1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-09 22:38:05 +00:00
ccminer/quark/cuda_quark_groestl512.cu

112 lines
3.4 KiB
Plaintext
Raw Normal View History

// Auf QuarkCoin spezialisierte Version von Groestl inkl. Bitslice
2014-05-01 06:36:56 +00:00
#include <stdio.h>
#include <memory.h>
2015-06-08 14:54:55 +00:00
#include <sys/types.h> // off_t
2014-05-01 06:36:56 +00:00
#include "cuda_helper.h"
#ifdef __INTELLISENSE__
#define __CUDA_ARCH__ 500
#endif
#define TPB 256
#define THF 4U
#if __CUDA_ARCH__ >= 300
2015-04-06 21:39:15 +00:00
#include "quark/groestl_functions_quad.h"
#include "quark/groestl_transf_quad.h"
#endif
#include "quark/cuda_quark_groestl512_sm20.cu"
2014-05-01 06:36:56 +00:00
__global__ __launch_bounds__(TPB, THF)
void quark_groestl512_gpu_hash_64_quad(const uint32_t threads, const uint32_t startNounce, uint32_t * g_hash, uint32_t * __restrict g_nonceVector)
{
#if __CUDA_ARCH__ >= 300
// durch 4 dividieren, weil jeweils 4 Threads zusammen ein Hash berechnen
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x) >> 2;
if (thread < threads)
2014-05-01 06:36:56 +00:00
{
// GROESTL
uint32_t message[8];
uint32_t state[8];
2014-05-01 06:36:56 +00:00
uint32_t nounce = g_nonceVector ? g_nonceVector[thread] : (startNounce + thread);
off_t hashPosition = nounce - startNounce;
uint32_t *pHash = &g_hash[hashPosition << 4];
const uint32_t thr = threadIdx.x & 0x3; // % THF
2014-05-01 06:36:56 +00:00
#pragma unroll
for(int k=0;k<4;k++) message[k] = pHash[thr + (k * THF)];
#pragma unroll
for(int k=4;k<8;k++) message[k] = 0;
2014-05-01 06:36:56 +00:00
if (thr == 0) message[4] = 0x80U;
if (thr == 3) message[7] = 0x01000000U;
uint32_t msgBitsliced[8];
to_bitslice_quad(message, msgBitsliced);
groestl512_progressMessage_quad(state, msgBitsliced);
// Nur der erste von jeweils 4 Threads bekommt das Ergebns-Hash
uint32_t __align__(16) hash[16];
from_bitslice_quad(state, hash);
// uint4 = 4x4 uint32_t = 16 bytes
if (thr == 0) {
uint4 *phash = (uint4*) hash;
uint4 *outpt = (uint4*) pHash;
outpt[0] = phash[0];
outpt[1] = phash[1];
outpt[2] = phash[2];
outpt[3] = phash[3];
}
2014-05-01 06:36:56 +00:00
}
#endif
2014-05-01 06:36:56 +00:00
}
__host__
void quark_groestl512_cpu_init(int thr_id, uint32_t threads)
2014-05-01 06:36:56 +00:00
{
int dev_id = device_map[thr_id];
cuda_get_arch(thr_id);
if (device_sm[dev_id] < 300 || cuda_arch[dev_id] < 300)
quark_groestl512_sm20_init(thr_id, threads);
2014-05-01 06:36:56 +00:00
}
__host__
void quark_groestl512_cpu_free(int thr_id)
{
int dev_id = device_map[thr_id];
if (device_sm[dev_id] < 300 || cuda_arch[dev_id] < 300)
quark_groestl512_sm20_free(thr_id);
}
__host__
void quark_groestl512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
2014-05-01 06:36:56 +00:00
{
uint32_t threadsperblock = TPB;
// Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle
// mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl
const uint32_t factor = THF;
2014-05-01 06:36:56 +00:00
// berechne wie viele Thread Blocks wir brauchen
dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock));
2014-05-01 06:36:56 +00:00
dim3 block(threadsperblock);
int dev_id = device_map[thr_id];
2014-05-01 06:36:56 +00:00
if (device_sm[dev_id] >= 300 && cuda_arch[dev_id] >= 300)
quark_groestl512_gpu_hash_64_quad<<<grid, block>>>(threads, startNounce, d_hash, d_nonceVector);
else
quark_groestl512_sm20_hash_64(thr_id, threads, startNounce, d_nonceVector, d_hash, order);
2014-05-01 06:36:56 +00:00
// Strategisches Sleep Kommando zur Senkung der CPU Last
// MyStreamSynchronize(NULL, order, thr_id);
2014-05-01 06:36:56 +00:00
}