GOSTcoin support for ccminer CUDA miner project, compatible with most nvidia cards
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

470 lines
12 KiB

/**
* Lyra2 (v2) CUDA Implementation
*
* Based on djm34/VTC sources and incredible 2x boost by Nanashi Meiyo-Meijin (May 2016)
*/
#include <stdio.h>
#include <stdint.h>
#include <memory.h>
#include "cuda_lyra2v2_sm3.cuh"
#ifdef __INTELLISENSE__
/* just for vstudio code colors */
#define __CUDA_ARCH__ 500
#endif
#define TPB 32
#if __CUDA_ARCH__ >= 500
#include "cuda_lyra2_vectors.h"
#define Nrow 4
#define Ncol 4
#define memshift 3
__device__ uint2x4 *DMatrix;
__device__ __forceinline__ uint2 LD4S(const int index)
{
extern __shared__ uint2 shared_mem[];
return shared_mem[(index * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x];
}
__device__ __forceinline__ void ST4S(const int index, const uint2 data)
{
extern __shared__ uint2 shared_mem[];
shared_mem[(index * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x] = data;
}
__device__ __forceinline__ uint2 shuffle2(uint2 a, uint32_t b, uint32_t c)
{
return make_uint2(__shfl(a.x, b, c), __shfl(a.y, b, c));
}
__device__ __forceinline__
void Gfunc_v5(uint2 &a, uint2 &b, uint2 &c, uint2 &d)
{
a += b; d ^= a; d = SWAPUINT2(d);
c += d; b ^= c; b = ROR2(b, 24);
a += b; d ^= a; d = ROR2(d, 16);
c += d; b ^= c; b = ROR2(b, 63);
}
__device__ __forceinline__
void round_lyra_v5(uint2x4 s[4])
{
Gfunc_v5(s[0].x, s[1].x, s[2].x, s[3].x);
Gfunc_v5(s[0].y, s[1].y, s[2].y, s[3].y);
Gfunc_v5(s[0].z, s[1].z, s[2].z, s[3].z);
Gfunc_v5(s[0].w, s[1].w, s[2].w, s[3].w);
Gfunc_v5(s[0].x, s[1].y, s[2].z, s[3].w);
Gfunc_v5(s[0].y, s[1].z, s[2].w, s[3].x);
Gfunc_v5(s[0].z, s[1].w, s[2].x, s[3].y);
Gfunc_v5(s[0].w, s[1].x, s[2].y, s[3].z);
}
__device__ __forceinline__
void round_lyra_v5(uint2 s[4])
{
Gfunc_v5(s[0], s[1], s[2], s[3]);
s[1] = shuffle2(s[1], threadIdx.x + 1, 4);
s[2] = shuffle2(s[2], threadIdx.x + 2, 4);
s[3] = shuffle2(s[3], threadIdx.x + 3, 4);
Gfunc_v5(s[0], s[1], s[2], s[3]);
s[1] = shuffle2(s[1], threadIdx.x + 3, 4);
s[2] = shuffle2(s[2], threadIdx.x + 2, 4);
s[3] = shuffle2(s[3], threadIdx.x + 1, 4);
}
__device__ __forceinline__
void reduceDuplexRowSetup2(uint2 state[4])
{
uint2 state1[Ncol][3], state0[Ncol][3], state2[3];
int i, j;
#pragma unroll
for (int i = 0; i < Ncol; i++)
{
#pragma unroll
for (j = 0; j < 3; j++)
state0[Ncol - i - 1][j] = state[j];
round_lyra_v5(state);
}
//#pragma unroll 4
for (i = 0; i < Ncol; i++)
{
#pragma unroll
for (j = 0; j < 3; j++)
state[j] ^= state0[i][j];
round_lyra_v5(state);
#pragma unroll
for (j = 0; j < 3; j++)
state1[Ncol - i - 1][j] = state0[i][j];
#pragma unroll
for (j = 0; j < 3; j++)
state1[Ncol - i - 1][j] ^= state[j];
}
for (i = 0; i < Ncol; i++)
{
const uint32_t s0 = memshift * Ncol * 0 + i * memshift;
const uint32_t s2 = memshift * Ncol * 2 + memshift * (Ncol - 1) - i*memshift;
#pragma unroll
for (j = 0; j < 3; j++)
state[j] ^= state1[i][j] + state0[i][j];
round_lyra_v5(state);
#pragma unroll
for (j = 0; j < 3; j++)
state2[j] = state1[i][j];
#pragma unroll
for (j = 0; j < 3; j++)
state2[j] ^= state[j];
#pragma unroll
for (j = 0; j < 3; j++)
ST4S(s2 + j, state2[j]);
uint2 Data0 = shuffle2(state[0], threadIdx.x - 1, 4);
uint2 Data1 = shuffle2(state[1], threadIdx.x - 1, 4);
uint2 Data2 = shuffle2(state[2], threadIdx.x - 1, 4);
if (threadIdx.x == 0) {
state0[i][0] ^= Data2;
state0[i][1] ^= Data0;
state0[i][2] ^= Data1;
} else {
state0[i][0] ^= Data0;
state0[i][1] ^= Data1;
state0[i][2] ^= Data2;
}
#pragma unroll
for (j = 0; j < 3; j++)
ST4S(s0 + j, state0[i][j]);
#pragma unroll
for (j = 0; j < 3; j++)
state0[i][j] = state2[j];
}
for (i = 0; i < Ncol; i++)
{
const uint32_t s1 = memshift * Ncol * 1 + i*memshift;
const uint32_t s3 = memshift * Ncol * 3 + memshift * (Ncol - 1) - i*memshift;
#pragma unroll
for (j = 0; j < 3; j++)
state[j] ^= state1[i][j] + state0[Ncol - i - 1][j];
round_lyra_v5(state);
#pragma unroll
for (j = 0; j < 3; j++)
state0[Ncol - i - 1][j] ^= state[j];
#pragma unroll
for (j = 0; j < 3; j++)
ST4S(s3 + j, state0[Ncol - i - 1][j]);
uint2 Data0 = shuffle2(state[0], threadIdx.x - 1, 4);
uint2 Data1 = shuffle2(state[1], threadIdx.x - 1, 4);
uint2 Data2 = shuffle2(state[2], threadIdx.x - 1, 4);
if (threadIdx.x == 0) {
state1[i][0] ^= Data2;
state1[i][1] ^= Data0;
state1[i][2] ^= Data1;
} else {
state1[i][0] ^= Data0;
state1[i][1] ^= Data1;
state1[i][2] ^= Data2;
}
#pragma unroll
for (j = 0; j < 3; j++)
ST4S(s1 + j, state1[i][j]);
}
}
__device__
void reduceDuplexRowt2(const int rowIn, const int rowInOut, const int rowOut, uint2 state[4])
{
uint2 state1[3], state2[3];
const uint32_t ps1 = memshift * Ncol * rowIn;
const uint32_t ps2 = memshift * Ncol * rowInOut;
const uint32_t ps3 = memshift * Ncol * rowOut;
for (int i = 0; i < Ncol; i++)
{
const uint32_t s1 = ps1 + i*memshift;
const uint32_t s2 = ps2 + i*memshift;
const uint32_t s3 = ps3 + i*memshift;
#pragma unroll
for (int j = 0; j < 3; j++)
state1[j] = LD4S(s1 + j);
#pragma unroll
for (int j = 0; j < 3; j++)
state2[j] = LD4S(s2 + j);
#pragma unroll
for (int j = 0; j < 3; j++)
state[j] ^= state1[j] + state2[j];
round_lyra_v5(state);
uint2 Data0 = shuffle2(state[0], threadIdx.x - 1, 4);
uint2 Data1 = shuffle2(state[1], threadIdx.x - 1, 4);
uint2 Data2 = shuffle2(state[2], threadIdx.x - 1, 4);
if (threadIdx.x == 0) {
state2[0] ^= Data2;
state2[1] ^= Data0;
state2[2] ^= Data1;
} else {
state2[0] ^= Data0;
state2[1] ^= Data1;
state2[2] ^= Data2;
}
#pragma unroll
for (int j = 0; j < 3; j++)
ST4S(s2 + j, state2[j]);
#pragma unroll
for (int j = 0; j < 3; j++)
ST4S(s3 + j, LD4S(s3 + j) ^ state[j]);
}
}
__device__
void reduceDuplexRowt2x4(const int rowInOut, uint2 state[4])
{
const int rowIn = 2;
const int rowOut = 3;
int i, j;
uint2 last[3];
const uint32_t ps1 = memshift * Ncol * rowIn;
const uint32_t ps2 = memshift * Ncol * rowInOut;
#pragma unroll
for (int j = 0; j < 3; j++)
last[j] = LD4S(ps2 + j);
#pragma unroll
for (int j = 0; j < 3; j++)
state[j] ^= LD4S(ps1 + j) + last[j];
round_lyra_v5(state);
uint2 Data0 = shuffle2(state[0], threadIdx.x - 1, 4);
uint2 Data1 = shuffle2(state[1], threadIdx.x - 1, 4);
uint2 Data2 = shuffle2(state[2], threadIdx.x - 1, 4);
if (threadIdx.x == 0) {
last[0] ^= Data2;
last[1] ^= Data0;
last[2] ^= Data1;
} else {
last[0] ^= Data0;
last[1] ^= Data1;
last[2] ^= Data2;
}
if (rowInOut == rowOut)
{
#pragma unroll
for (j = 0; j < 3; j++)
last[j] ^= state[j];
}
for (i = 1; i < Ncol; i++)
{
const uint32_t s1 = ps1 + i*memshift;
const uint32_t s2 = ps2 + i*memshift;
#pragma unroll
for (j = 0; j < 3; j++)
state[j] ^= LD4S(s1 + j) + LD4S(s2 + j);
round_lyra_v5(state);
}
#pragma unroll
for (int j = 0; j < 3; j++)
state[j] ^= last[j];
}
__global__
__launch_bounds__(TPB, 1)
void lyra2v2_gpu_hash_32_1(uint32_t threads, uint2 *inputHash)
{
const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x;
const uint2x4 blake2b_IV[2] = {
0xf3bcc908UL, 0x6a09e667UL, 0x84caa73bUL, 0xbb67ae85UL,
0xfe94f82bUL, 0x3c6ef372UL, 0x5f1d36f1UL, 0xa54ff53aUL,
0xade682d1UL, 0x510e527fUL, 0x2b3e6c1fUL, 0x9b05688cUL,
0xfb41bd6bUL, 0x1f83d9abUL, 0x137e2179UL, 0x5be0cd19UL
};
const uint2x4 Mask[2] = {
0x00000020UL, 0x00000000UL, 0x00000020UL, 0x00000000UL,
0x00000020UL, 0x00000000UL, 0x00000001UL, 0x00000000UL,
0x00000004UL, 0x00000000UL, 0x00000004UL, 0x00000000UL,
0x00000080UL, 0x00000000UL, 0x00000000UL, 0x01000000UL
};
uint2x4 state[4];
if (thread < threads)
{
state[0].x = state[1].x = __ldg(&inputHash[thread + threads * 0]);
state[0].y = state[1].y = __ldg(&inputHash[thread + threads * 1]);
state[0].z = state[1].z = __ldg(&inputHash[thread + threads * 2]);
state[0].w = state[1].w = __ldg(&inputHash[thread + threads * 3]);
state[2] = blake2b_IV[0];
state[3] = blake2b_IV[1];
for (int i = 0; i<12; i++)
round_lyra_v5(state);
state[0] ^= Mask[0];
state[1] ^= Mask[1];
for (int i = 0; i<12; i++)
round_lyra_v5(state);
DMatrix[blockDim.x * gridDim.x * 0 + thread] = state[0];
DMatrix[blockDim.x * gridDim.x * 1 + thread] = state[1];
DMatrix[blockDim.x * gridDim.x * 2 + thread] = state[2];
DMatrix[blockDim.x * gridDim.x * 3 + thread] = state[3];
}
}
__global__
__launch_bounds__(TPB, 1)
void lyra2v2_gpu_hash_32_2(uint32_t threads)
{
const uint32_t thread = blockDim.y * blockIdx.x + threadIdx.y;
if (thread < threads)
{
uint2 state[4];
state[0] = ((uint2*)DMatrix)[(0 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x];
state[1] = ((uint2*)DMatrix)[(1 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x];
state[2] = ((uint2*)DMatrix)[(2 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x];
state[3] = ((uint2*)DMatrix)[(3 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x];
reduceDuplexRowSetup2(state);
uint32_t rowa;
int prev = 3;
for (int i = 0; i < 3; i++)
{
rowa = __shfl(state[0].x, 0, 4) & 3;
reduceDuplexRowt2(prev, rowa, i, state);
prev = i;
}
rowa = __shfl(state[0].x, 0, 4) & 3;
reduceDuplexRowt2x4(rowa, state);
((uint2*)DMatrix)[(0 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[0];
((uint2*)DMatrix)[(1 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[1];
((uint2*)DMatrix)[(2 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[2];
((uint2*)DMatrix)[(3 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[3];
}
}
__global__
__launch_bounds__(TPB, 1)
void lyra2v2_gpu_hash_32_3(uint32_t threads, uint2 *outputHash)
{
const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x;
uint2x4 state[4];
if (thread < threads)
{
state[0] = __ldg4(&DMatrix[blockDim.x * gridDim.x * 0 + thread]);
state[1] = __ldg4(&DMatrix[blockDim.x * gridDim.x * 1 + thread]);
state[2] = __ldg4(&DMatrix[blockDim.x * gridDim.x * 2 + thread]);
state[3] = __ldg4(&DMatrix[blockDim.x * gridDim.x * 3 + thread]);
for (int i = 0; i < 12; i++)
round_lyra_v5(state);
outputHash[thread + threads * 0] = state[0].x;
outputHash[thread + threads * 1] = state[0].y;
outputHash[thread + threads * 2] = state[0].z;
outputHash[thread + threads * 3] = state[0].w;
}
}
#else
#include "cuda_helper.h"
#if __CUDA_ARCH__ < 200
__device__ void* DMatrix;
#endif
__global__ void lyra2v2_gpu_hash_32_1(uint32_t threads, uint2 *inputHash) {}
__global__ void lyra2v2_gpu_hash_32_2(uint32_t threads) {}
__global__ void lyra2v2_gpu_hash_32_3(uint32_t threads, uint2 *outputHash) {}
#endif
__host__
void lyra2v2_cpu_init(int thr_id, uint32_t threads, uint64_t *d_matrix)
{
cuda_get_arch(thr_id);
// just assign the device pointer allocated in main loop
cudaMemcpyToSymbol(DMatrix, &d_matrix, sizeof(uint64_t*), 0, cudaMemcpyHostToDevice);
}
__host__
void lyra2v2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash, int order)
{
int dev_id = device_map[thr_id % MAX_GPUS];
if (device_sm[dev_id] >= 500) {
const uint32_t tpb = TPB;
dim3 grid2((threads + tpb - 1) / tpb);
dim3 block2(tpb);
dim3 grid4((threads * 4 + tpb - 1) / tpb);
dim3 block4(4, tpb / 4);
lyra2v2_gpu_hash_32_1 <<< grid2, block2 >>> (threads, (uint2*)g_hash);
lyra2v2_gpu_hash_32_2 <<< grid4, block4, 48 * sizeof(uint2) * tpb >>> (threads);
lyra2v2_gpu_hash_32_3 <<< grid2, block2 >>> (threads, (uint2*)g_hash);
} else {
uint32_t tpb = 16;
if (cuda_arch[dev_id] >= 350) tpb = TPB35;
else if (cuda_arch[dev_id] >= 300) tpb = TPB30;
else if (cuda_arch[dev_id] >= 200) tpb = TPB20;
dim3 grid((threads + tpb - 1) / tpb);
dim3 block(tpb);
lyra2v2_gpu_hash_32_v3 <<< grid, block >>> (threads, startNounce, (uint2*)g_hash);
}
}