Browse Source

Import and adapt lyra2v2

not tested on windows and with SM <= 5
2upstream
Tanguy Pruvot 9 years ago
parent
commit
d4e191610e
  1. 320
      Algo256/cuda_bmw256.cu
  2. 260
      Algo256/cuda_cubehash256.cu
  3. 2
      Makefile.am
  4. 15
      ccminer.cpp
  5. 4
      ccminer.vcxproj
  6. 12
      ccminer.vcxproj.filters
  7. 31
      cuda_helper.h
  8. 95
      lyra2/Lyra2.c
  9. 10
      lyra2/Lyra2.h
  10. 867
      lyra2/Sponge.c
  11. 90
      lyra2/Sponge.h
  12. 674
      lyra2/cuda_lyra2.cu
  13. 1138
      lyra2/cuda_lyra2_vectors.h
  14. 520
      lyra2/cuda_lyra2v2.cu
  15. 14
      lyra2/lyra2RE.cu
  16. 164
      lyra2/lyra2REv2.cu
  17. 9
      miner.h
  18. 5
      util.cpp

320
Algo256/cuda_bmw256.cu

@ -0,0 +1,320 @@ @@ -0,0 +1,320 @@
#include <stdio.h>
#include <memory.h>
#include "cuda_helper.h"
// die Message it Padding zur Berechnung auf der GPU
__constant__ uint32_t c_PaddedMessage80[32]; // padded message (80 bytes + padding)
__constant__ uint32_t ZDH[16];
static uint32_t *d_gnounce[MAX_GPUS];
static uint32_t *d_GNonce[MAX_GPUS];
__constant__ uint32_t pTarget[8];
#define shl(x, n) ((x) << (n))
#define shr(x, n) ((x) >> (n))
//#define SHR(x, n) SHR2(x, n)
//#define SHL(x, n) SHL2(x, n)
#define ROTL32host(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
// #define SPH_ROTL32 SPH_ROTL32
#define ss0(x) (shr((x), 1) ^ shl((x), 3) ^ SPH_ROTL32((x), 4) ^ SPH_ROTL32((x), 19))
#define ss1(x) (shr((x), 1) ^ shl((x), 2) ^ SPH_ROTL32((x), 8) ^ SPH_ROTL32((x), 23))
#define ss2(x) (shr((x), 2) ^ shl((x), 1) ^ SPH_ROTL32((x), 12) ^ SPH_ROTL32((x), 25))
#define ss3(x) (shr((x), 2) ^ shl((x), 2) ^ SPH_ROTL32((x), 15) ^ SPH_ROTL32((x), 29))
#define ss4(x) (shr((x), 1) ^ (x))
#define ss5(x) (shr((x), 2) ^ (x))
#define rs1(x) SPH_ROTL32((x), 3)
#define rs2(x) SPH_ROTL32((x), 7)
#define rs3(x) SPH_ROTL32((x), 13)
#define rs4(x) SPH_ROTL32((x), 16)
#define rs5(x) SPH_ROTL32((x), 19)
#define rs6(x) SPH_ROTL32((x), 23)
#define rs7(x) SPH_ROTL32((x), 27)
/* Message expansion function 1 */
__forceinline__ __device__ uint32_t expand32_1(int i, uint32_t *M32, uint32_t *H, uint32_t *Q)
{
#undef SPH_ROTL32
#define SPH_ROTL32 ROTL32
return (ss1(Q[i - 16]) + ss2(Q[i - 15]) + ss3(Q[i - 14]) + ss0(Q[i - 13])
+ ss1(Q[i - 12]) + ss2(Q[i - 11]) + ss3(Q[i - 10]) + ss0(Q[i - 9])
+ ss1(Q[i - 8]) + ss2(Q[i - 7]) + ss3(Q[i - 6]) + ss0(Q[i - 5])
+ ss1(Q[i - 4]) + ss2(Q[i - 3]) + ss3(Q[i - 2]) + ss0(Q[i - 1])
+ ((i*(0x05555555ul) + SPH_ROTL32(M32[(i - 16) % 16], ((i - 16) % 16) + 1) + SPH_ROTL32(M32[(i - 13) % 16], ((i - 13) % 16) + 1) - SPH_ROTL32(M32[(i - 6) % 16], ((i - 6) % 16) + 1)) ^ H[(i - 16 + 7) % 16]));
#undef SPH_ROTL32
}
/* Message expansion function 2 */
__forceinline__ __device__ uint32_t expand32_2(int i, uint32_t *M32, uint32_t *H, uint32_t *Q)
{
#undef SPH_ROTL32
#define SPH_ROTL32 ROTL32
return (Q[i - 16] + rs1(Q[i - 15]) + Q[i - 14] + rs2(Q[i - 13])
+ Q[i - 12] + rs3(Q[i - 11]) + Q[i - 10] + rs4(Q[i - 9])
+ Q[i - 8] + rs5(Q[i - 7]) + Q[i - 6] + rs6(Q[i - 5])
+ Q[i - 4] + rs7(Q[i - 3]) + ss4(Q[i - 2]) + ss5(Q[i - 1])
+ ((i*(0x05555555ul) + SPH_ROTL32(M32[(i - 16) % 16], ((i - 16) % 16) + 1) + SPH_ROTL32(M32[(i - 13) % 16], ((i - 13) % 16) + 1) - SPH_ROTL32(M32[(i - 6) % 16], ((i - 6) % 16) + 1)) ^ H[(i - 16 + 7) % 16]));
#undef SPH_ROTL32
}
__forceinline__ __device__ void Compression256(uint32_t * M32, uint32_t * H)
{
#undef SPH_ROTL32
#define SPH_ROTL32 ROTL32
int i;
uint32_t XL32, XH32, Q[32];
Q[0] = (M32[5] ^ H[5]) - (M32[7] ^ H[7]) + (M32[10] ^ H[10]) + (M32[13] ^ H[13]) + (M32[14] ^ H[14]);
Q[1] = (M32[6] ^ H[6]) - (M32[8] ^ H[8]) + (M32[11] ^ H[11]) + (M32[14] ^ H[14]) - (M32[15] ^ H[15]);
Q[2] = (M32[0] ^ H[0]) + (M32[7] ^ H[7]) + (M32[9] ^ H[9]) - (M32[12] ^ H[12]) + (M32[15] ^ H[15]);
Q[3] = (M32[0] ^ H[0]) - (M32[1] ^ H[1]) + (M32[8] ^ H[8]) - (M32[10] ^ H[10]) + (M32[13] ^ H[13]);
Q[4] = (M32[1] ^ H[1]) + (M32[2] ^ H[2]) + (M32[9] ^ H[9]) - (M32[11] ^ H[11]) - (M32[14] ^ H[14]);
Q[5] = (M32[3] ^ H[3]) - (M32[2] ^ H[2]) + (M32[10] ^ H[10]) - (M32[12] ^ H[12]) + (M32[15] ^ H[15]);
Q[6] = (M32[4] ^ H[4]) - (M32[0] ^ H[0]) - (M32[3] ^ H[3]) - (M32[11] ^ H[11]) + (M32[13] ^ H[13]);
Q[7] = (M32[1] ^ H[1]) - (M32[4] ^ H[4]) - (M32[5] ^ H[5]) - (M32[12] ^ H[12]) - (M32[14] ^ H[14]);
Q[8] = (M32[2] ^ H[2]) - (M32[5] ^ H[5]) - (M32[6] ^ H[6]) + (M32[13] ^ H[13]) - (M32[15] ^ H[15]);
Q[9] = (M32[0] ^ H[0]) - (M32[3] ^ H[3]) + (M32[6] ^ H[6]) - (M32[7] ^ H[7]) + (M32[14] ^ H[14]);
Q[10] = (M32[8] ^ H[8]) - (M32[1] ^ H[1]) - (M32[4] ^ H[4]) - (M32[7] ^ H[7]) + (M32[15] ^ H[15]);
Q[11] = (M32[8] ^ H[8]) - (M32[0] ^ H[0]) - (M32[2] ^ H[2]) - (M32[5] ^ H[5]) + (M32[9] ^ H[9]);
Q[12] = (M32[1] ^ H[1]) + (M32[3] ^ H[3]) - (M32[6] ^ H[6]) - (M32[9] ^ H[9]) + (M32[10] ^ H[10]);
Q[13] = (M32[2] ^ H[2]) + (M32[4] ^ H[4]) + (M32[7] ^ H[7]) + (M32[10] ^ H[10]) + (M32[11] ^ H[11]);
Q[14] = (M32[3] ^ H[3]) - (M32[5] ^ H[5]) + (M32[8] ^ H[8]) - (M32[11] ^ H[11]) - (M32[12] ^ H[12]);
Q[15] = (M32[12] ^ H[12]) - (M32[4] ^ H[4]) - (M32[6] ^ H[6]) - (M32[9] ^ H[9]) + (M32[13] ^ H[13]);
/* Diffuse the differences in every word in a bijective manner with ssi, and then add the values of the previous double pipe.*/
Q[0] = ss0(Q[0]) + H[1];
Q[1] = ss1(Q[1]) + H[2];
Q[2] = ss2(Q[2]) + H[3];
Q[3] = ss3(Q[3]) + H[4];
Q[4] = ss4(Q[4]) + H[5];
Q[5] = ss0(Q[5]) + H[6];
Q[6] = ss1(Q[6]) + H[7];
Q[7] = ss2(Q[7]) + H[8];
Q[8] = ss3(Q[8]) + H[9];
Q[9] = ss4(Q[9]) + H[10];
Q[10] = ss0(Q[10]) + H[11];
Q[11] = ss1(Q[11]) + H[12];
Q[12] = ss2(Q[12]) + H[13];
Q[13] = ss3(Q[13]) + H[14];
Q[14] = ss4(Q[14]) + H[15];
Q[15] = ss0(Q[15]) + H[0];
/* This is the Message expansion or f_1 in the documentation. */
/* It has 16 rounds. */
/* Blue Midnight Wish has two tunable security parameters. */
/* The parameters are named EXPAND_1_ROUNDS and EXPAND_2_ROUNDS. */
/* The following relation for these parameters should is satisfied: */
/* EXPAND_1_ROUNDS + EXPAND_2_ROUNDS = 16 */
for (i = 0; i<2; i++)
Q[i + 16] = expand32_1(i + 16, M32, H, Q);
for (i = 2; i<16; i++)
Q[i + 16] = expand32_2(i + 16, M32, H, Q);
/* Blue Midnight Wish has two temporary cummulative variables that accumulate via XORing */
/* 16 new variables that are prooduced in the Message Expansion part. */
XL32 = Q[16] ^ Q[17] ^ Q[18] ^ Q[19] ^ Q[20] ^ Q[21] ^ Q[22] ^ Q[23];
XH32 = XL32^Q[24] ^ Q[25] ^ Q[26] ^ Q[27] ^ Q[28] ^ Q[29] ^ Q[30] ^ Q[31];
/* This part is the function f_2 - in the documentation */
/* Compute the double chaining pipe for the next message block. */
H[0] = (shl(XH32, 5) ^ shr(Q[16], 5) ^ M32[0]) + (XL32 ^ Q[24] ^ Q[0]);
H[1] = (shr(XH32, 7) ^ shl(Q[17], 8) ^ M32[1]) + (XL32 ^ Q[25] ^ Q[1]);
H[2] = (shr(XH32, 5) ^ shl(Q[18], 5) ^ M32[2]) + (XL32 ^ Q[26] ^ Q[2]);
H[3] = (shr(XH32, 1) ^ shl(Q[19], 5) ^ M32[3]) + (XL32 ^ Q[27] ^ Q[3]);
H[4] = (shr(XH32, 3) ^ Q[20] ^ M32[4]) + (XL32 ^ Q[28] ^ Q[4]);
H[5] = (shl(XH32, 6) ^ shr(Q[21], 6) ^ M32[5]) + (XL32 ^ Q[29] ^ Q[5]);
H[6] = (shr(XH32, 4) ^ shl(Q[22], 6) ^ M32[6]) + (XL32 ^ Q[30] ^ Q[6]);
H[7] = (shr(XH32, 11) ^ shl(Q[23], 2) ^ M32[7]) + (XL32 ^ Q[31] ^ Q[7]);
H[8] = SPH_ROTL32(H[4], 9) + (XH32 ^ Q[24] ^ M32[8]) + (shl(XL32, 8) ^ Q[23] ^ Q[8]);
H[9] = SPH_ROTL32(H[5], 10) + (XH32 ^ Q[25] ^ M32[9]) + (shr(XL32, 6) ^ Q[16] ^ Q[9]);
H[10] = SPH_ROTL32(H[6], 11) + (XH32 ^ Q[26] ^ M32[10]) + (shl(XL32, 6) ^ Q[17] ^ Q[10]);
H[11] = SPH_ROTL32(H[7], 12) + (XH32 ^ Q[27] ^ M32[11]) + (shl(XL32, 4) ^ Q[18] ^ Q[11]);
H[12] = SPH_ROTL32(H[0], 13) + (XH32 ^ Q[28] ^ M32[12]) + (shr(XL32, 3) ^ Q[19] ^ Q[12]);
H[13] = SPH_ROTL32(H[1], 14) + (XH32 ^ Q[29] ^ M32[13]) + (shr(XL32, 4) ^ Q[20] ^ Q[13]);
H[14] = SPH_ROTL32(H[2], 15) + (XH32 ^ Q[30] ^ M32[14]) + (shr(XL32, 7) ^ Q[21] ^ Q[14]);
H[15] = SPH_ROTL32(H[3], 16) + (XH32 ^ Q[31] ^ M32[15]) + (shr(XL32, 2) ^ Q[22] ^ Q[15]);
#undef SPH_ROTL32
}
__forceinline__ __device__ void Compression256_2(uint32_t * M32, uint32_t * H)
{
#undef SPH_ROTL32
#define SPH_ROTL32 ROTL32
int i;
uint32_t XL32, XH32, Q[32];
/* This part is the function f0 - in the documentation */
/* First we mix the message block *M32 (M in the documatation) */
/* with the previous double pipe *H. */
/* For a fixed previous double pipe, or fixed message block, this */
/* part is bijection. */
/* This transformation diffuses every one bit difference in 5 words. */
Q[0] = (H[5]) - (H[7]) + (H[10]) + (H[13]) + (0x280 ^ H[14]);
Q[1] = (H[6]) - (H[8]) + (H[11]) + (0x280 ^ H[14]) - (H[15]);
Q[2] = (M32[0] ^ H[0]) + (H[7]) + (H[9]) - (H[12]) + (H[15]);
Q[3] = (M32[0] ^ H[0]) - (M32[1] ^ H[1]) + (H[8]) - (H[10]) + (H[13]);
Q[4] = (M32[1] ^ H[1]) + (M32[2] ^ H[2]) + (H[9]) - (H[11]) - (0x280 ^ H[14]);
Q[5] = (M32[3] ^ H[3]) - (M32[2] ^ H[2]) + (H[10]) - (H[12]) + (H[15]);
Q[6] = (0x80 ^ H[4]) - (M32[0] ^ H[0]) - (M32[3] ^ H[3]) - (H[11]) + (H[13]);
Q[7] = (M32[1] ^ H[1]) - (0x80 ^ H[4]) - (H[5]) - (H[12]) - (0x280 ^ H[14]);
Q[8] = (M32[2] ^ H[2]) - (H[5]) - (H[6]) + (H[13]) - (H[15]);
Q[9] = (M32[0] ^ H[0]) - (M32[3] ^ H[3]) + (H[6]) - (H[7]) + (0x280 ^ H[14]);
Q[10] = (H[8]) - (M32[1] ^ H[1]) - (0x80 ^ H[4]) - (H[7]) + (H[15]);
Q[11] = (H[8]) - (M32[0] ^ H[0]) - (M32[2] ^ H[2]) - (H[5]) + (H[9]);
Q[12] = (M32[1] ^ H[1]) + (M32[3] ^ H[3]) - (H[6]) - (H[9]) + (H[10]);
Q[13] = (M32[2] ^ H[2]) + (0x80 ^ H[4]) + (H[7]) + (H[10]) + (H[11]);
Q[14] = (M32[3] ^ H[3]) - (H[5]) + (H[8]) - (H[11]) - (H[12]);
Q[15] = (H[12]) - (0x80 ^ H[4]) - (H[6]) - (H[9]) + (H[13]);
/* Diffuse the differences in every word in a bijective manner with ssi, and then add the values of the previous double pipe.*/
Q[0] = ss0(Q[0]) + H[1];
Q[1] = ss1(Q[1]) + H[2];
Q[2] = ss2(Q[2]) + H[3];
Q[3] = ss3(Q[3]) + H[4];
Q[4] = ss4(Q[4]) + H[5];
Q[5] = ss0(Q[5]) + H[6];
Q[6] = ss1(Q[6]) + H[7];
Q[7] = ss2(Q[7]) + H[8];
Q[8] = ss3(Q[8]) + H[9];
Q[9] = ss4(Q[9]) + H[10];
Q[10] = ss0(Q[10]) + H[11];
Q[11] = ss1(Q[11]) + H[12];
Q[12] = ss2(Q[12]) + H[13];
Q[13] = ss3(Q[13]) + H[14];
Q[14] = ss4(Q[14]) + H[15];
Q[15] = ss0(Q[15]) + H[0];
/* This is the Message expansion or f_1 in the documentation. */
/* It has 16 rounds. */
/* Blue Midnight Wish has two tunable security parameters. */
/* The parameters are named EXPAND_1_ROUNDS and EXPAND_2_ROUNDS. */
/* The following relation for these parameters should is satisfied: */
/* EXPAND_1_ROUNDS + EXPAND_2_ROUNDS = 16 */
for (i = 0; i<2; i++)
Q[i + 16] = expand32_1(i + 16, M32, H, Q);
for (i = 2; i<16; i++)
Q[i + 16] = expand32_2(i + 16, M32, H, Q);
/* Blue Midnight Wish has two temporary cummulative variables that accumulate via XORing */
/* 16 new variables that are prooduced in the Message Expansion part. */
XL32 = Q[16] ^ Q[17] ^ Q[18] ^ Q[19] ^ Q[20] ^ Q[21] ^ Q[22] ^ Q[23];
XH32 = XL32^Q[24] ^ Q[25] ^ Q[26] ^ Q[27] ^ Q[28] ^ Q[29] ^ Q[30] ^ Q[31];
/* This part is the function f_2 - in the documentation */
/* Compute the double chaining pipe for the next message block. */
H[0] = (shl(XH32, 5) ^ shr(Q[16], 5) ^ M32[0]) + (XL32 ^ Q[24] ^ Q[0]);
H[1] = (shr(XH32, 7) ^ shl(Q[17], 8) ^ M32[1]) + (XL32 ^ Q[25] ^ Q[1]);
H[2] = (shr(XH32, 5) ^ shl(Q[18], 5) ^ M32[2]) + (XL32 ^ Q[26] ^ Q[2]);
H[3] = (shr(XH32, 1) ^ shl(Q[19], 5) ^ M32[3]) + (XL32 ^ Q[27] ^ Q[3]);
H[4] = (shr(XH32, 3) ^ Q[20] ^ M32[4]) + (XL32 ^ Q[28] ^ Q[4]);
H[5] = (shl(XH32, 6) ^ shr(Q[21], 6) ^ M32[5]) + (XL32 ^ Q[29] ^ Q[5]);
H[6] = (shr(XH32, 4) ^ shl(Q[22], 6) ^ M32[6]) + (XL32 ^ Q[30] ^ Q[6]);
H[7] = (shr(XH32, 11) ^ shl(Q[23], 2) ^ M32[7]) + (XL32 ^ Q[31] ^ Q[7]);
H[8] = SPH_ROTL32(H[4], 9) + (XH32 ^ Q[24] ^ M32[8]) + (shl(XL32, 8) ^ Q[23] ^ Q[8]);
H[9] = SPH_ROTL32(H[5], 10) + (XH32 ^ Q[25] ^ M32[9]) + (shr(XL32, 6) ^ Q[16] ^ Q[9]);
H[10] = SPH_ROTL32(H[6], 11) + (XH32 ^ Q[26] ^ M32[10]) + (shl(XL32, 6) ^ Q[17] ^ Q[10]);
H[11] = SPH_ROTL32(H[7], 12) + (XH32 ^ Q[27] ^ M32[11]) + (shl(XL32, 4) ^ Q[18] ^ Q[11]);
H[12] = SPH_ROTL32(H[0], 13) + (XH32 ^ Q[28] ^ M32[12]) + (shr(XL32, 3) ^ Q[19] ^ Q[12]);
H[13] = SPH_ROTL32(H[1], 14) + (XH32 ^ Q[29] ^ M32[13]) + (shr(XL32, 4) ^ Q[20] ^ Q[13]);
H[14] = SPH_ROTL32(H[2], 15) + (XH32 ^ Q[30] ^ M32[14]) + (shr(XL32, 7) ^ Q[21] ^ Q[14]);
H[15] = SPH_ROTL32(H[3], 16) + (XH32 ^ Q[31] ^ M32[15]) + (shr(XL32, 2) ^ Q[22] ^ Q[15]);
#undef SPH_ROTL32
}
#define TPB 512
__global__ __launch_bounds__(TPB, 2)
void bmw256_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *const __restrict__ nonceVector)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint32_t dh[16] = {
(0x40414243), (0x44454647),
(0x48494A4B), (0x4C4D4E4F),
(0x50515253), (0x54555657),
(0x58595A5B), (0x5C5D5E5F),
(0x60616263), (0x64656667),
(0x68696A6B), (0x6C6D6E6F),
(0x70717273), (0x74757677),
(0x78797A7B), (0x7C7D7E7F)
};
uint32_t final_s[16] = {
(0xaaaaaaa0), (0xaaaaaaa1), (0xaaaaaaa2),
(0xaaaaaaa3), (0xaaaaaaa4), (0xaaaaaaa5),
(0xaaaaaaa6), (0xaaaaaaa7), (0xaaaaaaa8),
(0xaaaaaaa9), (0xaaaaaaaa), (0xaaaaaaab),
(0xaaaaaaac), (0xaaaaaaad), (0xaaaaaaae),
(0xaaaaaaaf)
};
uint32_t message[16]={0};
LOHI(message[0], message[1], __ldg(&g_hash[thread]));
LOHI(message[2], message[3], __ldg(&g_hash[thread + 1 * threads]));
LOHI(message[4], message[5], __ldg(&g_hash[thread + 2 * threads]));
LOHI(message[6], message[7], __ldg(&g_hash[thread + 3 * threads]));
message[8]=0x80;
message[14]=0x100;
Compression256(message, dh);
Compression256(dh, final_s);
if (((uint64_t*)final_s)[7] <= ((uint64_t*)pTarget)[3])
{
uint32_t tmp = atomicExch(&nonceVector[0], startNounce + thread);
if (tmp != 0)
nonceVector[1] = tmp;
}
}
}
__host__
void bmw256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash,uint32_t *resultnonces)
{
cudaMemset(d_GNonce[thr_id], 0x0, 2 * sizeof(uint32_t));
const uint32_t threadsperblock = TPB;
// berechne wie viele Thread Blocks wir brauchen
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
bmw256_gpu_hash_32 << <grid, block >> >(threads, startNounce, g_hash, d_GNonce[thr_id]);
cudaMemcpy(d_gnounce[thr_id], d_GNonce[thr_id], 2 * sizeof(uint32_t), cudaMemcpyDeviceToHost);
resultnonces[0] = *(d_gnounce[thr_id]);
resultnonces[1] = *(d_gnounce[thr_id] + 1);
}
__host__
void bmw256_cpu_init(int thr_id, uint32_t threads)
{
cudaMalloc(&d_GNonce[thr_id], 2 * sizeof(uint32_t));
cudaMallocHost(&d_gnounce[thr_id], 2 * sizeof(uint32_t));
}
__host__
void bmw256_setTarget(const void *pTargetIn)
{
cudaMemcpyToSymbol(pTarget, pTargetIn, 8 * sizeof(uint32_t), 0, cudaMemcpyHostToDevice);
}

260
Algo256/cuda_cubehash256.cu

@ -0,0 +1,260 @@ @@ -0,0 +1,260 @@
#include "cuda_helper.h"
#define CUBEHASH_ROUNDS 16 /* this is r for CubeHashr/b */
#define CUBEHASH_BLOCKBYTES 32 /* this is b for CubeHashr/b */
#if __CUDA_ARCH__ < 350
#define LROT(x,bits) ((x << bits) | (x >> (32 - bits)))
#else
#define LROT(x, bits) __funnelshift_l(x, x, bits)
#endif
#define ROTATEUPWARDS7(a) LROT(a,7)
#define ROTATEUPWARDS11(a) LROT(a,11)
//#define SWAP(a,b) { uint32_t u = a; a = b; b = u; }
#define SWAP(a,b) { a ^= b; b ^=a; a ^=b;}
__device__ __forceinline__ void rrounds(uint32_t x[2][2][2][2][2])
{
int r;
int j;
int k;
int l;
int m;
#pragma unroll 2
for (r = 0; r < CUBEHASH_ROUNDS; ++r) {
/* "add x_0jklm into x_1jklmn modulo 2^32" */
#pragma unroll 2
for (j = 0; j < 2; ++j)
#pragma unroll 2
for (k = 0; k < 2; ++k)
#pragma unroll 2
for (l = 0; l < 2; ++l)
#pragma unroll 2
for (m = 0; m < 2; ++m)
x[1][j][k][l][m] += x[0][j][k][l][m];
/* "rotate x_0jklm upwards by 7 bits" */
#pragma unroll 2
for (j = 0; j < 2; ++j)
#pragma unroll 2
for (k = 0; k < 2; ++k)
#pragma unroll 2
for (l = 0; l < 2; ++l)
#pragma unroll 2
for (m = 0; m < 2; ++m)
x[0][j][k][l][m] = ROTATEUPWARDS7(x[0][j][k][l][m]);
/* "swap x_00klm with x_01klm" */
#pragma unroll 2
for (k = 0; k < 2; ++k)
#pragma unroll 2
for (l = 0; l < 2; ++l)
#pragma unroll 2
for (m = 0; m < 2; ++m)
SWAP(x[0][0][k][l][m], x[0][1][k][l][m])
/* "xor x_1jklm into x_0jklm" */
#pragma unroll 2
for (j = 0; j < 2; ++j)
#pragma unroll 2
for (k = 0; k < 2; ++k)
#pragma unroll 2
for (l = 0; l < 2; ++l)
#pragma unroll 2
for (m = 0; m < 2; ++m)
x[0][j][k][l][m] ^= x[1][j][k][l][m];
/* "swap x_1jk0m with x_1jk1m" */
#pragma unroll 2
for (j = 0; j < 2; ++j)
#pragma unroll 2
for (k = 0; k < 2; ++k)
#pragma unroll 2
for (m = 0; m < 2; ++m)
SWAP(x[1][j][k][0][m], x[1][j][k][1][m])
/* "add x_0jklm into x_1jklm modulo 2^32" */
#pragma unroll 2
for (j = 0; j < 2; ++j)
#pragma unroll 2
for (k = 0; k < 2; ++k)
#pragma unroll 2
for (l = 0; l < 2; ++l)
#pragma unroll 2
for (m = 0; m < 2; ++m)
x[1][j][k][l][m] += x[0][j][k][l][m];
/* "rotate x_0jklm upwards by 11 bits" */
#pragma unroll 2
for (j = 0; j < 2; ++j)
#pragma unroll 2
for (k = 0; k < 2; ++k)
#pragma unroll 2
for (l = 0; l < 2; ++l)
#pragma unroll 2
for (m = 0; m < 2; ++m)
x[0][j][k][l][m] = ROTATEUPWARDS11(x[0][j][k][l][m]);
/* "swap x_0j0lm with x_0j1lm" */
#pragma unroll 2
for (j = 0; j < 2; ++j)
#pragma unroll 2
for (l = 0; l < 2; ++l)
#pragma unroll 2
for (m = 0; m < 2; ++m)
SWAP(x[0][j][0][l][m], x[0][j][1][l][m])
/* "xor x_1jklm into x_0jklm" */
#pragma unroll 2
for (j = 0; j < 2; ++j)
#pragma unroll 2
for (k = 0; k < 2; ++k)
#pragma unroll 2
for (l = 0; l < 2; ++l)
#pragma unroll 2
for (m = 0; m < 2; ++m)
x[0][j][k][l][m] ^= x[1][j][k][l][m];
/* "swap x_1jkl0 with x_1jkl1" */
#pragma unroll 2
for (j = 0; j < 2; ++j)
#pragma unroll 2
for (k = 0; k < 2; ++k)
#pragma unroll 2
for (l = 0; l < 2; ++l)
SWAP(x[1][j][k][l][0], x[1][j][k][l][1])
}
}
__device__ __forceinline__ void block_tox(const uint32_t *in, uint32_t x[2][2][2][2][2])
{
x[0][0][0][0][0] ^= in[0];
x[0][0][0][0][1] ^= in[1];
x[0][0][0][1][0] ^= in[2];
x[0][0][0][1][1] ^= in[3];
x[0][0][1][0][0] ^= in[4];
x[0][0][1][0][1] ^= in[5];
x[0][0][1][1][0] ^= in[6];
x[0][0][1][1][1] ^= in[7];
}
__device__ __forceinline__ void hash_fromx(uint32_t *out, uint32_t x[2][2][2][2][2])
{
out[0] = x[0][0][0][0][0];
out[1] = x[0][0][0][0][1];
out[2] = x[0][0][0][1][0];
out[3] = x[0][0][0][1][1];
out[4] = x[0][0][1][0][0];
out[5] = x[0][0][1][0][1];
out[6] = x[0][0][1][1][0];
out[7] = x[0][0][1][1][1];
}
void __device__ __forceinline__ Update32(uint32_t x[2][2][2][2][2], const uint32_t *data)
{
/* "xor the block into the first b bytes of the state" */
/* "and then transform the state invertibly through r identical rounds" */
block_tox(data, x);
rrounds(x);
}
void __device__ __forceinline__ Update32_const(uint32_t x[2][2][2][2][2])
{
x[0][0][0][0][0] ^= 0x80;
rrounds(x);
}
void __device__ __forceinline__ Final(uint32_t x[2][2][2][2][2], uint32_t *hashval)
{
int i;
/* "the integer 1 is xored into the last state word x_11111" */
x[1][1][1][1][1] ^= 1;
/* "the state is then transformed invertibly through 10r identical rounds" */
#pragma unroll 2
for (i = 0; i < 10; ++i) rrounds(x);
/* "output the first h/8 bytes of the state" */
hash_fromx(hashval, x);
}
// Die Hash-Funktion
#if __CUDA_ARCH__ <500
__global__ __launch_bounds__(576,1)
#else
__global__ __launch_bounds__(576,1)
#endif
void cubehash256_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint64_t *g_hash)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint32_t Hash[8]; // = &g_hash[16 * hashPosition];
LOHI(Hash[0], Hash[1], __ldg(&g_hash[thread]));
LOHI(Hash[2], Hash[3], __ldg(&g_hash[thread + 1 * threads]));
LOHI(Hash[4], Hash[5], __ldg(&g_hash[thread + 2 * threads]));
LOHI(Hash[6], Hash[7], __ldg(&g_hash[thread + 3 * threads]));
uint32_t x[2][2][2][2][2] =
{
0xEA2BD4B4, 0xCCD6F29F, 0x63117E71,
0x35481EAE, 0x22512D5B, 0xE5D94E63,
0x7E624131, 0xF4CC12BE, 0xC2D0B696,
0x42AF2070, 0xD0720C35, 0x3361DA8C,
0x28CCECA4, 0x8EF8AD83, 0x4680AC00,
0x40E5FBAB, 0xD89041C3, 0x6107FBD5,
0x6C859D41, 0xF0B26679, 0x09392549,
0x5FA25603, 0x65C892FD, 0x93CB6285,
0x2AF2B5AE, 0x9E4B4E60, 0x774ABFDD,
0x85254725, 0x15815AEB, 0x4AB6AAD6,
0x9CDAF8AF, 0xD6032C0A
};
x[0][0][0][0][0] ^= Hash[0];
x[0][0][0][0][1] ^= Hash[1];
x[0][0][0][1][0] ^= Hash[2];
x[0][0][0][1][1] ^= Hash[3];
x[0][0][1][0][0] ^= Hash[4];
x[0][0][1][0][1] ^= Hash[5];
x[0][0][1][1][0] ^= Hash[6];
x[0][0][1][1][1] ^= Hash[7];
rrounds(x);
x[0][0][0][0][0] ^= 0x80;
rrounds(x);
Final(x, Hash);
g_hash[thread] = ((uint64_t*)Hash)[0];
g_hash[1 * threads + thread] = ((uint64_t*)Hash)[1];
g_hash[2 * threads + thread] = ((uint64_t*)Hash)[2];
g_hash[3 * threads + thread] = ((uint64_t*)Hash)[3];
}
}
__host__
void cubehash256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_hash)
{
uint32_t tpb;
if (device_sm[device_map[thr_id]]<500)
tpb = 576;
else
tpb = 576;
// berechne wie viele Thread Blocks wir brauchen
dim3 grid((threads + tpb-1)/tpb);
dim3 block(tpb);
cubehash256_gpu_hash_32<<<grid, block>>>(threads, startNounce, d_hash);
}

2
Makefile.am

@ -33,6 +33,8 @@ ccminer_SOURCES = elist.h miner.h compat.h \ @@ -33,6 +33,8 @@ ccminer_SOURCES = elist.h miner.h compat.h \
myriadgroestl.cpp cuda_myriadgroestl.cu \
lyra2/Lyra2.c lyra2/Sponge.c \
lyra2/lyra2RE.cu lyra2/cuda_lyra2.cu \
lyra2/lyra2REv2.cu lyra2/cuda_lyra2v2.cu \
Algo256/cuda_bmw256.cu Algo256/cuda_cubehash256.cu \
Algo256/cuda_blake256.cu Algo256/cuda_groestl256.cu Algo256/cuda_keccak256.cu Algo256/cuda_skein256.cu \
Algo256/blake256.cu Algo256/keccak256.cu \
JHA/jackpotcoin.cu JHA/cuda_jha_keccak512.cu \

15
ccminer.cpp

@ -98,6 +98,7 @@ enum sha_algos { @@ -98,6 +98,7 @@ enum sha_algos {
ALGO_JACKPOT,
ALGO_LUFFA,
ALGO_LYRA2,
ALGO_LYRA2v2,
ALGO_MJOLLNIR, /* Hefty hash */
ALGO_MYR_GR,
ALGO_NEOSCRYPT,
@ -135,6 +136,7 @@ static const char *algo_names[] = { @@ -135,6 +136,7 @@ static const char *algo_names[] = {
"jackpot",
"luffa",
"lyra2",
"lyra2v2",
"mjollnir",
"myr-gr",
"neoscrypt",
@ -291,7 +293,8 @@ Options:\n\ @@ -291,7 +293,8 @@ Options:\n\
jackpot Jackpot\n\
keccak Keccak-256 (Maxcoin)\n\
luffa Joincoin\n\
lyra2 VertCoin\n\
lyra2 LyraBar\n\
lyra2v2 VertCoin\n\
mjollnir Mjollnircoin\n\
myr-gr Myriad-Groestl\n\
neoscrypt FeatherCoin, Phoenix, UFO...\n\
@ -1458,6 +1461,7 @@ static bool stratum_gen_work(struct stratum_ctx *sctx, struct work *work) @@ -1458,6 +1461,7 @@ static bool stratum_gen_work(struct stratum_ctx *sctx, struct work *work)
break;
case ALGO_KECCAK:
case ALGO_LYRA2:
case ALGO_LYRA2v2:
diff_to_target(work->target, sctx->job.diff / (128.0 * opt_difficulty));
break;
default:
@ -1767,6 +1771,7 @@ static void *miner_thread(void *userdata) @@ -1767,6 +1771,7 @@ static void *miner_thread(void *userdata)
minmax = 0x2000000;
break;
case ALGO_C11:
case ALGO_LYRA2v2:
case ALGO_S3:
case ALGO_X11:
case ALGO_X13:
@ -1774,6 +1779,9 @@ static void *miner_thread(void *userdata) @@ -1774,6 +1779,9 @@ static void *miner_thread(void *userdata)
break;
case ALGO_LYRA2:
case ALGO_NEOSCRYPT:
case ALGO_X15:
minmax = 0x300000;
break;
case ALGO_SCRYPT:
case ALGO_SCRYPT_JANE:
minmax = 0x100000;
@ -1902,6 +1910,11 @@ static void *miner_thread(void *userdata) @@ -1902,6 +1910,11 @@ static void *miner_thread(void *userdata)
max_nonce, &hashes_done);
break;
case ALGO_LYRA2v2:
rc = scanhash_lyra2v2(thr_id, work.data, work.target,
max_nonce, &hashes_done);
break;
case ALGO_NEOSCRYPT:
rc = scanhash_neoscrypt(thr_id, work.data, work.target,
max_nonce, &hashes_done);

4
ccminer.vcxproj

@ -392,6 +392,8 @@ @@ -392,6 +392,8 @@
</CudaCompile>
<CudaCompile Include="Algo256\keccak256.cu" />
<CudaCompile Include="Algo256\cuda_blake256.cu" />
<CudaCompile Include="Algo256\cuda_bmw256.cu" />
<CudaCompile Include="Algo256\cuda_cubehash256.cu" />
<CudaCompile Include="Algo256\cuda_fugue256.cu" />
<CudaCompile Include="Algo256\cuda_groestl256.cu" />
<CudaCompile Include="Algo256\cuda_keccak256.cu">
@ -440,6 +442,8 @@ @@ -440,6 +442,8 @@
</CudaCompile>
<CudaCompile Include="lyra2\lyra2RE.cu" />
<CudaCompile Include="lyra2\cuda_lyra2.cu" />
<CudaCompile Include="lyra2\lyra2REv2.cu" />
<CudaCompile Include="lyra2\cuda_lyra2v2.cu" />
<CudaCompile Include="skein.cu">
<MaxRegCount>64</MaxRegCount>
</CudaCompile>

12
ccminer.vcxproj.filters

@ -583,6 +583,12 @@ @@ -583,6 +583,12 @@
<CudaCompile Include="Algo256\cuda_blake256.cu">
<Filter>Source Files\CUDA\Algo256</Filter>
</CudaCompile>
<CudaCompile Include="Algo256\cuda_bmw256.cu">
<Filter>Source Files\CUDA\Algo256</Filter>
</CudaCompile>
<CudaCompile Include="Algo256\cuda_cubehash256.cu">
<Filter>Source Files\CUDA\Algo256</Filter>
</CudaCompile>
<CudaCompile Include="Algo256\cuda_fugue256.cu">
<Filter>Source Files\CUDA\Algo256</Filter>
</CudaCompile>
@ -601,6 +607,12 @@ @@ -601,6 +607,12 @@
<CudaCompile Include="lyra2\lyra2RE.cu">
<Filter>Source Files\CUDA</Filter>
</CudaCompile>
<CudaCompile Include="lyra2\cuda_lyra2v2.cu">
<Filter>Source Files\CUDA</Filter>
</CudaCompile>
<CudaCompile Include="lyra2\lyra2REv2.cu">
<Filter>Source Files\CUDA</Filter>
</CudaCompile>
<CudaCompile Include="zr5.cu">
<Filter>Source Files\CUDA</Filter>
</CudaCompile>

31
cuda_helper.h

@ -606,6 +606,37 @@ uint2 SWAPUINT2(uint2 value) @@ -606,6 +606,37 @@ uint2 SWAPUINT2(uint2 value)
return make_uint2(value.y, value.x);
}
/* Byte aligned Rotations (lyra2) */
#ifdef __CUDA_ARCH__
__device__ __inline__ uint2 ROL8(const uint2 a)
{
uint2 result;
result.x = __byte_perm(a.y, a.x, 0x6543);
result.y = __byte_perm(a.y, a.x, 0x2107);
return result;
}
__device__ __inline__ uint2 ROR16(const uint2 a)
{
uint2 result;
result.x = __byte_perm(a.y, a.x, 0x1076);
result.y = __byte_perm(a.y, a.x, 0x5432);
return result;
}
__device__ __inline__ uint2 ROR24(const uint2 a)
{
uint2 result;
result.x = __byte_perm(a.y, a.x, 0x2107);
result.y = __byte_perm(a.y, a.x, 0x6543);
return result;
}
#else
#define ROL8(u) ((u) << 8)
#define ROR16(u) ((u) >> 16)
#define ROR24(u) ((u) >> 24)
#endif
/* uint2 for bmw512 - to double check later */
__device__ __forceinline__

95
lyra2/Lyra2.c

@ -44,7 +44,7 @@ @@ -44,7 +44,7 @@
*
* @return 0 if the key is generated correctly; -1 if there is an error (usually due to lack of memory for allocation)
*/
int LYRA2(void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen, const void *salt, uint64_t saltlen, uint64_t timeCost, uint64_t nRows, uint64_t nCols)
int LYRA2(void *K, int64_t kLen, const void *pwd, int32_t pwdlen, const void *salt, int32_t saltlen, int64_t timeCost, const int16_t nRows, const int16_t nCols)
{
//============================= Basic variables ============================//
int64_t row = 2; //index of row to be processed
@ -55,25 +55,32 @@ int LYRA2(void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen, const void * @@ -55,25 +55,32 @@ int LYRA2(void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen, const void *
int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup)
int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1
int64_t i; //auxiliary iteration counter
int64_t v64; // 64bit var for memcpy
//==========================================================================/
//========== Initializing the Memory Matrix and pointers to it =============//
//Tries to allocate enough space for the whole memory matrix
i = (int64_t) ((int64_t) nRows * (int64_t) ROW_LEN_BYTES);
uint64_t *wholeMatrix = (uint64_t*) malloc((size_t) i);
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols;
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
// for Lyra2REv2, nCols = 4, v1 was using 8
const int64_t BLOCK_LEN = (nCols == 4) ? BLOCK_LEN_BLAKE2_SAFE_INT64 : BLOCK_LEN_BLAKE2_SAFE_BYTES;
i = (int64_t)ROW_LEN_BYTES * nRows;
uint64_t *wholeMatrix = malloc(i);
if (wholeMatrix == NULL) {
return -1;
}
memset(wholeMatrix, 0, (size_t) i);
memset(wholeMatrix, 0, i);
//Allocates pointers to each row of the matrix
uint64_t **memMatrix = malloc((size_t) nRows * sizeof(uint64_t*));
uint64_t **memMatrix = malloc(sizeof(uint64_t*) * nRows);
if (memMatrix == NULL) {
return -1;
}
//Places the pointers in the correct positions
uint64_t *ptrWord = wholeMatrix;
for (i = 0; i < (int64_t) nRows; i++) {
for (i = 0; i < nRows; i++) {
memMatrix[i] = ptrWord;
ptrWord += ROW_LEN_INT64;
}
@ -84,32 +91,38 @@ int LYRA2(void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen, const void * @@ -84,32 +91,38 @@ int LYRA2(void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen, const void *
//but this ensures that the password copied locally will be overwritten as soon as possible
//First, we clean enough blocks for the password, salt, basil and padding
uint64_t nBlocksInput = ((saltlen + pwdlen + 6 * sizeof (uint64_t)) / BLOCK_LEN_BLAKE2_SAFE_BYTES) + 1;
int64_t nBlocksInput = ((saltlen + pwdlen + 6 * sizeof(uint64_t)) / BLOCK_LEN_BLAKE2_SAFE_BYTES) + 1;
byte *ptrByte = (byte*) wholeMatrix;
memset(ptrByte, 0, (size_t) nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES);
//Prepends the password
memcpy(ptrByte, pwd, (size_t) pwdlen);
memcpy(ptrByte, pwd, pwdlen);
ptrByte += pwdlen;
//Concatenates the salt
memcpy(ptrByte, salt, (size_t) saltlen);
memcpy(ptrByte, salt, saltlen);
ptrByte += saltlen;
memset(ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - (saltlen + pwdlen));
//Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface
memcpy(ptrByte, &kLen, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &pwdlen, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &saltlen, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &timeCost, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &nRows, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &nCols, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &kLen, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
v64 = pwdlen;
memcpy(ptrByte, &v64, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
v64 = saltlen;
memcpy(ptrByte, &v64, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
v64 = timeCost;
memcpy(ptrByte, &v64, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
v64 = nRows;
memcpy(ptrByte, &v64, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
v64 = nCols;
memcpy(ptrByte, &v64, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
//Now comes the padding
*ptrByte = 0x80; //first byte of padding: right after the password
@ -120,30 +133,27 @@ int LYRA2(void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen, const void * @@ -120,30 +133,27 @@ int LYRA2(void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen, const void *
//======================= Initializing the Sponge State ====================//
//Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c)
uint64_t *state = malloc(16 * sizeof (uint64_t));
if (state == NULL) {
return -1;
}
uint64_t state[16];
initState(state);
//==========================================================================/
//================================ Setup Phase =============================//
//Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits
ptrWord = wholeMatrix;
for (i = 0; i < (int64_t) nBlocksInput; i++) {
for (i = 0; i < nBlocksInput; i++) {
absorbBlockBlake2Safe(state, ptrWord); //absorbs each block of pad(pwd || salt || basil)
ptrWord += BLOCK_LEN_BLAKE2_SAFE_BYTES; //goes to next block of pad(pwd || salt || basil)
ptrWord += BLOCK_LEN; //goes to next block of pad(pwd || salt || basil)
}
//Initializes M[0] and M[1]
reducedSqueezeRow0(state, memMatrix[0]); //The locally copied password is most likely overwritten here
reducedSqueezeRow0(state, memMatrix[0], nCols); //The locally copied password is most likely overwritten here
reducedDuplexRow1(state, memMatrix[0], memMatrix[1]);
reducedDuplexRow1(state, memMatrix[0], memMatrix[1], nCols);
do {
//M[row] = rand; //M[row*] = M[row*] XOR rotW(rand)
reducedDuplexRowSetup(state, memMatrix[prev], memMatrix[rowa], memMatrix[row]);
reducedDuplexRowSetup(state, memMatrix[prev], memMatrix[rowa], memMatrix[row], nCols);
//updates the value of row* (deterministically picked during Setup))
rowa = (rowa + step) & (window - 1);
@ -159,53 +169,46 @@ int LYRA2(void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen, const void * @@ -159,53 +169,46 @@ int LYRA2(void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen, const void *
gap = -gap; //inverts the modifier to the step
}
} while (row < (int64_t) nRows);
} while (row < nRows);
//==========================================================================/
//============================ Wandering Phase =============================//
row = 0; //Resets the visitation to the first row of the memory matrix
for (tau = 1; tau <= (int64_t) timeCost; tau++) {
for (tau = 1; tau <= timeCost; tau++) {
//Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1
step = (tau % 2 == 0) ? -1 : nRows / 2 - 1;
do {
//Selects a pseudorandom index row*
//------------------------------------------------------------------------------------------
//rowa = ((unsigned int)state[0]) & (nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
rowa = ((uint64_t) (state[0])) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
rowa = state[0] & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
//rowa = state[0] % nRows; //(USE THIS FOR THE "GENERIC" CASE)
//------------------------------------------------------------------------------------------
//Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row]
reducedDuplexRow(state, memMatrix[prev], memMatrix[rowa], memMatrix[row]);
reducedDuplexRow(state, memMatrix[prev], memMatrix[rowa], memMatrix[row], nCols);
//update prev: it now points to the last row ever computed
prev = row;
//updates row: goes to the next row to be computed
//------------------------------------------------------------------------------------------
//row = (row + step) & (nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
row = (row + step) & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
//row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
//------------------------------------------------------------------------------------------
} while (row != 0);
}
//==========================================================================/
//============================ Wrap-up Phase ===============================//
//Absorbs the last block of the memory matrix
absorbBlock(state, memMatrix[rowa]);
//Squeezes the key
squeeze(state, K, (size_t) kLen);
//==========================================================================/
squeeze(state, K, (unsigned int) kLen);
//========================= Freeing the memory =============================//
free(memMatrix);
free(wholeMatrix);
//Wiping out the sponge's internal state before freeing it
memset(state, 0, 16 * sizeof (uint64_t));
free(state);
//==========================================================================/
return 0;
}

10
lyra2/Lyra2.h

@ -37,14 +37,6 @@ typedef unsigned char byte; @@ -37,14 +37,6 @@ typedef unsigned char byte;
#define BLOCK_LEN_BYTES (BLOCK_LEN_INT64 * 8) //Block length, in bytes
#endif
#ifndef N_COLS
#define N_COLS 8 //Number of columns in the memory matrix: fixed to 64 by default
#endif
#define ROW_LEN_INT64 (BLOCK_LEN_INT64 * N_COLS) //Total length of a row: N_COLS blocks
#define ROW_LEN_BYTES (ROW_LEN_INT64 * 8) //Number of bytes per row
int LYRA2(void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen, const void *salt, uint64_t saltlen, uint64_t timeCost, uint64_t nRows, uint64_t nCols);
int LYRA2(void *K, int64_t kLen, const void *pwd, int32_t pwdlen, const void *salt, int32_t saltlen, int64_t timeCost, const int16_t nRows, const int16_t nCols);
#endif /* LYRA2_H_ */

867
lyra2/Sponge.c

@ -25,7 +25,6 @@ @@ -25,7 +25,6 @@
#include "Lyra2.h"
/**
* Initializes the Sponge State. The first 512 bits are set to zeros and the remainder
* receive Blake2b's IV as per Blake2b's specification. <b>Note:</b> Even though sponges
@ -37,20 +36,18 @@ @@ -37,20 +36,18 @@
*
* @param state The 1024-bit array to be initialized
*/
void initState(uint64_t state[/*16*/]) {
//First 512 bis are zeros
memset(state, 0, 64);
//Remainder BLOCK_LEN_BLAKE2_SAFE_BYTES are reserved to the IV
state[8] = blake2b_IV[0];
state[9] = blake2b_IV[1];
state[10] = blake2b_IV[2];
state[11] = blake2b_IV[3];
state[12] = blake2b_IV[4];
state[13] = blake2b_IV[5];
state[14] = blake2b_IV[6];
state[15] = blake2b_IV[7];
void initState(uint64_t state[/*16*/]) {
//First 512 bis are zeros
memset(state, 0, 64);
//Remainder BLOCK_LEN_BLAKE2_SAFE_BYTES are reserved to the IV
state[8] = blake2b_IV[0];
state[9] = blake2b_IV[1];
state[10] = blake2b_IV[2];
state[11] = blake2b_IV[3];
state[12] = blake2b_IV[4];
state[13] = blake2b_IV[5];
state[14] = blake2b_IV[6];
state[15] = blake2b_IV[7];
}
/**
@ -59,18 +56,18 @@ @@ -59,18 +56,18 @@
* @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function
*/
__inline static void blake2bLyra(uint64_t *v) {
ROUND_LYRA(0);
ROUND_LYRA(1);
ROUND_LYRA(2);
ROUND_LYRA(3);
ROUND_LYRA(4);
ROUND_LYRA(5);
ROUND_LYRA(6);
ROUND_LYRA(7);
ROUND_LYRA(8);
ROUND_LYRA(9);
ROUND_LYRA(10);
ROUND_LYRA(11);
ROUND_LYRA(0);
ROUND_LYRA(1);
ROUND_LYRA(2);
ROUND_LYRA(3);
ROUND_LYRA(4);
ROUND_LYRA(5);
ROUND_LYRA(6);
ROUND_LYRA(7);
ROUND_LYRA(8);
ROUND_LYRA(9);
ROUND_LYRA(10);
ROUND_LYRA(11);
}
/**
@ -78,7 +75,7 @@ __inline static void blake2bLyra(uint64_t *v) { @@ -78,7 +75,7 @@ __inline static void blake2bLyra(uint64_t *v) {
* @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function
*/
__inline static void reducedBlake2bLyra(uint64_t *v) {
ROUND_LYRA(0);
ROUND_LYRA(0);
}
/**
@ -89,19 +86,20 @@ __inline static void reducedBlake2bLyra(uint64_t *v) { @@ -89,19 +86,20 @@ __inline static void reducedBlake2bLyra(uint64_t *v) {
* @param out Array that will receive the data squeezed
* @param len The number of bytes to be squeezed into the "out" array
*/
void squeeze(uint64_t *state, byte *out, unsigned int len) {
int fullBlocks = len / BLOCK_LEN_BYTES;
byte *ptr = out;
int i;
//Squeezes full blocks
for (i = 0; i < fullBlocks; i++) {
memcpy(ptr, state, BLOCK_LEN_BYTES);
blake2bLyra(state);
ptr += BLOCK_LEN_BYTES;
}
//Squeezes remaining bytes
memcpy(ptr, state, (len % BLOCK_LEN_BYTES));
void squeeze(uint64_t *state, byte *out, unsigned int len)
{
int fullBlocks = len / BLOCK_LEN_BYTES;
byte *ptr = out;
int i;
//Squeezes full blocks
for (i = 0; i < fullBlocks; i++) {
memcpy(ptr, state, BLOCK_LEN_BYTES);
blake2bLyra(state);
ptr += BLOCK_LEN_BYTES;
}
//Squeezes remaining bytes
memcpy(ptr, state, (len % BLOCK_LEN_BYTES));
}
/**
@ -111,23 +109,24 @@ __inline static void reducedBlake2bLyra(uint64_t *v) { @@ -111,23 +109,24 @@ __inline static void reducedBlake2bLyra(uint64_t *v) {
* @param state The current state of the sponge
* @param in The block to be absorbed (BLOCK_LEN_INT64 words)
*/
void absorbBlock(uint64_t *state, const uint64_t *in) {
//XORs the first BLOCK_LEN_INT64 words of "in" with the current state
state[0] ^= in[0];
state[1] ^= in[1];
state[2] ^= in[2];
state[3] ^= in[3];
state[4] ^= in[4];
state[5] ^= in[5];
state[6] ^= in[6];
state[7] ^= in[7];
state[8] ^= in[8];
state[9] ^= in[9];
state[10] ^= in[10];
state[11] ^= in[11];
//Applies the transformation f to the sponge's state
blake2bLyra(state);
void absorbBlock(uint64_t *state, const uint64_t *in)
{
//XORs the first BLOCK_LEN_INT64 words of "in" with the current state
state[0] ^= in[0];
state[1] ^= in[1];
state[2] ^= in[2];
state[3] ^= in[3];
state[4] ^= in[4];
state[5] ^= in[5];
state[6] ^= in[6];
state[7] ^= in[7];
state[8] ^= in[8];
state[9] ^= in[9];
state[10] ^= in[10];
state[11] ^= in[11];
//Applies the transformation f to the sponge's state
blake2bLyra(state);
}
/**
@ -137,25 +136,21 @@ void absorbBlock(uint64_t *state, const uint64_t *in) { @@ -137,25 +136,21 @@ void absorbBlock(uint64_t *state, const uint64_t *in) {
* @param state The current state of the sponge
* @param in The block to be absorbed (BLOCK_LEN_BLAKE2_SAFE_INT64 words)
*/
void absorbBlockBlake2Safe(uint64_t *state, const uint64_t *in) {
//XORs the first BLOCK_LEN_BLAKE2_SAFE_INT64 words of "in" with the current state
state[0] ^= in[0];
state[1] ^= in[1];
state[2] ^= in[2];
state[3] ^= in[3];
state[4] ^= in[4];
state[5] ^= in[5];
state[6] ^= in[6];
state[7] ^= in[7];
//Applies the transformation f to the sponge's state
blake2bLyra(state);
/*
for(int i = 0; i<16; i++) {
printf(" final state %d %08x %08x in %08x %08x\n", i, (uint32_t)(state[i] & 0xFFFFFFFFULL), (uint32_t)(state[i] >> 32),
(uint32_t)(in[i] & 0xFFFFFFFFULL), (uint32_t)(in[i] >> 32));
}
*/
void absorbBlockBlake2Safe(uint64_t *state, const uint64_t *in)
{
//XORs the first BLOCK_LEN_BLAKE2_SAFE_INT64 words of "in" with the current state
state[0] ^= in[0];
state[1] ^= in[1];
state[2] ^= in[2];
state[3] ^= in[3];
state[4] ^= in[4];
state[5] ^= in[5];
state[6] ^= in[6];
state[7] ^= in[7];
//Applies the transformation f to the sponge's state
blake2bLyra(state);
}
/**
@ -166,36 +161,31 @@ void absorbBlockBlake2Safe(uint64_t *state, const uint64_t *in) { @@ -166,36 +161,31 @@ void absorbBlockBlake2Safe(uint64_t *state, const uint64_t *in) {
* @param state The current state of the sponge
* @param rowOut Row to receive the data squeezed
*/
void reducedSqueezeRow0(uint64_t* state, uint64_t* rowOut) {
uint64_t* ptrWord = rowOut + (N_COLS-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to M[0][C-1]
int i;
//M[row][C-1-col] = H.reduced_squeeze()
for (i = 0; i < N_COLS; i++) {
ptrWord[0] = state[0];
ptrWord[1] = state[1];
ptrWord[2] = state[2];
ptrWord[3] = state[3];
ptrWord[4] = state[4];
ptrWord[5] = state[5];
ptrWord[6] = state[6];
ptrWord[7] = state[7];
ptrWord[8] = state[8];
ptrWord[9] = state[9];
ptrWord[10] = state[10];
ptrWord[11] = state[11];
/*
for (int i = 0; i<12; i++) {
printf(" after reducedSqueezeRow0 %d %08x %08x in %08x %08x\n", i, (uint32_t)(ptrWord[i] & 0xFFFFFFFFULL), (uint32_t)(ptrWord[i] >> 32),
(uint32_t)(state[i] & 0xFFFFFFFFULL), (uint32_t)(state[i] >> 32));
void reducedSqueezeRow0(uint64_t* state, uint64_t* rowOut, const uint32_t nCols)
{
uint64_t* ptrWord = rowOut + (nCols-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to M[0][C-1]
unsigned int i;
//M[row][C-1-col] = H.reduced_squeeze()
for (i = 0; i < nCols; i++) {
ptrWord[0] = state[0];
ptrWord[1] = state[1];
ptrWord[2] = state[2];
ptrWord[3] = state[3];
ptrWord[4] = state[4];
ptrWord[5] = state[5];
ptrWord[6] = state[6];
ptrWord[7] = state[7];
ptrWord[8] = state[8];
ptrWord[9] = state[9];
ptrWord[10] = state[10];
ptrWord[11] = state[11];
//Goes to next block (column) that will receive the squeezed data
ptrWord -= BLOCK_LEN_INT64;
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
}
*/
//Goes to next block (column) that will receive the squeezed data
ptrWord -= BLOCK_LEN_INT64;
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
}
}
/**
@ -207,50 +197,50 @@ for (int i = 0; i<12; i++) { @@ -207,50 +197,50 @@ for (int i = 0; i<12; i++) {
* @param rowIn Row to feed the sponge
* @param rowOut Row to receive the sponge's output
*/
void reducedDuplexRow1(uint64_t *state, uint64_t *rowIn, uint64_t *rowOut) {
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordOut = rowOut + (N_COLS-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
int i;
for (i = 0; i < N_COLS; i++) {
//Absorbing "M[prev][col]"
state[0] ^= (ptrWordIn[0]);
state[1] ^= (ptrWordIn[1]);
state[2] ^= (ptrWordIn[2]);
state[3] ^= (ptrWordIn[3]);
state[4] ^= (ptrWordIn[4]);
state[5] ^= (ptrWordIn[5]);
state[6] ^= (ptrWordIn[6]);
state[7] ^= (ptrWordIn[7]);
state[8] ^= (ptrWordIn[8]);
state[9] ^= (ptrWordIn[9]);
state[10] ^= (ptrWordIn[10]);
state[11] ^= (ptrWordIn[11]);
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[row][C-1-col] = M[prev][col] XOR rand
ptrWordOut[0] = ptrWordIn[0] ^ state[0];
ptrWordOut[1] = ptrWordIn[1] ^ state[1];
ptrWordOut[2] = ptrWordIn[2] ^ state[2];
ptrWordOut[3] = ptrWordIn[3] ^ state[3];
ptrWordOut[4] = ptrWordIn[4] ^ state[4];
ptrWordOut[5] = ptrWordIn[5] ^ state[5];
ptrWordOut[6] = ptrWordIn[6] ^ state[6];
ptrWordOut[7] = ptrWordIn[7] ^ state[7];
ptrWordOut[8] = ptrWordIn[8] ^ state[8];
ptrWordOut[9] = ptrWordIn[9] ^ state[9];
ptrWordOut[10] = ptrWordIn[10] ^ state[10];
ptrWordOut[11] = ptrWordIn[11] ^ state[11];
//Input: next column (i.e., next block in sequence)
ptrWordIn += BLOCK_LEN_INT64;
//Output: goes to previous column
ptrWordOut -= BLOCK_LEN_INT64;
}
void reducedDuplexRow1(uint64_t *state, uint64_t *rowIn, uint64_t *rowOut, const uint32_t nCols)
{
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordOut = rowOut + (nCols-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
unsigned int i;
for (i = 0; i < nCols; i++) {
//Absorbing "M[prev][col]"
state[0] ^= (ptrWordIn[0]);
state[1] ^= (ptrWordIn[1]);
state[2] ^= (ptrWordIn[2]);
state[3] ^= (ptrWordIn[3]);
state[4] ^= (ptrWordIn[4]);
state[5] ^= (ptrWordIn[5]);
state[6] ^= (ptrWordIn[6]);
state[7] ^= (ptrWordIn[7]);
state[8] ^= (ptrWordIn[8]);
state[9] ^= (ptrWordIn[9]);
state[10] ^= (ptrWordIn[10]);
state[11] ^= (ptrWordIn[11]);
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[row][C-1-col] = M[prev][col] XOR rand
ptrWordOut[0] = ptrWordIn[0] ^ state[0];
ptrWordOut[1] = ptrWordIn[1] ^ state[1];
ptrWordOut[2] = ptrWordIn[2] ^ state[2];
ptrWordOut[3] = ptrWordIn[3] ^ state[3];
ptrWordOut[4] = ptrWordIn[4] ^ state[4];
ptrWordOut[5] = ptrWordIn[5] ^ state[5];
ptrWordOut[6] = ptrWordIn[6] ^ state[6];
ptrWordOut[7] = ptrWordIn[7] ^ state[7];
ptrWordOut[8] = ptrWordIn[8] ^ state[8];
ptrWordOut[9] = ptrWordIn[9] ^ state[9];
ptrWordOut[10] = ptrWordIn[10] ^ state[10];
ptrWordOut[11] = ptrWordIn[11] ^ state[11];
//Input: next column (i.e., next block in sequence)
ptrWordIn += BLOCK_LEN_INT64;
//Output: goes to previous column
ptrWordOut -= BLOCK_LEN_INT64;
}
}
/**
@ -267,63 +257,66 @@ for (int i = 0; i<12; i++) { @@ -267,63 +257,66 @@ for (int i = 0; i<12; i++) {
* @param rowOut Row receiving the output
*
*/
void reducedDuplexRowSetup(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) {
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
uint64_t* ptrWordOut = rowOut + (N_COLS-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
int i;
for (i = 0; i < N_COLS; i++) {
//Absorbing "M[prev] [+] M[row*]"
state[0] ^= (ptrWordIn[0] + ptrWordInOut[0]);
state[1] ^= (ptrWordIn[1] + ptrWordInOut[1]);
state[2] ^= (ptrWordIn[2] + ptrWordInOut[2]);
state[3] ^= (ptrWordIn[3] + ptrWordInOut[3]);
state[4] ^= (ptrWordIn[4] + ptrWordInOut[4]);
state[5] ^= (ptrWordIn[5] + ptrWordInOut[5]);
state[6] ^= (ptrWordIn[6] + ptrWordInOut[6]);
state[7] ^= (ptrWordIn[7] + ptrWordInOut[7]);
state[8] ^= (ptrWordIn[8] + ptrWordInOut[8]);
state[9] ^= (ptrWordIn[9] + ptrWordInOut[9]);
state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]);
state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]);
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[row][col] = M[prev][col] XOR rand
ptrWordOut[0] = ptrWordIn[0] ^ state[0];
ptrWordOut[1] = ptrWordIn[1] ^ state[1];
ptrWordOut[2] = ptrWordIn[2] ^ state[2];
ptrWordOut[3] = ptrWordIn[3] ^ state[3];
ptrWordOut[4] = ptrWordIn[4] ^ state[4];
ptrWordOut[5] = ptrWordIn[5] ^ state[5];
ptrWordOut[6] = ptrWordIn[6] ^ state[6];
ptrWordOut[7] = ptrWordIn[7] ^ state[7];
ptrWordOut[8] = ptrWordIn[8] ^ state[8];
ptrWordOut[9] = ptrWordIn[9] ^ state[9];
ptrWordOut[10] = ptrWordIn[10] ^ state[10];
ptrWordOut[11] = ptrWordIn[11] ^ state[11];
//M[row*][col] = M[row*][col] XOR rotW(rand)
ptrWordInOut[0] ^= state[11];
ptrWordInOut[1] ^= state[0];
ptrWordInOut[2] ^= state[1];
ptrWordInOut[3] ^= state[2];
ptrWordInOut[4] ^= state[3];
ptrWordInOut[5] ^= state[4];
ptrWordInOut[6] ^= state[5];
ptrWordInOut[7] ^= state[6];
ptrWordInOut[8] ^= state[7];
ptrWordInOut[9] ^= state[8];
ptrWordInOut[10] ^= state[9];
ptrWordInOut[11] ^= state[10];
//Inputs: next column (i.e., next block in sequence)
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
//Output: goes to previous column
ptrWordOut -= BLOCK_LEN_INT64;
}
void reducedDuplexRowSetup(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut, const uint32_t nCols)
{
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
uint64_t* ptrWordOut = rowOut + (nCols-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
unsigned int i;
for (i = 0; i < nCols; i++) {
//Absorbing "M[prev] [+] M[row*]"
state[0] ^= (ptrWordIn[0] + ptrWordInOut[0]);
state[1] ^= (ptrWordIn[1] + ptrWordInOut[1]);
state[2] ^= (ptrWordIn[2] + ptrWordInOut[2]);
state[3] ^= (ptrWordIn[3] + ptrWordInOut[3]);
state[4] ^= (ptrWordIn[4] + ptrWordInOut[4]);
state[5] ^= (ptrWordIn[5] + ptrWordInOut[5]);
state[6] ^= (ptrWordIn[6] + ptrWordInOut[6]);
state[7] ^= (ptrWordIn[7] + ptrWordInOut[7]);
state[8] ^= (ptrWordIn[8] + ptrWordInOut[8]);
state[9] ^= (ptrWordIn[9] + ptrWordInOut[9]);
state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]);
state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]);
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[row][col] = M[prev][col] XOR rand
ptrWordOut[0] = ptrWordIn[0] ^ state[0];
ptrWordOut[1] = ptrWordIn[1] ^ state[1];
ptrWordOut[2] = ptrWordIn[2] ^ state[2];
ptrWordOut[3] = ptrWordIn[3] ^ state[3];
ptrWordOut[4] = ptrWordIn[4] ^ state[4];
ptrWordOut[5] = ptrWordIn[5] ^ state[5];
ptrWordOut[6] = ptrWordIn[6] ^ state[6];
ptrWordOut[7] = ptrWordIn[7] ^ state[7];
ptrWordOut[8] = ptrWordIn[8] ^ state[8];
ptrWordOut[9] = ptrWordIn[9] ^ state[9];
ptrWordOut[10] = ptrWordIn[10] ^ state[10];
ptrWordOut[11] = ptrWordIn[11] ^ state[11];
//M[row*][col] = M[row*][col] XOR rotW(rand)
ptrWordInOut[0] ^= state[11];
ptrWordInOut[1] ^= state[0];
ptrWordInOut[2] ^= state[1];
ptrWordInOut[3] ^= state[2];
ptrWordInOut[4] ^= state[3];
ptrWordInOut[5] ^= state[4];
ptrWordInOut[6] ^= state[5];
ptrWordInOut[7] ^= state[6];
ptrWordInOut[8] ^= state[7];
ptrWordInOut[9] ^= state[8];
ptrWordInOut[10] ^= state[9];
ptrWordInOut[11] ^= state[10];
//Inputs: next column (i.e., next block in sequence)
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
//Output: goes to previous column
ptrWordOut -= BLOCK_LEN_INT64;
}
}
/**
@ -340,410 +333,72 @@ for (int i = 0; i<12; i++) { @@ -340,410 +333,72 @@ for (int i = 0; i<12; i++) {
* @param rowOut Row receiving the output
*
*/
void reducedDuplexRow(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) {
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row
int i;
for (i = 0; i < N_COLS; i++) {
//Absorbing "M[prev] [+] M[row*]"
state[0] ^= (ptrWordIn[0] + ptrWordInOut[0]);
state[1] ^= (ptrWordIn[1] + ptrWordInOut[1]);
state[2] ^= (ptrWordIn[2] + ptrWordInOut[2]);
state[3] ^= (ptrWordIn[3] + ptrWordInOut[3]);
state[4] ^= (ptrWordIn[4] + ptrWordInOut[4]);
state[5] ^= (ptrWordIn[5] + ptrWordInOut[5]);
state[6] ^= (ptrWordIn[6] + ptrWordInOut[6]);
state[7] ^= (ptrWordIn[7] + ptrWordInOut[7]);
state[8] ^= (ptrWordIn[8] + ptrWordInOut[8]);
state[9] ^= (ptrWordIn[9] + ptrWordInOut[9]);
state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]);
state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]);
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[rowOut][col] = M[rowOut][col] XOR rand
ptrWordOut[0] ^= state[0];
ptrWordOut[1] ^= state[1];
ptrWordOut[2] ^= state[2];
ptrWordOut[3] ^= state[3];
ptrWordOut[4] ^= state[4];
ptrWordOut[5] ^= state[5];
ptrWordOut[6] ^= state[6];
ptrWordOut[7] ^= state[7];
ptrWordOut[8] ^= state[8];
ptrWordOut[9] ^= state[9];
ptrWordOut[10] ^= state[10];
ptrWordOut[11] ^= state[11];
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
ptrWordInOut[0] ^= state[11];
ptrWordInOut[1] ^= state[0];
ptrWordInOut[2] ^= state[1];
ptrWordInOut[3] ^= state[2];
ptrWordInOut[4] ^= state[3];
ptrWordInOut[5] ^= state[4];
ptrWordInOut[6] ^= state[5];
ptrWordInOut[7] ^= state[6];
ptrWordInOut[8] ^= state[7];
ptrWordInOut[9] ^= state[8];
ptrWordInOut[10] ^= state[9];
ptrWordInOut[11] ^= state[10];
//Goes to next block
ptrWordOut += BLOCK_LEN_INT64;
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Performs a duplex operation over "M[rowInOut] [+] M[rowIn]", writing the output "rand"
* on M[rowOut] and making "M[rowInOut] = M[rowInOut] XOR rotW(rand)", where rotW is a 64-bit
* rotation to the left.
*
* @param state The current state of the sponge
* @param rowIn Row used only as input
* @param rowInOut Row used as input and to receive output after rotation
* @param rowOut Row receiving the output
*
*/
/*
inline void reducedDuplexRowSetupOLD(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) {
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row
int i;
for (i = 0; i < N_COLS; i++) {
//Absorbing "M[rowInOut] XOR M[rowIn]"
state[0] ^= ptrWordInOut[0] ^ ptrWordIn[0];
state[1] ^= ptrWordInOut[1] ^ ptrWordIn[1];
state[2] ^= ptrWordInOut[2] ^ ptrWordIn[2];
state[3] ^= ptrWordInOut[3] ^ ptrWordIn[3];
state[4] ^= ptrWordInOut[4] ^ ptrWordIn[4];
state[5] ^= ptrWordInOut[5] ^ ptrWordIn[5];
state[6] ^= ptrWordInOut[6] ^ ptrWordIn[6];
state[7] ^= ptrWordInOut[7] ^ ptrWordIn[7];
state[8] ^= ptrWordInOut[8] ^ ptrWordIn[8];
state[9] ^= ptrWordInOut[9] ^ ptrWordIn[9];
state[10] ^= ptrWordInOut[10] ^ ptrWordIn[10];
state[11] ^= ptrWordInOut[11] ^ ptrWordIn[11];
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[row][col] = rand
ptrWordOut[0] = state[0];
ptrWordOut[1] = state[1];
ptrWordOut[2] = state[2];
ptrWordOut[3] = state[3];
ptrWordOut[4] = state[4];
ptrWordOut[5] = state[5];
ptrWordOut[6] = state[6];
ptrWordOut[7] = state[7];
ptrWordOut[8] = state[8];
ptrWordOut[9] = state[9];
ptrWordOut[10] = state[10];
ptrWordOut[11] = state[11];
//M[row*][col] = M[row*][col] XOR rotW(rand)
ptrWordInOut[0] ^= state[10];
ptrWordInOut[1] ^= state[11];
ptrWordInOut[2] ^= state[0];
ptrWordInOut[3] ^= state[1];
ptrWordInOut[4] ^= state[2];
ptrWordInOut[5] ^= state[3];
ptrWordInOut[6] ^= state[4];
ptrWordInOut[7] ^= state[5];
ptrWordInOut[8] ^= state[6];
ptrWordInOut[9] ^= state[7];
ptrWordInOut[10] ^= state[8];
ptrWordInOut[11] ^= state[9];
//Goes to next column (i.e., next block in sequence)
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
ptrWordOut += BLOCK_LEN_INT64;
}
}
*/
/**
* Performs a duplex operation over "M[rowInOut] XOR M[rowIn]", writing the output "rand"
* on M[rowOut] and making "M[rowInOut] = M[rowInOut] XOR rotW(rand)", where rotW is a 64-bit
* rotation to the left.
*
* @param state The current state of the sponge
* @param rowIn Row used only as input
* @param rowInOut Row used as input and to receive output after rotation
* @param rowOut Row receiving the output
*
*/
/*
inline void reducedDuplexRowSetupv5(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) {
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row
int i;
for (i = 0; i < N_COLS; i++) {
//Absorbing "M[rowInOut] XOR M[rowIn]"
state[0] ^= ptrWordInOut[0] + ptrWordIn[0];
state[1] ^= ptrWordInOut[1] + ptrWordIn[1];
state[2] ^= ptrWordInOut[2] + ptrWordIn[2];
state[3] ^= ptrWordInOut[3] + ptrWordIn[3];
state[4] ^= ptrWordInOut[4] + ptrWordIn[4];
state[5] ^= ptrWordInOut[5] + ptrWordIn[5];
state[6] ^= ptrWordInOut[6] + ptrWordIn[6];
state[7] ^= ptrWordInOut[7] + ptrWordIn[7];
state[8] ^= ptrWordInOut[8] + ptrWordIn[8];
state[9] ^= ptrWordInOut[9] + ptrWordIn[9];
state[10] ^= ptrWordInOut[10] + ptrWordIn[10];
state[11] ^= ptrWordInOut[11] + ptrWordIn[11];
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[row*][col] = M[row*][col] XOR rotW(rand)
ptrWordInOut[0] ^= state[10];
ptrWordInOut[1] ^= state[11];
ptrWordInOut[2] ^= state[0];
ptrWordInOut[3] ^= state[1];
ptrWordInOut[4] ^= state[2];
ptrWordInOut[5] ^= state[3];
ptrWordInOut[6] ^= state[4];
ptrWordInOut[7] ^= state[5];
ptrWordInOut[8] ^= state[6];
ptrWordInOut[9] ^= state[7];
ptrWordInOut[10] ^= state[8];
ptrWordInOut[11] ^= state[9];
//M[row][col] = rand
ptrWordOut[0] = state[0] ^ ptrWordIn[0];
ptrWordOut[1] = state[1] ^ ptrWordIn[1];
ptrWordOut[2] = state[2] ^ ptrWordIn[2];
ptrWordOut[3] = state[3] ^ ptrWordIn[3];
ptrWordOut[4] = state[4] ^ ptrWordIn[4];
ptrWordOut[5] = state[5] ^ ptrWordIn[5];
ptrWordOut[6] = state[6] ^ ptrWordIn[6];
ptrWordOut[7] = state[7] ^ ptrWordIn[7];
ptrWordOut[8] = state[8] ^ ptrWordIn[8];
ptrWordOut[9] = state[9] ^ ptrWordIn[9];
ptrWordOut[10] = state[10] ^ ptrWordIn[10];
ptrWordOut[11] = state[11] ^ ptrWordIn[11];
//Goes to next column (i.e., next block in sequence)
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
ptrWordOut += BLOCK_LEN_INT64;
}
}
*/
/**
* Performs a duplex operation over "M[rowInOut] XOR M[rowIn]", writing the output "rand"
* on M[rowOut] and making "M[rowInOut] = M[rowInOut] XOR rotW(rand)", where rotW is a 64-bit
* rotation to the left.
*
* @param state The current state of the sponge
* @param rowIn Row used only as input
* @param rowInOut Row used as input and to receive output after rotation
* @param rowOut Row receiving the output
*
*/
/*
inline void reducedDuplexRowSetupv5c(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) {
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
uint64_t* ptrWordOut = rowOut;
int i;
for (i = 0; i < N_COLS / 2; i++) {
//Absorbing "M[rowInOut] XOR M[rowIn]"
state[0] ^= ptrWordInOut[0] + ptrWordIn[0];
state[1] ^= ptrWordInOut[1] + ptrWordIn[1];
state[2] ^= ptrWordInOut[2] + ptrWordIn[2];
state[3] ^= ptrWordInOut[3] + ptrWordIn[3];
state[4] ^= ptrWordInOut[4] + ptrWordIn[4];
state[5] ^= ptrWordInOut[5] + ptrWordIn[5];
state[6] ^= ptrWordInOut[6] + ptrWordIn[6];
state[7] ^= ptrWordInOut[7] + ptrWordIn[7];
state[8] ^= ptrWordInOut[8] + ptrWordIn[8];
state[9] ^= ptrWordInOut[9] + ptrWordIn[9];
state[10] ^= ptrWordInOut[10] + ptrWordIn[10];
state[11] ^= ptrWordInOut[11] + ptrWordIn[11];
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[row*][col] = M[row*][col] XOR rotW(rand)
ptrWordInOut[0] ^= state[10];
ptrWordInOut[1] ^= state[11];
ptrWordInOut[2] ^= state[0];
ptrWordInOut[3] ^= state[1];
ptrWordInOut[4] ^= state[2];
ptrWordInOut[5] ^= state[3];
ptrWordInOut[6] ^= state[4];
ptrWordInOut[7] ^= state[5];
ptrWordInOut[8] ^= state[6];
ptrWordInOut[9] ^= state[7];
ptrWordInOut[10] ^= state[8];
ptrWordInOut[11] ^= state[9];
//M[row][col] = rand
ptrWordOut[0] = state[0] ^ ptrWordIn[0];
ptrWordOut[1] = state[1] ^ ptrWordIn[1];
ptrWordOut[2] = state[2] ^ ptrWordIn[2];
ptrWordOut[3] = state[3] ^ ptrWordIn[3];
ptrWordOut[4] = state[4] ^ ptrWordIn[4];
ptrWordOut[5] = state[5] ^ ptrWordIn[5];
ptrWordOut[6] = state[6] ^ ptrWordIn[6];
ptrWordOut[7] = state[7] ^ ptrWordIn[7];
ptrWordOut[8] = state[8] ^ ptrWordIn[8];
ptrWordOut[9] = state[9] ^ ptrWordIn[9];
ptrWordOut[10] = state[10] ^ ptrWordIn[10];
ptrWordOut[11] = state[11] ^ ptrWordIn[11];
//Goes to next column (i.e., next block in sequence)
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
ptrWordOut += 2 * BLOCK_LEN_INT64;
}
ptrWordOut = rowOut + BLOCK_LEN_INT64;
for (i = 0; i < N_COLS / 2; i++) {
//Absorbing "M[rowInOut] XOR M[rowIn]"
state[0] ^= ptrWordInOut[0] + ptrWordIn[0];
state[1] ^= ptrWordInOut[1] + ptrWordIn[1];
state[2] ^= ptrWordInOut[2] + ptrWordIn[2];
state[3] ^= ptrWordInOut[3] + ptrWordIn[3];
state[4] ^= ptrWordInOut[4] + ptrWordIn[4];
state[5] ^= ptrWordInOut[5] + ptrWordIn[5];
state[6] ^= ptrWordInOut[6] + ptrWordIn[6];
state[7] ^= ptrWordInOut[7] + ptrWordIn[7];
state[8] ^= ptrWordInOut[8] + ptrWordIn[8];
state[9] ^= ptrWordInOut[9] + ptrWordIn[9];
state[10] ^= ptrWordInOut[10] + ptrWordIn[10];
state[11] ^= ptrWordInOut[11] + ptrWordIn[11];
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[row*][col] = M[row*][col] XOR rotW(rand)
ptrWordInOut[0] ^= state[10];
ptrWordInOut[1] ^= state[11];
ptrWordInOut[2] ^= state[0];
ptrWordInOut[3] ^= state[1];
ptrWordInOut[4] ^= state[2];
ptrWordInOut[5] ^= state[3];
ptrWordInOut[6] ^= state[4];
ptrWordInOut[7] ^= state[5];
ptrWordInOut[8] ^= state[6];
ptrWordInOut[9] ^= state[7];
ptrWordInOut[10] ^= state[8];
ptrWordInOut[11] ^= state[9];
//M[row][col] = rand
ptrWordOut[0] = state[0] ^ ptrWordIn[0];
ptrWordOut[1] = state[1] ^ ptrWordIn[1];
ptrWordOut[2] = state[2] ^ ptrWordIn[2];
ptrWordOut[3] = state[3] ^ ptrWordIn[3];
ptrWordOut[4] = state[4] ^ ptrWordIn[4];
ptrWordOut[5] = state[5] ^ ptrWordIn[5];
ptrWordOut[6] = state[6] ^ ptrWordIn[6];
ptrWordOut[7] = state[7] ^ ptrWordIn[7];
ptrWordOut[8] = state[8] ^ ptrWordIn[8];
ptrWordOut[9] = state[9] ^ ptrWordIn[9];
ptrWordOut[10] = state[10] ^ ptrWordIn[10];
ptrWordOut[11] = state[11] ^ ptrWordIn[11];
//Goes to next column (i.e., next block in sequence)
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
ptrWordOut += 2 * BLOCK_LEN_INT64;
}
}
*/
void reducedDuplexRow(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut, const uint32_t nCols)
{
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row
unsigned int i;
/**
* Performs a duplex operation over "M[rowInOut] XOR M[rowIn]", using the output "rand"
* to make "M[rowOut][col] = M[rowOut][col] XOR rand" and "M[rowInOut] = M[rowInOut] XOR rotW(rand)",
* where rotW is a 64-bit rotation to the left.
*
* @param state The current state of the sponge
* @param rowIn Row used only as input
* @param rowInOut Row used as input and to receive output after rotation
* @param rowOut Row receiving the output
*
*/
/*
inline void reducedDuplexRowd(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) {
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row
int i;
for (i = 0; i < N_COLS; i++) {
//Absorbing "M[rowInOut] XOR M[rowIn]"
state[0] ^= ptrWordInOut[0] + ptrWordIn[0];
state[1] ^= ptrWordInOut[1] + ptrWordIn[1];
state[2] ^= ptrWordInOut[2] + ptrWordIn[2];
state[3] ^= ptrWordInOut[3] + ptrWordIn[3];
state[4] ^= ptrWordInOut[4] + ptrWordIn[4];
state[5] ^= ptrWordInOut[5] + ptrWordIn[5];
state[6] ^= ptrWordInOut[6] + ptrWordIn[6];
state[7] ^= ptrWordInOut[7] + ptrWordIn[7];
state[8] ^= ptrWordInOut[8] + ptrWordIn[8];
state[9] ^= ptrWordInOut[9] + ptrWordIn[9];
state[10] ^= ptrWordInOut[10] + ptrWordIn[10];
state[11] ^= ptrWordInOut[11] + ptrWordIn[11];
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[rowOut][col] = M[rowOut][col] XOR rand
ptrWordOut[0] ^= state[0];
ptrWordOut[1] ^= state[1];
ptrWordOut[2] ^= state[2];
ptrWordOut[3] ^= state[3];
ptrWordOut[4] ^= state[4];
ptrWordOut[5] ^= state[5];
ptrWordOut[6] ^= state[6];
ptrWordOut[7] ^= state[7];
ptrWordOut[8] ^= state[8];
ptrWordOut[9] ^= state[9];
ptrWordOut[10] ^= state[10];
ptrWordOut[11] ^= state[11];
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
//Goes to next block
ptrWordOut += BLOCK_LEN_INT64;
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
}
for (i = 0; i < nCols; i++) {
//Absorbing "M[prev] [+] M[row*]"
state[0] ^= (ptrWordIn[0] + ptrWordInOut[0]);
state[1] ^= (ptrWordIn[1] + ptrWordInOut[1]);
state[2] ^= (ptrWordIn[2] + ptrWordInOut[2]);
state[3] ^= (ptrWordIn[3] + ptrWordInOut[3]);
state[4] ^= (ptrWordIn[4] + ptrWordInOut[4]);
state[5] ^= (ptrWordIn[5] + ptrWordInOut[5]);
state[6] ^= (ptrWordIn[6] + ptrWordInOut[6]);
state[7] ^= (ptrWordIn[7] + ptrWordInOut[7]);
state[8] ^= (ptrWordIn[8] + ptrWordInOut[8]);
state[9] ^= (ptrWordIn[9] + ptrWordInOut[9]);
state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]);
state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]);
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[rowOut][col] = M[rowOut][col] XOR rand
ptrWordOut[0] ^= state[0];
ptrWordOut[1] ^= state[1];
ptrWordOut[2] ^= state[2];
ptrWordOut[3] ^= state[3];
ptrWordOut[4] ^= state[4];
ptrWordOut[5] ^= state[5];
ptrWordOut[6] ^= state[6];
ptrWordOut[7] ^= state[7];
ptrWordOut[8] ^= state[8];
ptrWordOut[9] ^= state[9];
ptrWordOut[10] ^= state[10];
ptrWordOut[11] ^= state[11];
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
ptrWordInOut[0] ^= state[11];
ptrWordInOut[1] ^= state[0];
ptrWordInOut[2] ^= state[1];
ptrWordInOut[3] ^= state[2];
ptrWordInOut[4] ^= state[3];
ptrWordInOut[5] ^= state[4];
ptrWordInOut[6] ^= state[5];
ptrWordInOut[7] ^= state[6];
ptrWordInOut[8] ^= state[7];
ptrWordInOut[9] ^= state[8];
ptrWordInOut[10] ^= state[9];
ptrWordInOut[11] ^= state[10];
//Goes to next block
ptrWordOut += BLOCK_LEN_INT64;
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
}
}
*/
/**
Prints an array of unsigned chars
* Prints an array of unsigned chars
*/
void printArray(unsigned char *array, unsigned int size, char *name) {
void printArray(unsigned char *array, unsigned int size, char *name)
{
unsigned int i;
printf("%s: ", name);
for (i = 0; i < size; i++) {

90
lyra2/Sponge.h

@ -24,85 +24,65 @@ @@ -24,85 +24,65 @@
#include <stdint.h>
#if defined(__GNUC__)
#define ALIGN __attribute__ ((aligned(32)))
#elif defined(_MSC_VER)
#define ALIGN __declspec(align(32))
#else
#define ALIGN
#endif
/*Blake2b IV Array*/
/* Blake2b IV Array */
static const uint64_t blake2b_IV[8] =
{
0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL,
0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL,
0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL,
0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL
0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL,
0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL,
0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL,
0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL
};
/*Blake2b's rotation*/
static __inline uint64_t rotr64( const uint64_t w, const unsigned c ){
return ( w >> c ) | ( w << ( 64 - c ) );
/* Blake2b's rotation */
static __inline uint64_t rotr64(const uint64_t w, const unsigned c) {
#ifdef _MSC_VER
return _rotr64(w, c);
#else
return ( w >> c ) | ( w << ( 64 - c ) );
#endif
}
/*Blake2b's G function*/
#define G(r,i,a,b,c,d) \
do { \
a = a + b; \
d = rotr64(d ^ a, 32); \
c = c + d; \
b = rotr64(b ^ c, 24); \
a = a + b; \
d = rotr64(d ^ a, 16); \
c = c + d; \
b = rotr64(b ^ c, 63); \
/* Blake2b's G function */
#define G(r,i,a,b,c,d) do { \
a = a + b; \
d = rotr64(d ^ a, 32); \
c = c + d; \
b = rotr64(b ^ c, 24); \
a = a + b; \
d = rotr64(d ^ a, 16); \
c = c + d; \
b = rotr64(b ^ c, 63); \
} while(0)
/*One Round of the Blake2b's compression function*/
#define ROUND_LYRA(r) \
G(r,0,v[ 0],v[ 4],v[ 8],v[12]); \
G(r,1,v[ 1],v[ 5],v[ 9],v[13]); \
G(r,2,v[ 2],v[ 6],v[10],v[14]); \
G(r,3,v[ 3],v[ 7],v[11],v[15]); \
G(r,4,v[ 0],v[ 5],v[10],v[15]); \
G(r,5,v[ 1],v[ 6],v[11],v[12]); \
G(r,6,v[ 2],v[ 7],v[ 8],v[13]); \
G(r,7,v[ 3],v[ 4],v[ 9],v[14]);
#define ROUND_LYRA(r) \
G(r,0,v[ 0],v[ 4],v[ 8],v[12]); \
G(r,1,v[ 1],v[ 5],v[ 9],v[13]); \
G(r,2,v[ 2],v[ 6],v[10],v[14]); \
G(r,3,v[ 3],v[ 7],v[11],v[15]); \
G(r,4,v[ 0],v[ 5],v[10],v[15]); \
G(r,5,v[ 1],v[ 6],v[11],v[12]); \
G(r,6,v[ 2],v[ 7],v[ 8],v[13]); \
G(r,7,v[ 3],v[ 4],v[ 9],v[14]);
//---- Housekeeping
void initState(uint64_t state[/*16*/]);
//---- Squeezes
void squeeze(uint64_t *state, unsigned char *out, unsigned int len);
void reducedSqueezeRow0(uint64_t* state, uint64_t* row);
void reducedSqueezeRow0(uint64_t* state, uint64_t* row, const uint32_t nCols);
//---- Absorbs
void absorbBlock(uint64_t *state, const uint64_t *in);
void absorbBlockBlake2Safe(uint64_t *state, const uint64_t *in);
//---- Duplexes
void reducedDuplexRow1(uint64_t *state, uint64_t *rowIn, uint64_t *rowOut);
void reducedDuplexRowSetup(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut);
void reducedDuplexRow(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut);
void reducedDuplexRow1(uint64_t *state, uint64_t *rowIn, uint64_t *rowOut, const uint32_t nCols);
void reducedDuplexRowSetup(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut, const uint32_t nCols);
void reducedDuplexRow(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut, const uint32_t nCols);
//---- Misc
void printArray(unsigned char *array, unsigned int size, char *name);
////////////////////////////////////////////////////////////////////////////////////////////////
////TESTS////
//void reducedDuplexRowc(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut);
//void reducedDuplexRowd(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut);
//void reducedDuplexRowSetupv4(uint64_t *state, uint64_t *rowIn1, uint64_t *rowIn2, uint64_t *rowOut1, uint64_t *rowOut2);
//void reducedDuplexRowSetupv5(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut);
//void reducedDuplexRowSetupv5c(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut);
//void reducedDuplexRowSetupv5d(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut);
/////////////
#endif /* SPONGE_H_ */

674
lyra2/cuda_lyra2.cu

@ -1,223 +1,543 @@ @@ -1,223 +1,543 @@
#include <stdio.h>
#include <memory.h>
#include "cuda_lyra2_vectors.h"
#define TPB 8
//
#if __CUDA_ARCH__ < 500
#define vectype ulonglong4
#define u64type uint64_t
#define memshift 4
#elif __CUDA_ARCH__ == 500
#define u64type uint2
#define vectype uint28
#define memshift 3
#else
#define u64type uint2
#define vectype uint28
#define memshift 4
#endif
__device__ vectype *DMatrix;
#include "cuda_helper.h"
#define TPB 160
static __constant__ uint2 blake2b_IV[8] = {
{ 0xf3bcc908, 0x6a09e667 },
{ 0x84caa73b, 0xbb67ae85 },
{ 0xfe94f82b, 0x3c6ef372 },
{ 0x5f1d36f1, 0xa54ff53a },
{ 0xade682d1, 0x510e527f },
{ 0x2b3e6c1f, 0x9b05688c },
{ 0xfb41bd6b, 0x1f83d9ab },
{ 0x137e2179, 0x5be0cd19 }
};
#define reduceDuplexRow(rowIn, rowInOut, rowOut) { \
for (int i = 0; i < 8; i++) { \
for (int j = 0; j < 12; j++) \
state[j] ^= Matrix[12 * i + j][rowIn] + Matrix[12 * i + j][rowInOut]; \
round_lyra(state); \
for (int j = 0; j < 12; j++) \
Matrix[j + 12 * i][rowOut] ^= state[j]; \
Matrix[0 + 12 * i][rowInOut] ^= state[11]; \
Matrix[1 + 12 * i][rowInOut] ^= state[0]; \
Matrix[2 + 12 * i][rowInOut] ^= state[1]; \
Matrix[3 + 12 * i][rowInOut] ^= state[2]; \
Matrix[4 + 12 * i][rowInOut] ^= state[3]; \
Matrix[5 + 12 * i][rowInOut] ^= state[4]; \
Matrix[6 + 12 * i][rowInOut] ^= state[5]; \
Matrix[7 + 12 * i][rowInOut] ^= state[6]; \
Matrix[8 + 12 * i][rowInOut] ^= state[7]; \
Matrix[9 + 12 * i][rowInOut] ^= state[8]; \
Matrix[10+ 12 * i][rowInOut] ^= state[9]; \
Matrix[11+ 12 * i][rowInOut] ^= state[10]; \
} \
}
#define absorbblock(in) { \
state[0] ^= Matrix[0][in]; \
state[1] ^= Matrix[1][in]; \
state[2] ^= Matrix[2][in]; \
state[3] ^= Matrix[3][in]; \
state[4] ^= Matrix[4][in]; \
state[5] ^= Matrix[5][in]; \
state[6] ^= Matrix[6][in]; \
state[7] ^= Matrix[7][in]; \
state[8] ^= Matrix[8][in]; \
state[9] ^= Matrix[9][in]; \
state[10] ^= Matrix[10][in]; \
state[11] ^= Matrix[11][in]; \
round_lyra(state); \
round_lyra(state); \
round_lyra(state); \
round_lyra(state); \
round_lyra(state); \
round_lyra(state); \
round_lyra(state); \
round_lyra(state); \
round_lyra(state); \
round_lyra(state); \
round_lyra(state); \
round_lyra(state); \
}
#ifdef __CUDA_ARCH__
static __device__ __forceinline__
void Gfunc(uint2 & a, uint2 &b, uint2 &c, uint2 &d)
void Gfunc_v35(uint2 &a, uint2 &b, uint2 &c, uint2 &d)
{
a += b; d ^= a; d = SWAPUINT2(d);
c += d; b ^= c; b = ROR2(b, 24);
a += b; d ^= a; d = ROR2(d, 16);
c += d; b ^= c; b = ROR24(b);
a += b; d ^= a; d = ROR16(d);
c += d; b ^= c; b = ROR2(b, 63);
}
__device__ __forceinline__
static void round_lyra(uint2 *s)
#if __CUDA_ARCH__ < 500
static __device__ __forceinline__
void Gfunc_v35(unsigned long long &a, unsigned long long &b, unsigned long long &c, unsigned long long &d)
{
Gfunc(s[0], s[4], s[8], s[12]);
Gfunc(s[1], s[5], s[9], s[13]);
Gfunc(s[2], s[6], s[10], s[14]);
Gfunc(s[3], s[7], s[11], s[15]);
Gfunc(s[0], s[5], s[10], s[15]);
Gfunc(s[1], s[6], s[11], s[12]);
Gfunc(s[2], s[7], s[8], s[13]);
Gfunc(s[3], s[4], s[9], s[14]);
a += b; d ^= a; d = ROTR64(d, 32);
c += d; b ^= c; b = ROTR64(b, 24);
a += b; d ^= a; d = ROTR64(d, 16);
c += d; b ^= c; b = ROTR64(b, 63);
}
#endif
__device__ __forceinline__
void reduceDuplexRowSetup(const int rowIn, const int rowInOut, const int rowOut, uint2 state[16], uint2 Matrix[96][8])
static __device__ __forceinline__
void round_lyra_v35(vectype* s)
{
#if __CUDA_ARCH__ > 500
#pragma unroll
Gfunc_v35(s[0].x, s[1].x, s[2].x, s[3].x);
Gfunc_v35(s[0].y, s[1].y, s[2].y, s[3].y);
Gfunc_v35(s[0].z, s[1].z, s[2].z, s[3].z);
Gfunc_v35(s[0].w, s[1].w, s[2].w, s[3].w);
Gfunc_v35(s[0].x, s[1].y, s[2].z, s[3].w);
Gfunc_v35(s[0].y, s[1].z, s[2].w, s[3].x);
Gfunc_v35(s[0].z, s[1].w, s[2].x, s[3].y);
Gfunc_v35(s[0].w, s[1].x, s[2].y, s[3].z);
}
#else
#define round_lyra_v35(s) {}
#endif
static __device__ __forceinline__
void reduceDuplex(vectype state[4], uint32_t thread)
{
vectype state1[3];
uint32_t ps1 = (256 * thread);
uint32_t ps2 = (memshift * 7 + memshift * 8 + 256 * thread);
#pragma unroll 4
for (int i = 0; i < 8; i++)
{
#pragma unroll
for (int j = 0; j < 12; j++)
state[j] ^= Matrix[12 * i + j][rowIn] + Matrix[12 * i + j][rowInOut];
round_lyra(state);
#pragma unroll
for (int j = 0; j < 12; j++)
Matrix[j + 84 - 12 * i][rowOut] = Matrix[12 * i + j][rowIn] ^ state[j];
Matrix[0 + 12 * i][rowInOut] ^= state[11];
Matrix[1 + 12 * i][rowInOut] ^= state[0];
Matrix[2 + 12 * i][rowInOut] ^= state[1];
Matrix[3 + 12 * i][rowInOut] ^= state[2];
Matrix[4 + 12 * i][rowInOut] ^= state[3];
Matrix[5 + 12 * i][rowInOut] ^= state[4];
Matrix[6 + 12 * i][rowInOut] ^= state[5];
Matrix[7 + 12 * i][rowInOut] ^= state[6];
Matrix[8 + 12 * i][rowInOut] ^= state[7];
Matrix[9 + 12 * i][rowInOut] ^= state[8];
Matrix[10 + 12 * i][rowInOut] ^= state[9];
Matrix[11 + 12 * i][rowInOut] ^= state[10];
uint32_t s1 = ps1 + i*memshift;
uint32_t s2 = ps2 - i*memshift;
for (int j = 0; j < 3; j++)
state1[j] = __ldg4(&(DMatrix+s1)[j]);
for (int j = 0; j < 3; j++)
state[j] ^= state1[j];
round_lyra_v35(state);
for (int j = 0; j < 3; j++)
state1[j] ^= state[j];
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state1[j];
}
}
__global__ __launch_bounds__(TPB, 1)
void lyra2_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint64_t *outputHash)
static __device__ __forceinline__
void reduceDuplexV3(vectype state[4], uint32_t thread)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
vectype state1[3];
uint32_t ps1 = (256 * thread);
// colomn row
uint32_t ps2 = (memshift * 7 * 8 + memshift * 1 + 64 * memshift * thread);
#pragma unroll 4
for (int i = 0; i < 8; i++)
{
uint32_t s1 = ps1 + 8 * i *memshift;
uint32_t s2 = ps2 - 8 * i *memshift;
for (int j = 0; j < 3; j++)
state1[j] = __ldg4(&(DMatrix + s1)[j]);
for (int j = 0; j < 3; j++)
state[j] ^= state1[j];
round_lyra_v35(state);
for (int j = 0; j < 3; j++)
state1[j] ^= state[j];
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state1[j];
}
}
static __device__ __forceinline__
void reduceDuplexRowSetupV2(const int rowIn, const int rowInOut, const int rowOut, vectype state[4], uint32_t thread)
{
vectype state2[3],state1[3];
uint32_t ps1 = ( memshift * 8 * rowIn + 256 * thread);
uint32_t ps2 = ( memshift * 8 * rowInOut + 256 * thread);
uint32_t ps3 = (memshift*7 + memshift * 8 * rowOut + 256 * thread);
#pragma unroll 1
for (int i = 0; i < 8; i++)
{
uint32_t s1 = ps1 + i*memshift;
uint32_t s2 = ps2 + i*memshift;
uint32_t s3 = ps3 - i*memshift;
for (int j = 0; j < 3; j++)
state1[j]= __ldg4(&(DMatrix + s1)[j]);
for (int j = 0; j < 3; j++)
state2[j]= __ldg4(&(DMatrix + s2)[j]);
for (int j = 0; j < 3; j++) {
vectype tmp = state1[j] + state2[j];
state[j] ^= tmp;
}
round_lyra_v35(state);
for (int j = 0; j < 3; j++) {
state1[j] ^= state[j];
(DMatrix + s3)[j] = state1[j];
}
((uint2*)state2)[0] ^= ((uint2*)state)[11];
for (int j = 0; j < 11; j++)
((uint2*)state2)[j+1] ^= ((uint2*)state)[j];
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state2[j];
}
}
static __device__ __forceinline__
void reduceDuplexRowSetupV3(const int rowIn, const int rowInOut, const int rowOut, vectype state[4], uint32_t thread)
{
vectype state2[3], state1[3];
uint32_t ps1 = ( memshift * rowIn + 64 * memshift * thread);
uint32_t ps2 = (memshift * rowInOut + 64 * memshift* thread);
uint32_t ps3 = (8 * memshift * 7 + memshift * rowOut + 64 * memshift * thread);
/*
uint32_t ps1 = (256 * thread);
uint32_t ps2 = (256 * thread);
uint32_t ps3 = (256 * thread);
*/
#pragma nounroll
for (int i = 0; i < 8; i++)
{
uint2 state[16];
uint32_t s1 = ps1 + 8*i*memshift;
uint32_t s2 = ps2 + 8*i*memshift;
uint32_t s3 = ps3 - 8*i*memshift;
#pragma unroll
for (int i = 0; i<4; i++) {
LOHI(state[i].x, state[i].y, outputHash[threads*i + thread]);
} //password
for (int j = 0; j < 3; j++)
state1[j] = __ldg4(&(DMatrix + s1 )[j]);
for (int j = 0; j < 3; j++)
state2[j] = __ldg4(&(DMatrix + s2 )[j]);
for (int j = 0; j < 3; j++) {
vectype tmp = state1[j] + state2[j];
state[j] ^= tmp;
}
#pragma unroll
for (int i = 0; i<4; i++) {
state[i + 4] = state[i];
} //salt
round_lyra_v35(state);
#pragma unroll
for (int i = 0; i<8; i++) {
state[i + 8] = blake2b_IV[i];
for (int j = 0; j < 3; j++) {
state1[j] ^= state[j];
(DMatrix + s3)[j] = state1[j];
}
// blake2blyra x2
//#pragma unroll 24
for (int i = 0; i<24; i++) {
round_lyra(state);
} //because 12 is not enough
((uint2*)state2)[0] ^= ((uint2*)state)[11];
for (int j = 0; j < 11; j++)
((uint2*)state2)[j + 1] ^= ((uint2*)state)[j];
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state2[j];
}
}
static __device__ __forceinline__
void reduceDuplexRowtV2(const int rowIn, const int rowInOut, const int rowOut, vectype* state, uint32_t thread)
{
vectype state1[3], state2[3];
uint32_t ps1 = (memshift * 8 * rowIn + 256 * thread);
uint32_t ps2 = (memshift * 8 * rowInOut + 256 * thread);
uint32_t ps3 = (memshift * 8 * rowOut + 256 * thread);
#pragma unroll 1
for (int i = 0; i < 8; i++)
{
uint32_t s1 = ps1 + i*memshift;
uint32_t s2 = ps2 + i*memshift;
uint32_t s3 = ps3 + i*memshift;
for (int j = 0; j < 3; j++)
state1[j] = __ldg4(&(DMatrix + s1)[j]);
for (int j = 0; j < 3; j++)
state2[j] = __ldg4(&(DMatrix + s2)[j]);
for (int j = 0; j < 3; j++)
state1[j] += state2[j];
for (int j = 0; j < 3; j++)
state[j] ^= state1[j];
round_lyra_v35(state);
((uint2*)state2)[0] ^= ((uint2*)state)[11];
for (int j = 0; j < 11; j++)
((uint2*)state2)[j + 1] ^= ((uint2*)state)[j];
if (rowInOut != rowOut) {
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state2[j];
for (int j = 0; j < 3; j++)
(DMatrix + s3)[j] ^= state[j];
} else {
for (int j = 0; j < 3; j++)
state2[j] ^= state[j];
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j]=state2[j];
}
}
}
static __device__ __forceinline__
void reduceDuplexRowtV3(const int rowIn, const int rowInOut, const int rowOut, vectype* state, uint32_t thread)
{
uint2 Matrix[96][8]; // not cool
vectype state1[3], state2[3];
uint32_t ps1 = (memshift * rowIn + 64 * memshift * thread);
uint32_t ps2 = (memshift * rowInOut + 64 * memshift * thread);
uint32_t ps3 = (memshift * rowOut + 64 *memshift * thread);
#pragma nounroll
for (int i = 0; i < 8; i++)
{
uint32_t s1 = ps1 + 8 * i*memshift;
uint32_t s2 = ps2 + 8 * i*memshift;
uint32_t s3 = ps3 + 8 * i*memshift;
for (int j = 0; j < 3; j++)
state1[j] = __ldg4(&(DMatrix + s1)[j]);
for (int j = 0; j < 3; j++)
state2[j] = __ldg4(&(DMatrix + s2)[j]);
for (int j = 0; j < 3; j++)
state1[j] += state2[j];
for (int j = 0; j < 3; j++)
state[j] ^= state1[j];
round_lyra_v35(state);
((uint2*)state2)[0] ^= ((uint2*)state)[11];
for (int j = 0; j < 11; j++)
((uint2*)state2)[j + 1] ^= ((uint2*)state)[j];
if (rowInOut != rowOut) {
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state2[j];
for (int j = 0; j < 3; j++)
(DMatrix + s3)[j] ^= state[j];
}
else {
for (int j = 0; j < 3; j++)
state2[j] ^= state[j];
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state2[j];
}
}
}
#if __CUDA_ARCH__ < 500
__global__ __launch_bounds__(48, 1)
#elif __CUDA_ARCH__ == 500
__global__ __launch_bounds__(16, 1)
#else
__global__ __launch_bounds__(TPB, 1)
#endif
void lyra2_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint2 *outputHash)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
vectype state[4];
#if __CUDA_ARCH__ > 350
const uint28 blake2b_IV[2] = {
{{ 0xf3bcc908, 0x6a09e667 }, { 0x84caa73b, 0xbb67ae85 }, { 0xfe94f82b, 0x3c6ef372 }, { 0x5f1d36f1, 0xa54ff53a }},
{{ 0xade682d1, 0x510e527f }, { 0x2b3e6c1f, 0x9b05688c }, { 0xfb41bd6b, 0x1f83d9ab }, { 0x137e2179, 0x5be0cd19 }}
};
#else
const ulonglong4 blake2b_IV[2] = {
{ 0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1 },
{ 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179 }
};
#endif
#if __CUDA_ARCH__ == 350
if (thread < threads)
#endif
{
((uint2*)state)[0] = __ldg(&outputHash[thread]);
((uint2*)state)[1] = __ldg(&outputHash[thread + threads]);
((uint2*)state)[2] = __ldg(&outputHash[thread + 2 * threads]);
((uint2*)state)[3] = __ldg(&outputHash[thread + 3 * threads]);
// state[0] = __ldg4(&((vectype*)outputHash)[thread]);
state[1] = state[0];
state[2] = ((vectype*)blake2b_IV)[0];
state[3] = ((vectype*)blake2b_IV)[1];
for (int i = 0; i<24; i++) { //because 12 is not enough
round_lyra_v35(state);
}
uint32_t ps1 = (memshift * 7 + 256 * thread);
// reducedSqueezeRow0
#pragma unroll 8
for (int i = 0; i < 8; i++)
{
#pragma unroll 12
for (int j = 0; j<12; j++) {
Matrix[j + 84 - 12 * i][0] = state[j];
}
round_lyra(state);
uint32_t s1 = ps1 - memshift * i;
for (int j = 0; j < 3; j++)
(DMatrix + s1)[j] = (state)[j];
round_lyra_v35(state);
}
// reducedSqueezeRow1
#pragma unroll 8
reduceDuplex(state, thread);
reduceDuplexRowSetupV2(1, 0, 2, state, thread);
reduceDuplexRowSetupV2(2, 1, 3, state, thread);
reduceDuplexRowSetupV2(3, 0, 4, state, thread);
reduceDuplexRowSetupV2(4, 3, 5, state, thread);
reduceDuplexRowSetupV2(5, 2, 6, state, thread);
reduceDuplexRowSetupV2(6, 1, 7, state, thread);
uint32_t rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV2(7, rowa, 0, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV2(0, rowa, 3, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV2(3, rowa, 6, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV2(6, rowa, 1, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV2(1, rowa, 4, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV2(4, rowa, 7, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV2(7, rowa, 2, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV2(2, rowa, 5, state, thread);
uint32_t shift = (memshift * 8 * rowa + 256 * thread);
for (int j = 0; j < 3; j++)
state[j] ^= __ldg4(&(DMatrix + shift)[j]);
for (int i = 0; i < 12; i++)
round_lyra_v35(state);
outputHash[thread]= ((uint2*)state)[0];
outputHash[thread + threads] = ((uint2*)state)[1];
outputHash[thread + 2 * threads] = ((uint2*)state)[2];
outputHash[thread + 3 * threads] = ((uint2*)state)[3];
// ((vectype*)outputHash)[thread] = state[0];
} //thread
}
#if __CUDA_ARCH__ < 500
__global__ __launch_bounds__(48, 1)
#elif __CUDA_ARCH__ == 500
__global__ __launch_bounds__(16, 1)
#else
__global__ __launch_bounds__(TPB, 1)
#endif
void lyra2_gpu_hash_32_v3(uint32_t threads, uint32_t startNounce, uint2 *outputHash)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
vectype state[4];
#if __CUDA_ARCH__ > 350
const uint28 blake2b_IV[2] = {
{ { 0xf3bcc908, 0x6a09e667 }, { 0x84caa73b, 0xbb67ae85 }, { 0xfe94f82b, 0x3c6ef372 }, { 0x5f1d36f1, 0xa54ff53a } },
{ { 0xade682d1, 0x510e527f }, { 0x2b3e6c1f, 0x9b05688c }, { 0xfb41bd6b, 0x1f83d9ab }, { 0x137e2179, 0x5be0cd19 } }
};
#else
const ulonglong4 blake2b_IV[2] = {
{ 0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1 },
{ 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179 }
};
#endif
#if __CUDA_ARCH__ == 350
if (thread < threads)
#endif
{
((uint2*)state)[0] = __ldg(&outputHash[thread]);
((uint2*)state)[1] = __ldg(&outputHash[thread + threads]);
((uint2*)state)[2] = __ldg(&outputHash[thread + 2 * threads]);
((uint2*)state)[3] = __ldg(&outputHash[thread + 3 * threads]);
state[1] = state[0];
state[2] = ((vectype*)blake2b_IV)[0];
state[3] = ((vectype*)blake2b_IV)[1];
for (int i = 0; i<24; i++)
round_lyra_v35(state); //because 12 is not enough
uint32_t ps1 = (8 * memshift * 7 + 64 * memshift * thread);
for (int i = 0; i < 8; i++)
{
#pragma unroll 12
for (int j = 0; j<12; j++) {
state[j] ^= Matrix[j + 12 * i][0];
}
round_lyra(state);
#pragma unroll 12
for (int j = 0; j<12; j++) {
Matrix[j + 84 - 12 * i][1] = Matrix[j + 12 * i][0] ^ state[j];
}
uint32_t s1 = ps1 - 8 * memshift * i;
for (int j = 0; j < 3; j++)
(DMatrix + s1)[j] = (state)[j];
round_lyra_v35(state);
}
reduceDuplexRowSetup(1, 0, 2,state, Matrix);
reduceDuplexRowSetup(2, 1, 3, state, Matrix);
reduceDuplexRowSetup(3, 0, 4, state, Matrix);
reduceDuplexRowSetup(4, 3, 5, state, Matrix);
reduceDuplexRowSetup(5, 2, 6, state, Matrix);
reduceDuplexRowSetup(6, 1, 7, state, Matrix);
uint32_t rowa;
rowa = state[0].x & 7;
reduceDuplexRow(7, rowa, 0);
rowa = state[0].x & 7;
reduceDuplexRow(0, rowa, 3);
rowa = state[0].x & 7;
reduceDuplexRow(3, rowa, 6);
rowa = state[0].x & 7;
reduceDuplexRow(6, rowa, 1);
rowa = state[0].x & 7;
reduceDuplexRow(1, rowa, 4);
rowa = state[0].x & 7;
reduceDuplexRow(4, rowa, 7);
rowa = state[0].x & 7;
reduceDuplexRow(7, rowa, 2);
rowa = state[0].x & 7;
reduceDuplexRow(2, rowa, 5);
absorbblock(rowa);
#pragma unroll
for (int i = 0; i<4; i++) {
outputHash[threads*i + thread] = devectorize(state[i]);
} //password
reduceDuplexV3(state, thread);
reduceDuplexRowSetupV3(1, 0, 2, state, thread);
reduceDuplexRowSetupV3(2, 1, 3, state, thread);
reduceDuplexRowSetupV3(3, 0, 4, state, thread);
reduceDuplexRowSetupV3(4, 3, 5, state, thread);
reduceDuplexRowSetupV3(5, 2, 6, state, thread);
reduceDuplexRowSetupV3(6, 1, 7, state, thread);
uint32_t rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV3(7, rowa, 0, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV3(0, rowa, 3, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV3(3, rowa, 6, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV3(6, rowa, 1, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV3(1, rowa, 4, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV3(4, rowa, 7, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV3(7, rowa, 2, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV3(2, rowa, 5, state, thread);
uint32_t shift = (memshift * rowa + 64 * memshift * thread);
for (int j = 0; j < 3; j++)
state[j] ^= __ldg4(&(DMatrix + shift)[j]);
for (int i = 0; i < 12; i++)
round_lyra_v35(state);
outputHash[thread] = ((uint2*)state)[0];
outputHash[thread + threads] = ((uint2*)state)[1];
outputHash[thread + 2 * threads] = ((uint2*)state)[2];
outputHash[thread + 3 * threads] = ((uint2*)state)[3];
} //thread
}
__host__
void lyra2_cpu_init(int thr_id, uint32_t threads, uint64_t *hash)
{
cudaMemcpyToSymbol(DMatrix, &hash, sizeof(hash), 0, cudaMemcpyHostToDevice);
}
void lyra2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_outputHash, int order)
{
const uint32_t threadsperblock = TPB;
uint32_t tpb;
if (device_sm[device_map[thr_id]]<500)
tpb = 48;
else if (device_sm[device_map[thr_id]]==500)
tpb = 16;
else
tpb = TPB;
dim3 grid((threads + tpb - 1) / tpb);
dim3 block(tpb);
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
if (device_sm[device_map[thr_id]] == 500)
lyra2_gpu_hash_32 <<< grid, block >>> (threads, startNounce, (uint2*)d_outputHash);
else
lyra2_gpu_hash_32_v3 <<< grid, block >>> (threads, startNounce, (uint2*)d_outputHash);
lyra2_gpu_hash_32 <<<grid, block>>> (threads, startNounce, d_outputHash);
MyStreamSynchronize(NULL, order, thr_id);
}

1138
lyra2/cuda_lyra2_vectors.h

File diff suppressed because it is too large Load Diff

520
lyra2/cuda_lyra2v2.cu

@ -0,0 +1,520 @@ @@ -0,0 +1,520 @@
#include <stdio.h>
#include <memory.h>
#include "cuda_lyra2_vectors.h"
#define TPB 16
#define Nrow 4
#define Ncol 4
#if __CUDA_ARCH__ < 500
#define vectype ulonglong4
#define u64type uint64_t
#define memshift 4
#elif __CUDA_ARCH__ == 500
#define u64type uint2
#define vectype uint28
#define memshift 3
#else
#define u64type uint2
#define vectype uint28
#define memshift 3
#endif
__device__ vectype *DMatrix;
#ifdef __CUDA_ARCH__
static __device__ __forceinline__
void Gfunc_v35(uint2 &a, uint2 &b, uint2 &c, uint2 &d)
{
a += b; d ^= a; d = SWAPUINT2(d);
c += d; b ^= c; b = ROR24(b);
a += b; d ^= a; d = ROR16(d);
c += d; b ^= c; b = ROR2(b, 63);
}
#if __CUDA_ARCH__ < 500
static __device__ __forceinline__
void Gfunc_v35(unsigned long long &a, unsigned long long &b, unsigned long long &c, unsigned long long &d)
{
a += b; d ^= a; d = ROTR64(d, 32);
c += d; b ^= c; b = ROTR64(b, 24);
a += b; d ^= a; d = ROTR64(d, 16);
c += d; b ^= c; b = ROTR64(b, 63);
}
#endif
static __device__ __forceinline__
void round_lyra_v35(vectype* s)
{
Gfunc_v35(s[0].x, s[1].x, s[2].x, s[3].x);
Gfunc_v35(s[0].y, s[1].y, s[2].y, s[3].y);
Gfunc_v35(s[0].z, s[1].z, s[2].z, s[3].z);
Gfunc_v35(s[0].w, s[1].w, s[2].w, s[3].w);
Gfunc_v35(s[0].x, s[1].y, s[2].z, s[3].w);
Gfunc_v35(s[0].y, s[1].z, s[2].w, s[3].x);
Gfunc_v35(s[0].z, s[1].w, s[2].x, s[3].y);
Gfunc_v35(s[0].w, s[1].x, s[2].y, s[3].z);
}
#else
#define round_lyra_v35(s) {}
#endif
static __device__ __forceinline__
void reduceDuplex(vectype state[4], uint32_t thread)
{
vectype state1[3];
uint32_t ps1 = (Nrow * Ncol * memshift * thread);
uint32_t ps2 = (memshift * (Ncol-1) + memshift * Ncol + Nrow * Ncol * memshift * thread);
#pragma unroll 4
for (int i = 0; i < Ncol; i++)
{
uint32_t s1 = ps1 + i*memshift;
uint32_t s2 = ps2 - i*memshift;
for (int j = 0; j < 3; j++)
state1[j] = __ldg4(&(DMatrix+s1)[j]);
for (int j = 0; j < 3; j++)
state[j] ^= state1[j];
round_lyra_v35(state);
for (int j = 0; j < 3; j++)
state1[j] ^= state[j];
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state1[j];
}
}
static __device__ __forceinline__
void reduceDuplexV3(vectype state[4], uint32_t thread)
{
vectype state1[3];
uint32_t ps1 = (Nrow * Ncol * memshift * thread);
uint32_t ps2 = (memshift * (Ncol - 1) * Nrow + memshift * 1 + Nrow * Ncol * memshift * thread);
#pragma unroll 4
for (int i = 0; i < Ncol; i++)
{
uint32_t s1 = ps1 + Nrow * i *memshift;
uint32_t s2 = ps2 - Nrow * i *memshift;
for (int j = 0; j < 3; j++)
state1[j] = __ldg4(&(DMatrix + s1)[j]);
for (int j = 0; j < 3; j++)
state[j] ^= state1[j];
round_lyra_v35(state);
for (int j = 0; j < 3; j++)
state1[j] ^= state[j];
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state1[j];
}
}
static __device__ __forceinline__
void reduceDuplexRowSetupV2(const int rowIn, const int rowInOut, const int rowOut, vectype state[4], uint32_t thread)
{
vectype state2[3],state1[3];
uint32_t ps1 = (memshift * Ncol * rowIn + Nrow * Ncol * memshift * thread);
uint32_t ps2 = (memshift * Ncol * rowInOut + Nrow * Ncol * memshift * thread);
uint32_t ps3 = (memshift * (Ncol-1) + memshift * Ncol * rowOut + Nrow * Ncol * memshift * thread);
//#pragma unroll 1
for (int i = 0; i < Ncol; i++)
{
uint32_t s1 = ps1 + i*memshift;
uint32_t s2 = ps2 + i*memshift;
uint32_t s3 = ps3 - i*memshift;
for (int j = 0; j < 3; j++)
state1[j]= __ldg4(&(DMatrix + s1)[j]);
for (int j = 0; j < 3; j++)
state2[j]= __ldg4(&(DMatrix + s2)[j]);
for (int j = 0; j < 3; j++) {
vectype tmp = state1[j] + state2[j];
state[j] ^= tmp;
}
round_lyra_v35(state);
for (int j = 0; j < 3; j++) {
state1[j] ^= state[j];
(DMatrix + s3)[j] = state1[j];
}
((uint2*)state2)[0] ^= ((uint2*)state)[11];
for (int j = 0; j < 11; j++)
((uint2*)state2)[j+1] ^= ((uint2*)state)[j];
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state2[j];
}
}
static __device__ __forceinline__
void reduceDuplexRowSetupV3(const int rowIn, const int rowInOut, const int rowOut, vectype state[4], uint32_t thread)
{
vectype state2[3], state1[3];
uint32_t ps1 = (memshift * rowIn + Nrow * Ncol * memshift * thread);
uint32_t ps2 = (memshift * rowInOut + Nrow * Ncol * memshift * thread);
uint32_t ps3 = (Nrow * memshift * (Ncol - 1) + memshift * rowOut + Nrow * Ncol * memshift * thread);
for (int i = 0; i < Ncol; i++)
{
uint32_t s1 = ps1 + Nrow*i*memshift;
uint32_t s2 = ps2 + Nrow*i*memshift;
uint32_t s3 = ps3 - Nrow*i*memshift;
for (int j = 0; j < 3; j++)
state1[j] = __ldg4(&(DMatrix + s1 )[j]);
for (int j = 0; j < 3; j++)
state2[j] = __ldg4(&(DMatrix + s2 )[j]);
for (int j = 0; j < 3; j++) {
vectype tmp = state1[j] + state2[j];
state[j] ^= tmp;
}
round_lyra_v35(state);
for (int j = 0; j < 3; j++) {
state1[j] ^= state[j];
(DMatrix + s3)[j] = state1[j];
}
((uint2*)state2)[0] ^= ((uint2*)state)[11];
for (int j = 0; j < 11; j++)
((uint2*)state2)[j + 1] ^= ((uint2*)state)[j];
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state2[j];
}
}
static __device__ __forceinline__
void reduceDuplexRowtV2(const int rowIn, const int rowInOut, const int rowOut, vectype* state, uint32_t thread)
{
vectype state1[3],state2[3];
uint32_t ps1 = (memshift * Ncol * rowIn + Nrow * Ncol * memshift * thread);
uint32_t ps2 = (memshift * Ncol * rowInOut + Nrow * Ncol * memshift * thread);
uint32_t ps3 = (memshift * Ncol * rowOut + Nrow * Ncol * memshift * thread);
//#pragma unroll 1
for (int i = 0; i < Ncol; i++)
{
uint32_t s1 = ps1 + i*memshift;
uint32_t s2 = ps2 + i*memshift;
uint32_t s3 = ps3 + i*memshift;
for (int j = 0; j < 3; j++)
state1[j] = __ldg4(&(DMatrix + s1)[j]);
for (int j = 0; j < 3; j++)
state2[j] = __ldg4(&(DMatrix + s2)[j]);
for (int j = 0; j < 3; j++)
state1[j] += state2[j];
for (int j = 0; j < 3; j++)
state[j] ^= state1[j];
round_lyra_v35(state);
((uint2*)state2)[0] ^= ((uint2*)state)[11];
for (int j = 0; j < 11; j++)
((uint2*)state2)[j + 1] ^= ((uint2*)state)[j];
if (rowInOut != rowOut) {
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state2[j];
for (int j = 0; j < 3; j++)
(DMatrix + s3)[j] ^= state[j];
} else {
for (int j = 0; j < 3; j++)
state2[j] ^= state[j];
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j]=state2[j];
}
}
}
static __device__ __forceinline__
void reduceDuplexRowtV3(const int rowIn, const int rowInOut, const int rowOut, vectype* state, uint32_t thread)
{
vectype state1[3], state2[3];
uint32_t ps1 = (memshift * rowIn + Nrow * Ncol * memshift * thread);
uint32_t ps2 = (memshift * rowInOut + Nrow * Ncol * memshift * thread);
uint32_t ps3 = (memshift * rowOut + Nrow * Ncol * memshift * thread);
#pragma nounroll
for (int i = 0; i < Ncol; i++)
{
uint32_t s1 = ps1 + Nrow * i*memshift;
uint32_t s2 = ps2 + Nrow * i*memshift;
uint32_t s3 = ps3 + Nrow * i*memshift;
for (int j = 0; j < 3; j++)
state1[j] = __ldg4(&(DMatrix + s1)[j]);
for (int j = 0; j < 3; j++)
state2[j] = __ldg4(&(DMatrix + s2)[j]);
for (int j = 0; j < 3; j++)
state1[j] += state2[j];
for (int j = 0; j < 3; j++)
state[j] ^= state1[j];
round_lyra_v35(state);
((uint2*)state2)[0] ^= ((uint2*)state)[11];
for (int j = 0; j < 11; j++)
((uint2*)state2)[j + 1] ^= ((uint2*)state)[j];
if (rowInOut != rowOut) {
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state2[j];
for (int j = 0; j < 3; j++)
(DMatrix + s3)[j] ^= state[j];
} else {
for (int j = 0; j < 3; j++)
state2[j] ^= state[j];
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state2[j];
}
}
}
#if __CUDA_ARCH__ < 500
__global__ __launch_bounds__(128, 1)
#elif __CUDA_ARCH__ == 500
__global__ __launch_bounds__(16, 1)
#else
__global__ __launch_bounds__(TPB, 1)
#endif
void lyra2v2_gpu_hash_32_v3(uint32_t threads, uint32_t startNounce, uint2 *outputHash)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
vectype state[4];
uint28 blake2b_IV[2];
uint28 padding[2];
if (threadIdx.x == 0) {
((uint16*)blake2b_IV)[0] = make_uint16(
0xf3bcc908, 0x6a09e667 , 0x84caa73b, 0xbb67ae85 ,
0xfe94f82b, 0x3c6ef372 , 0x5f1d36f1, 0xa54ff53a ,
0xade682d1, 0x510e527f , 0x2b3e6c1f, 0x9b05688c ,
0xfb41bd6b, 0x1f83d9ab , 0x137e2179, 0x5be0cd19
);
((uint16*)padding)[0] = make_uint16(
0x20, 0x0 , 0x20, 0x0 , 0x20, 0x0 , 0x01, 0x0 ,
0x04, 0x0 , 0x04, 0x0 , 0x80, 0x0 , 0x0, 0x01000000
);
}
#if __CUDA_ARCH__ == 350
if (thread < threads)
#endif
{
((uint2*)state)[0] = __ldg(&outputHash[thread]);
((uint2*)state)[1] = __ldg(&outputHash[thread + threads]);
((uint2*)state)[2] = __ldg(&outputHash[thread + 2 * threads]);
((uint2*)state)[3] = __ldg(&outputHash[thread + 3 * threads]);
state[1] = state[0];
state[2] = shuffle4(((vectype*)blake2b_IV)[0], 0);
state[3] = shuffle4(((vectype*)blake2b_IV)[1], 0);
for (int i = 0; i<12; i++)
round_lyra_v35(state);
state[0] ^= shuffle4(((vectype*)padding)[0], 0);
state[1] ^= shuffle4(((vectype*)padding)[1], 0);
for (int i = 0; i<12; i++)
round_lyra_v35(state);
uint32_t ps1 = (4 * memshift * 3 + 16 * memshift * thread);
//#pragma unroll 4
for (int i = 0; i < 4; i++)
{
uint32_t s1 = ps1 - 4 * memshift * i;
for (int j = 0; j < 3; j++)
(DMatrix + s1)[j] = (state)[j];
round_lyra_v35(state);
}
reduceDuplexV3(state, thread);
reduceDuplexRowSetupV3(1, 0, 2, state, thread);
reduceDuplexRowSetupV3(2, 1, 3, state, thread);
uint32_t rowa;
int prev = 3;
for (int i = 0; i < 4; i++)
{
rowa = ((uint2*)state)[0].x & 3; reduceDuplexRowtV3(prev, rowa, i, state, thread);
prev = i;
}
uint32_t shift = (memshift * rowa + 16 * memshift * thread);
for (int j = 0; j < 3; j++)
state[j] ^= __ldg4(&(DMatrix + shift)[j]);
for (int i = 0; i < 12; i++)
round_lyra_v35(state);
outputHash[thread] = ((uint2*)state)[0];
outputHash[thread + threads] = ((uint2*)state)[1];
outputHash[thread + 2 * threads] = ((uint2*)state)[2];
outputHash[thread + 3 * threads] = ((uint2*)state)[3];
//((vectype*)outputHash)[thread] = state[0];
} //thread
}
#if __CUDA_ARCH__ < 500
__global__ __launch_bounds__(64, 1)
#elif __CUDA_ARCH__ == 500
__global__ __launch_bounds__(32, 1)
#else
__global__ __launch_bounds__(TPB, 1)
#endif
void lyra2v2_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint2 *outputHash)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
vectype state[4];
uint28 blake2b_IV[2];
uint28 padding[2];
if (threadIdx.x == 0) {
((uint16*)blake2b_IV)[0] = make_uint16(
0xf3bcc908, 0x6a09e667 , 0x84caa73b, 0xbb67ae85 ,
0xfe94f82b, 0x3c6ef372 , 0x5f1d36f1, 0xa54ff53a ,
0xade682d1, 0x510e527f , 0x2b3e6c1f, 0x9b05688c ,
0xfb41bd6b, 0x1f83d9ab , 0x137e2179, 0x5be0cd19
);
((uint16*)padding)[0] = make_uint16(
0x20, 0x0 , 0x20, 0x0 , 0x20, 0x0 , 0x01, 0x0 ,
0x04, 0x0 , 0x04, 0x0 , 0x80, 0x0 , 0x0, 0x01000000
);
}
#if __CUDA_ARCH__ == 350
if (thread < threads)
#endif
{
((uint2*)state)[0] = __ldg(&outputHash[thread]);
((uint2*)state)[1] = __ldg(&outputHash[thread + threads]);
((uint2*)state)[2] = __ldg(&outputHash[thread + 2 * threads]);
((uint2*)state)[3] = __ldg(&outputHash[thread + 3 * threads]);
state[1] = state[0];
state[2] = shuffle4(((vectype*)blake2b_IV)[0], 0);
state[3] = shuffle4(((vectype*)blake2b_IV)[1], 0);
for (int i = 0; i<12; i++)
round_lyra_v35(state);
state[0] ^= shuffle4(((vectype*)padding)[0], 0);
state[1] ^= shuffle4(((vectype*)padding)[1], 0);
for (int i = 0; i<12; i++)
round_lyra_v35(state);
uint32_t ps1 = (memshift * (Ncol - 1) + Nrow * Ncol * memshift * thread);
for (int i = 0; i < Ncol; i++)
{
uint32_t s1 = ps1 - memshift * i;
for (int j = 0; j < 3; j++)
(DMatrix + s1)[j] = (state)[j];
round_lyra_v35(state);
}
reduceDuplex(state, thread);
reduceDuplexRowSetupV2(1, 0, 2, state, thread);
reduceDuplexRowSetupV2(2, 1, 3, state, thread);
uint32_t rowa;
int prev=3;
for (int i = 0; i < 4; i++) {
rowa = ((uint2*)state)[0].x & 3;
reduceDuplexRowtV2(prev, rowa, i, state, thread);
prev=i;
}
uint32_t shift = (memshift * Ncol * rowa + Nrow * Ncol * memshift * thread);
for (int j = 0; j < 3; j++)
state[j] ^= __ldg4(&(DMatrix + shift)[j]);
for (int i = 0; i < 12; i++)
round_lyra_v35(state);
outputHash[thread]= ((uint2*)state)[0];
outputHash[thread + threads] = ((uint2*)state)[1];
outputHash[thread + 2 * threads] = ((uint2*)state)[2];
outputHash[thread + 3 * threads] = ((uint2*)state)[3];
// ((vectype*)outputHash)[thread] = state[0];
} //thread
}
__host__
void lyra2v2_cpu_init(int thr_id, uint32_t threads,uint64_t *hash)
{
cudaMemcpyToSymbol(DMatrix, &hash, sizeof(hash), 0, cudaMemcpyHostToDevice);
}
__host__
void lyra2v2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_outputHash, int order)
{
uint32_t tpb;
if (device_sm[device_map[thr_id]] < 500)
tpb = 64;
else if (device_sm[device_map[thr_id]] == 500)
tpb = 32;
else
tpb = TPB;
dim3 grid((threads + tpb - 1) / tpb);
dim3 block(tpb);
if (device_sm[device_map[thr_id]] >= 500)
lyra2v2_gpu_hash_32 << <grid, block >> > (threads, startNounce, (uint2*)d_outputHash);
else
lyra2v2_gpu_hash_32_v3 <<<grid, block>>> (threads, startNounce,(uint2*) d_outputHash);
MyStreamSynchronize(NULL, order, thr_id);
}

14
lyra2/lyra2RE.cu

@ -10,6 +10,7 @@ extern "C" { @@ -10,6 +10,7 @@ extern "C" {
#include "cuda_helper.h"
static uint64_t* d_hash[MAX_GPUS];
static uint64_t* d_hash2[MAX_GPUS];
extern void blake256_cpu_init(int thr_id, uint32_t threads);
extern void blake256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, uint64_t *Hash, int order);
@ -19,6 +20,7 @@ extern void keccak256_cpu_init(int thr_id, uint32_t threads); @@ -19,6 +20,7 @@ extern void keccak256_cpu_init(int thr_id, uint32_t threads);
extern void skein256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order);
extern void skein256_cpu_init(int thr_id, uint32_t threads);
extern void lyra2_cpu_init(int thr_id, uint32_t threads, uint64_t *hash);
extern void lyra2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order);
extern void groestl256_cpu_init(int thr_id, uint32_t threads);
@ -26,7 +28,7 @@ extern void groestl256_setTarget(const void *ptarget); @@ -26,7 +28,7 @@ extern void groestl256_setTarget(const void *ptarget);
extern uint32_t groestl256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_outputHash, int order);
extern uint32_t groestl256_getSecNonce(int thr_id, int num);
extern "C" void lyra2_hash(void *state, const void *input)
extern "C" void lyra2re_hash(void *state, const void *input)
{
sph_blake256_context ctx_blake;
sph_keccak256_context ctx_keccak;
@ -79,7 +81,11 @@ extern "C" int scanhash_lyra2(int thr_id, uint32_t *pdata, @@ -79,7 +81,11 @@ extern "C" int scanhash_lyra2(int thr_id, uint32_t *pdata,
skein256_cpu_init(thr_id, throughput);
groestl256_cpu_init(thr_id, throughput);
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], throughput * 64));
// DMatrix
cudaMalloc(&d_hash2[thr_id], (size_t)16 * 8 * 8 * sizeof(uint64_t) * throughput);
lyra2_cpu_init(thr_id, throughput, d_hash2[thr_id]);
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t)32 * throughput));
init[thr_id] = true;
}
@ -108,7 +114,7 @@ extern "C" int scanhash_lyra2(int thr_id, uint32_t *pdata, @@ -108,7 +114,7 @@ extern "C" int scanhash_lyra2(int thr_id, uint32_t *pdata,
uint32_t _ALIGN(64) vhash64[8];
be32enc(&endiandata[19], foundNonce);
lyra2_hash(vhash64, endiandata);
lyra2re_hash(vhash64, endiandata);
if (vhash64[7] <= ptarget[7] && fulltest(vhash64, ptarget)) {
int res = 1;
@ -116,7 +122,7 @@ extern "C" int scanhash_lyra2(int thr_id, uint32_t *pdata, @@ -116,7 +122,7 @@ extern "C" int scanhash_lyra2(int thr_id, uint32_t *pdata,
if (secNonce != UINT32_MAX)
{
be32enc(&endiandata[19], secNonce);
lyra2_hash(vhash64, endiandata);
lyra2re_hash(vhash64, endiandata);
if (vhash64[7] <= ptarget[7] && fulltest(vhash64, ptarget)) {
if (opt_debug)
applog(LOG_BLUE, "GPU #%d: found second nonce %08x", device_map[thr_id], secNonce);

164
lyra2/lyra2REv2.cu

@ -0,0 +1,164 @@ @@ -0,0 +1,164 @@
extern "C" {
#include "sph/sph_blake.h"
#include "sph/sph_bmw.h"
#include "sph/sph_skein.h"
#include "sph/sph_keccak.h"
#include "sph/sph_cubehash.h"
#include "lyra2/Lyra2.h"
}
#include "miner.h"
#include "cuda_helper.h"
static _ALIGN(64) uint64_t *d_hash[MAX_GPUS];
static uint64_t *d_hash2[MAX_GPUS];
extern void blake256_cpu_init(int thr_id, uint32_t threads);
extern void blake256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, uint64_t *Hash, int order);
extern void blake256_cpu_setBlock_80(uint32_t *pdata);
extern void keccak256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order);
extern void keccak256_cpu_init(int thr_id, uint32_t threads);
extern void skein256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order);
extern void skein256_cpu_init(int thr_id, uint32_t threads);
extern void lyra2v2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order);
extern void lyra2v2_cpu_init(int thr_id, uint32_t threads, uint64_t* matrix);
extern void bmw256_setTarget(const void *ptarget);
extern void bmw256_cpu_init(int thr_id, uint32_t threads);
extern void bmw256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *resultnonces);
extern void cubehash256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_hash);
void lyra2v2_hash(void *state, const void *input)
{
uint32_t hashA[8], hashB[8];
sph_blake256_context ctx_blake;
sph_keccak256_context ctx_keccak;
sph_skein256_context ctx_skein;
sph_bmw256_context ctx_bmw;
sph_cubehash256_context ctx_cube;
sph_blake256_init(&ctx_blake);
sph_blake256(&ctx_blake, input, 80);
sph_blake256_close(&ctx_blake, hashA);
sph_keccak256_init(&ctx_keccak);
sph_keccak256(&ctx_keccak, hashA, 32);
sph_keccak256_close(&ctx_keccak, hashB);
sph_cubehash256_init(&ctx_cube);
sph_cubehash256(&ctx_cube, hashB, 32);
sph_cubehash256_close(&ctx_cube, hashA);
LYRA2(hashB, 32, hashA, 32, hashA, 32, 1, 4, 4);
sph_skein256_init(&ctx_skein);
sph_skein256(&ctx_skein, hashB, 32);
sph_skein256_close(&ctx_skein, hashA);
sph_cubehash256_init(&ctx_cube);
sph_cubehash256(&ctx_cube, hashA, 32);
sph_cubehash256_close(&ctx_cube, hashB);
sph_bmw256_init(&ctx_bmw);
sph_bmw256(&ctx_bmw, hashB, 32);
sph_bmw256_close(&ctx_bmw, hashA);
memcpy(state, hashA, 32);
}
static bool init[MAX_GPUS] = { 0 };
extern "C" int scanhash_lyra2v2(int thr_id, uint32_t *pdata,
const uint32_t *ptarget, uint32_t max_nonce,
unsigned long *hashes_done)
{
const uint32_t first_nonce = pdata[19];
int intensity = (device_sm[device_map[thr_id]] > 500 && !is_windows()) ? 18 : 17;
unsigned int defthr = 1U << intensity;
uint32_t throughput = device_intensity(device_map[thr_id], __func__, defthr);
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x00ff;
if (!init[thr_id])
{
cudaSetDevice(device_map[thr_id]);
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
//if (opt_n_gputhreads == 1)
// cudaDeviceSetCacheConfig(cudaFuncCachePreferL1);
blake256_cpu_init(thr_id, throughput);
keccak256_cpu_init(thr_id,throughput);
skein256_cpu_init(thr_id, throughput);
bmw256_cpu_init(thr_id, throughput);
// DMatrix
CUDA_SAFE_CALL(cudaMalloc(&d_hash2[thr_id], 16 * 4 * 4 * sizeof(uint64_t) * throughput));
lyra2v2_cpu_init(thr_id, throughput, d_hash2[thr_id]);
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t)throughput * 32));
init[thr_id] = true;
}
uint32_t endiandata[20];
for (int k=0; k < 20; k++)
be32enc(&endiandata[k], ((uint32_t*)pdata)[k]);
blake256_cpu_setBlock_80(pdata);
bmw256_setTarget(ptarget);
do {
int order = 0;
uint32_t foundNonces[2] = { 0, 0 };
blake256_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
keccak256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
cubehash256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id]);
lyra2v2_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
skein256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
cubehash256_cpu_hash_32(thr_id, throughput,pdata[19], d_hash[thr_id]);
bmw256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], foundNonces);
if (foundNonces[0] != 0)
{
// CUDA_SAFE_CALL(cudaGetLastError());
const uint32_t Htarg = ptarget[7];
uint32_t vhash64[8];
be32enc(&endiandata[19], foundNonces[0]);
lyra2v2_hash(vhash64, endiandata);
if (vhash64[7] <= Htarg && fulltest(vhash64, ptarget))
{
int res = 1;
// check if there was some other ones...
*hashes_done = pdata[19] - first_nonce + throughput;
if (foundNonces[1] != 0)
{
pdata[21] = foundNonces[1];
res++;
if (opt_benchmark) applog(LOG_INFO, "GPU #%d Found second nounce %08x", thr_id, foundNonces[1], vhash64[7], Htarg);
}
pdata[19] = foundNonces[0];
if (opt_benchmark) applog(LOG_INFO, "GPU #%d Found nounce % 08x", thr_id, foundNonces[0], vhash64[7], Htarg);
MyStreamSynchronize(NULL, 0, device_map[thr_id]);
return res;
}
else
{
if (vhash64[7] > Htarg) // don't show message if it is equal but fails fulltest
applog(LOG_WARNING, "GPU #%d: result does not validate on CPU!", thr_id);
}
}
pdata[19] += throughput;
} while (!work_restart[thr_id].restart && ((uint64_t)max_nonce > ((uint64_t)(pdata[19]) + (uint64_t)throughput)));
*hashes_done = pdata[19] - first_nonce + 1;
MyStreamSynchronize(NULL, 0, device_map[thr_id]);
return 0;
}

9
miner.h

@ -316,8 +316,10 @@ extern int scanhash_fresh(int thr_id, uint32_t *pdata, @@ -316,8 +316,10 @@ extern int scanhash_fresh(int thr_id, uint32_t *pdata,
unsigned long *hashes_done);
extern int scanhash_lyra2(int thr_id, uint32_t *pdata,
const uint32_t *ptarget, uint32_t max_nonce,
unsigned long *hashes_done);
const uint32_t *ptarget, uint32_t max_nonce, unsigned long *hashes_done);
extern int scanhash_lyra2v2(int thr_id, uint32_t *pdata,
const uint32_t *ptarget, uint32_t max_nonce, unsigned long *hashes_done);
extern int scanhash_neoscrypt(int thr_id, uint32_t *pdata,
const uint32_t *ptarget, uint32_t max_nonce, unsigned long *hashes_done);
@ -781,7 +783,8 @@ void heavycoin_hash(unsigned char* output, const unsigned char* input, int len); @@ -781,7 +783,8 @@ void heavycoin_hash(unsigned char* output, const unsigned char* input, int len);
void keccak256_hash(void *state, const void *input);
unsigned int jackpothash(void *state, const void *input);
void groestlhash(void *state, const void *input);
void lyra2_hash(void *state, const void *input);
void lyra2re_hash(void *state, const void *input);
void lyra2v2_hash(void *state, const void *input);
void myriadhash(void *state, const void *input);
void neoscrypt(uchar *output, const uchar *input, uint32_t profile);
void nist5hash(void *state, const void *input);

5
util.cpp

@ -1841,9 +1841,12 @@ void print_hash_tests(void) @@ -1841,9 +1841,12 @@ void print_hash_tests(void)
luffa_hash(&hash[0], &buf[0]);
printpfx("luffa", hash);
lyra2_hash(&hash[0], &buf[0]);
lyra2re_hash(&hash[0], &buf[0]);
printpfx("lyra2", hash);
lyra2v2_hash(&hash[0], &buf[0]);
printpfx("lyra2v2", hash);
myriadhash(&hash[0], &buf[0]);
printpfx("myriad", hash);

Loading…
Cancel
Save