int thr_id, uint32_t threads) |
|
|
|
void myriadgroestl_cpu_init(int thr_id, uint32_t threads) |
|
|
@ -315,9 +299,7 @@ void myriadgroestl_cpu_init(int thr_id, uint32_t threads) |
|
|
|
for(int i=0; i<64; i++) |
|
|
|
for(int i=0; i<64; i++) |
|
|
|
temp[i] = myr_sha256_cpu_w2Table[i] + myr_sha256_cpu_constantTable[i]; |
|
|
|
temp[i] = myr_sha256_cpu_w2Table[i] + myr_sha256_cpu_constantTable[i]; |
|
|
|
|
|
|
|
|
|
|
|
cudaMemcpyToSymbol( myr_sha256_gpu_constantTable2, |
|
|
|
cudaMemcpyToSymbol( myr_sha256_gpu_constantTable2, temp, sizeof(uint32_t) * 64 ); |
|
|
|
temp, |
|
|
|
|
|
|
|
sizeof(uint32_t) * 64 ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cudaMemcpyToSymbol( myr_sha256_gpu_constantTable, |
|
|
|
cudaMemcpyToSymbol( myr_sha256_gpu_constantTable, |
|
|
|
myr_sha256_cpu_constantTable, |
|
|
|
myr_sha256_cpu_constantTable, |
|
|
@ -327,36 +309,26 @@ void myriadgroestl_cpu_init(int thr_id, uint32_t threads) |
|
|
|
cuda_get_arch(thr_id); |
|
|
|
cuda_get_arch(thr_id); |
|
|
|
|
|
|
|
|
|
|
|
cudaMalloc(&d_outputHashes[thr_id], (size_t) 64 * threads); |
|
|
|
cudaMalloc(&d_outputHashes[thr_id], (size_t) 64 * threads); |
|
|
|
cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t)); |
|
|
|
cudaMalloc(&d_resultNonces[thr_id], 2 * sizeof(uint32_t)); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
__host__ |
|
|
|
__host__ |
|
|
|
void myriadgroestl_cpu_free(int thr_id) |
|
|
|
void myriadgroestl_cpu_free(int thr_id) |
|
|
|
{ |
|
|
|
{ |
|
|
|
cudaFree(d_outputHashes[thr_id]); |
|
|
|
cudaFree(d_outputHashes[thr_id]); |
|
|
|
cudaFree(d_resultNonce[thr_id]); |
|
|
|
cudaFree(d_resultNonces[thr_id]); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
__host__ |
|
|
|
__host__ |
|
|
|
void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn) |
|
|
|
void myriadgroestl_cpu_setBlock(int thr_id, void *data, uint32_t *pTargetIn) |
|
|
|
{ |
|
|
|
{ |
|
|
|
// Nachricht expandieren und setzen |
|
|
|
|
|
|
|
uint32_t msgBlock[32] = { 0 }; |
|
|
|
uint32_t msgBlock[32] = { 0 }; |
|
|
|
memcpy(&msgBlock[0], data, 80); |
|
|
|
memcpy(&msgBlock[0], data, 80); |
|
|
|
|
|
|
|
|
|
|
|
// Erweitere die Nachricht auf den Nachrichtenblock (padding) |
|
|
|
|
|
|
|
// Unsere Nachricht hat 80 Byte |
|
|
|
|
|
|
|
msgBlock[20] = 0x80; |
|
|
|
msgBlock[20] = 0x80; |
|
|
|
msgBlock[31] = 0x01000000; |
|
|
|
msgBlock[31] = 0x01000000; |
|
|
|
|
|
|
|
|
|
|
|
// groestl512 braucht hierfür keinen CPU-Code (die einzige Runde wird |
|
|
|
|
|
|
|
// auf der GPU ausgeführt) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Blockheader setzen (korrekte Nonce und Hefty Hash fehlen da drin noch) |
|
|
|
|
|
|
|
cudaMemcpyToSymbol(myriadgroestl_gpu_msg, msgBlock, 128); |
|
|
|
cudaMemcpyToSymbol(myriadgroestl_gpu_msg, msgBlock, 128); |
|
|
|
|
|
|
|
cudaMemcpyToSymbol(pTarget, &pTargetIn[6], 2 * sizeof(uint32_t)); |
|
|
|
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t)); |
|
|
|
|
|
|
|
cudaMemcpyToSymbol(pTarget, pTargetIn, 32); |
|
|
|
|
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
__host__ |
|
|
|
__host__ |
|
|
@ -364,26 +336,25 @@ void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, |
|
|
|
{ |
|
|
|
{ |
|
|
|
uint32_t threadsperblock = 256; |
|
|
|
uint32_t threadsperblock = 256; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cudaMemset(d_resultNonces[thr_id], 0xFF, 2 * sizeof(uint32_t)); |
|
|
|
|
|
|
|
|
|
|
|
// Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle |
|
|
|
// Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle |
|
|
|
// mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl |
|
|
|
// mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl |
|
|
|
const int factor = 4; |
|
|
|
const int factor = 4; |
|
|
|
|
|
|
|
|
|
|
|
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t)); |
|
|
|
|
|
|
|
// berechne wie viele Thread Blocks wir brauchen |
|
|
|
|
|
|
|
dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock)); |
|
|
|
dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock)); |
|
|
|
dim3 block(threadsperblock); |
|
|
|
dim3 block(threadsperblock); |
|
|
|
|
|
|
|
|
|
|
|
if (device_sm[device_map[thr_id]] < 300) { |
|
|
|
int dev_id = device_map[thr_id]; |
|
|
|
|
|
|
|
if (device_sm[dev_id] < 300 || cuda_arch[dev_id] < 300) { |
|
|
|
printf("Sorry, This algo is not supported by this GPU arch (SM 3.0 required)"); |
|
|
|
printf("Sorry, This algo is not supported by this GPU arch (SM 3.0 required)"); |
|
|
|
return; |
|
|
|
return; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
myriadgroestl_gpu_hash_quad <<< grid, block >>> (threads, startNounce, d_outputHashes[thr_id]); |
|
|
|
myriadgroestl_gpu_hash_quad <<< grid, block >>> (threads, startNounce, d_outputHashes[thr_id]); |
|
|
|
dim3 grid2((threads + threadsperblock-1)/threadsperblock); |
|
|
|
|
|
|
|
myriadgroestl_gpu_hash_quad2 <<< grid2, block >>> (threads, startNounce, d_resultNonce[thr_id], d_outputHashes[thr_id]); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Strategisches Sleep Kommando zur Senkung der CPU Last |
|
|
|
dim3 grid2((threads + threadsperblock-1)/threadsperblock); |
|
|
|
//MyStreamSynchronize(NULL, 0, thr_id); |
|
|
|
myriadgroestl_gpu_hash_sha <<< grid2, block >>> (threads, startNounce, d_outputHashes[thr_id], d_resultNonces[thr_id]); |
|
|
|
|
|
|
|
|
|
|
|
cudaMemcpy(resNounce, d_resultNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost); |
|
|
|
cudaMemcpy(resNounce, d_resultNonces[thr_id], 2 * sizeof(uint32_t), cudaMemcpyDeviceToHost); |
|
|
|
} |
|
|
|
} |
|
|
|