Browse Source

groestl: use sp bitslice enhancement, prepare SM 2.x variant

todo: simd512 SM 2.x variant (shfl op), and groestl/myriad functions
2upstream
Tanguy Pruvot 10 years ago
parent
commit
b521acb480
  1. 6
      Makefile.am
  2. 557
      bitslice_transformations_quad.cu
  3. 2
      configure.ac
  4. 6
      cpuminer-config.h
  5. 13
      cuda_groestlcoin.cu
  6. 47
      cuda_myriadgroestl.cu
  7. 32
      quark/cuda_quark_groestl512.cu
  8. 330
      quark/cuda_quark_groestl512_sm20.cu
  9. 7
      x11/cuda_x11_simd512.cu

6
Makefile.am

@ -71,8 +71,10 @@ ccminer_CPPFLAGS = @LIBCURL_CPPFLAGS@ @OPENMP_CFLAGS@ $(CPPFLAGS) $(PTHREAD_FLAG @@ -71,8 +71,10 @@ ccminer_CPPFLAGS = @LIBCURL_CPPFLAGS@ @OPENMP_CFLAGS@ $(CPPFLAGS) $(PTHREAD_FLAG
nvcc_ARCH = -gencode=arch=compute_50,code=\"sm_50,compute_50\"
#nvcc_ARCH += -gencode=arch=compute_52,code=\"sm_52,compute_52\"
#nvcc_ARCH += -gencode=arch=compute_35,code=\"sm_35,compute_35\"
#nvcc_ARCH += -gencode=arch=compute_30,code=\"sm_30,compute_30\"
#nvcc_ARCH = -gencode=arch=compute_35,code=\"sm_35,compute_35\"
#nvcc_ARCH = -gencode=arch=compute_30,code=\"sm_30,compute_30\"
#nvcc_ARCH = -gencode=arch=compute_20,code=\"sm_21,compute_20\"
nvcc_FLAGS = $(nvcc_ARCH) @CUDA_INCLUDES@ -I. @CUDA_CFLAGS@
nvcc_FLAGS += $(JANSSON_INCLUDES) --ptxas-options="-v"

557
bitslice_transformations_quad.cu

@ -1,442 +1,133 @@ @@ -1,442 +1,133 @@
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 300
/**
* __shfl() returns the value of var held by the thread whose ID is given by srcLane.
* If srcLane is outside the range 0..width-1, the thread's own value of var is returned.
*/
#undef __shfl
#define __shfl(var, srcLane, width) (uint32_t)(var)
#endif
/* File included in quark/groestl (quark/jha,nist5/X11+) and groest/myriad coins for SM 3+ */
#define merge8(z,x,y)\
z=__byte_perm(x, y, 0x5140); \
#define SWAP8(x,y)\
x=__byte_perm(x, y, 0x5410); \
y=__byte_perm(x, y, 0x7632);
#define SWAP4(x,y)\
t = (y<<4); \
t = (x ^ t); \
t = 0xf0f0f0f0UL & t; \
x = (x ^ t); \
t= t>>4;\
y= y ^ t;
#define SWAP2(x,y)\
t = (y<<2); \
t = (x ^ t); \
t = 0xccccccccUL & t; \
x = (x ^ t); \
t= t>>2;\
y= y ^ t;
#define SWAP1(x,y)\
t = (y+y); \
t = (x ^ t); \
t = 0xaaaaaaaaUL & t; \
x = (x ^ t); \
t= t>>1;\
y= y ^ t;
#ifdef __CUDA_ARCH__
__device__ __forceinline__
void to_bitslice_quad(uint32_t *input, uint32_t *output)
void to_bitslice_quad(uint32_t *const __restrict__ input, uint32_t *const __restrict__ output)
{
uint32_t other[8];
const int n = threadIdx.x % 4;
#pragma unroll
for (int i = 0; i < 8; i++) {
input[i] = __shfl((int)input[i], n ^ (3*(n >=1 && n <=2)), 4);
other[i] = __shfl((int)input[i], (threadIdx.x + 1) % 4, 4);
input[i] = __shfl((int)input[i], threadIdx.x & 2, 4);
other[i] = __shfl((int)other[i], threadIdx.x & 2, 4);
if (threadIdx.x & 1) {
input[i] = __byte_perm(input[i], 0, 0x1032);
other[i] = __byte_perm(other[i], 0, 0x1032);
}
}
output[ 0] = (input[ 0] & 0x00000001);
output[ 0] |= ((other[ 0] & 0x00000001) << 1);
output[ 0] |= ((input[ 1] & 0x00000001) << 2);
output[ 0] |= ((other[ 1] & 0x00000001) << 3);
output[ 0] |= ((input[ 2] & 0x00000001) << 4);
output[ 0] |= ((other[ 2] & 0x00000001) << 5);
output[ 0] |= ((input[ 3] & 0x00000001) << 6);
output[ 0] |= ((other[ 3] & 0x00000001) << 7);
output[ 0] |= ((input[ 4] & 0x00000001) << 8);
output[ 0] |= ((other[ 4] & 0x00000001) << 9);
output[ 0] |= ((input[ 5] & 0x00000001) <<10);
output[ 0] |= ((other[ 5] & 0x00000001) <<11);
output[ 0] |= ((input[ 6] & 0x00000001) <<12);
output[ 0] |= ((other[ 6] & 0x00000001) <<13);
output[ 0] |= ((input[ 7] & 0x00000001) <<14);
output[ 0] |= ((other[ 7] & 0x00000001) <<15);
output[ 0] |= ((input[ 0] & 0x00000100) << 8);
output[ 0] |= ((other[ 0] & 0x00000100) << 9);
output[ 0] |= ((input[ 1] & 0x00000100) <<10);
output[ 0] |= ((other[ 1] & 0x00000100) <<11);
output[ 0] |= ((input[ 2] & 0x00000100) <<12);
output[ 0] |= ((other[ 2] & 0x00000100) <<13);
output[ 0] |= ((input[ 3] & 0x00000100) <<14);
output[ 0] |= ((other[ 3] & 0x00000100) <<15);
output[ 0] |= ((input[ 4] & 0x00000100) <<16);
output[ 0] |= ((other[ 4] & 0x00000100) <<17);
output[ 0] |= ((input[ 5] & 0x00000100) <<18);
output[ 0] |= ((other[ 5] & 0x00000100) <<19);
output[ 0] |= ((input[ 6] & 0x00000100) <<20);
output[ 0] |= ((other[ 6] & 0x00000100) <<21);
output[ 0] |= ((input[ 7] & 0x00000100) <<22);
output[ 0] |= ((other[ 7] & 0x00000100) <<23);
output[ 1] = ((input[ 0] & 0x00000002) >> 1);
output[ 1] |= (other[ 0] & 0x00000002);
output[ 1] |= ((input[ 1] & 0x00000002) << 1);
output[ 1] |= ((other[ 1] & 0x00000002) << 2);
output[ 1] |= ((input[ 2] & 0x00000002) << 3);
output[ 1] |= ((other[ 2] & 0x00000002) << 4);
output[ 1] |= ((input[ 3] & 0x00000002) << 5);
output[ 1] |= ((other[ 3] & 0x00000002) << 6);
output[ 1] |= ((input[ 4] & 0x00000002) << 7);
output[ 1] |= ((other[ 4] & 0x00000002) << 8);
output[ 1] |= ((input[ 5] & 0x00000002) << 9);
output[ 1] |= ((other[ 5] & 0x00000002) <<10);
output[ 1] |= ((input[ 6] & 0x00000002) <<11);
output[ 1] |= ((other[ 6] & 0x00000002) <<12);
output[ 1] |= ((input[ 7] & 0x00000002) <<13);
output[ 1] |= ((other[ 7] & 0x00000002) <<14);
output[ 1] |= ((input[ 0] & 0x00000200) << 7);
output[ 1] |= ((other[ 0] & 0x00000200) << 8);
output[ 1] |= ((input[ 1] & 0x00000200) << 9);
output[ 1] |= ((other[ 1] & 0x00000200) <<10);
output[ 1] |= ((input[ 2] & 0x00000200) <<11);
output[ 1] |= ((other[ 2] & 0x00000200) <<12);
output[ 1] |= ((input[ 3] & 0x00000200) <<13);
output[ 1] |= ((other[ 3] & 0x00000200) <<14);
output[ 1] |= ((input[ 4] & 0x00000200) <<15);
output[ 1] |= ((other[ 4] & 0x00000200) <<16);
output[ 1] |= ((input[ 5] & 0x00000200) <<17);
output[ 1] |= ((other[ 5] & 0x00000200) <<18);
output[ 1] |= ((input[ 6] & 0x00000200) <<19);
output[ 1] |= ((other[ 6] & 0x00000200) <<20);
output[ 1] |= ((input[ 7] & 0x00000200) <<21);
output[ 1] |= ((other[ 7] & 0x00000200) <<22);
output[ 2] = ((input[ 0] & 0x00000004) >> 2);
output[ 2] |= ((other[ 0] & 0x00000004) >> 1);
output[ 2] |= (input[ 1] & 0x00000004);
output[ 2] |= ((other[ 1] & 0x00000004) << 1);
output[ 2] |= ((input[ 2] & 0x00000004) << 2);
output[ 2] |= ((other[ 2] & 0x00000004) << 3);
output[ 2] |= ((input[ 3] & 0x00000004) << 4);
output[ 2] |= ((other[ 3] & 0x00000004) << 5);
output[ 2] |= ((input[ 4] & 0x00000004) << 6);
output[ 2] |= ((other[ 4] & 0x00000004) << 7);
output[ 2] |= ((input[ 5] & 0x00000004) << 8);
output[ 2] |= ((other[ 5] & 0x00000004) << 9);
output[ 2] |= ((input[ 6] & 0x00000004) <<10);
output[ 2] |= ((other[ 6] & 0x00000004) <<11);
output[ 2] |= ((input[ 7] & 0x00000004) <<12);
output[ 2] |= ((other[ 7] & 0x00000004) <<13);
output[ 2] |= ((input[ 0] & 0x00000400) << 6);
output[ 2] |= ((other[ 0] & 0x00000400) << 7);
output[ 2] |= ((input[ 1] & 0x00000400) << 8);
output[ 2] |= ((other[ 1] & 0x00000400) << 9);
output[ 2] |= ((input[ 2] & 0x00000400) <<10);
output[ 2] |= ((other[ 2] & 0x00000400) <<11);
output[ 2] |= ((input[ 3] & 0x00000400) <<12);
output[ 2] |= ((other[ 3] & 0x00000400) <<13);
output[ 2] |= ((input[ 4] & 0x00000400) <<14);
output[ 2] |= ((other[ 4] & 0x00000400) <<15);
output[ 2] |= ((input[ 5] & 0x00000400) <<16);
output[ 2] |= ((other[ 5] & 0x00000400) <<17);
output[ 2] |= ((input[ 6] & 0x00000400) <<18);
output[ 2] |= ((other[ 6] & 0x00000400) <<19);
output[ 2] |= ((input[ 7] & 0x00000400) <<20);
output[ 2] |= ((other[ 7] & 0x00000400) <<21);
output[ 3] = ((input[ 0] & 0x00000008) >> 3);
output[ 3] |= ((other[ 0] & 0x00000008) >> 2);
output[ 3] |= ((input[ 1] & 0x00000008) >> 1);
output[ 3] |= (other[ 1] & 0x00000008);
output[ 3] |= ((input[ 2] & 0x00000008) << 1);
output[ 3] |= ((other[ 2] & 0x00000008) << 2);
output[ 3] |= ((input[ 3] & 0x00000008) << 3);
output[ 3] |= ((other[ 3] & 0x00000008) << 4);
output[ 3] |= ((input[ 4] & 0x00000008) << 5);
output[ 3] |= ((other[ 4] & 0x00000008) << 6);
output[ 3] |= ((input[ 5] & 0x00000008) << 7);
output[ 3] |= ((other[ 5] & 0x00000008) << 8);
output[ 3] |= ((input[ 6] & 0x00000008) << 9);
output[ 3] |= ((other[ 6] & 0x00000008) <<10);
output[ 3] |= ((input[ 7] & 0x00000008) <<11);
output[ 3] |= ((other[ 7] & 0x00000008) <<12);
output[ 3] |= ((input[ 0] & 0x00000800) << 5);
output[ 3] |= ((other[ 0] & 0x00000800) << 6);
output[ 3] |= ((input[ 1] & 0x00000800) << 7);
output[ 3] |= ((other[ 1] & 0x00000800) << 8);
output[ 3] |= ((input[ 2] & 0x00000800) << 9);
output[ 3] |= ((other[ 2] & 0x00000800) <<10);
output[ 3] |= ((input[ 3] & 0x00000800) <<11);
output[ 3] |= ((other[ 3] & 0x00000800) <<12);
output[ 3] |= ((input[ 4] & 0x00000800) <<13);
output[ 3] |= ((other[ 4] & 0x00000800) <<14);
output[ 3] |= ((input[ 5] & 0x00000800) <<15);
output[ 3] |= ((other[ 5] & 0x00000800) <<16);
output[ 3] |= ((input[ 6] & 0x00000800) <<17);
output[ 3] |= ((other[ 6] & 0x00000800) <<18);
output[ 3] |= ((input[ 7] & 0x00000800) <<19);
output[ 3] |= ((other[ 7] & 0x00000800) <<20);
output[ 4] = ((input[ 0] & 0x00000010) >> 4);
output[ 4] |= ((other[ 0] & 0x00000010) >> 3);
output[ 4] |= ((input[ 1] & 0x00000010) >> 2);
output[ 4] |= ((other[ 1] & 0x00000010) >> 1);
output[ 4] |= (input[ 2] & 0x00000010);
output[ 4] |= ((other[ 2] & 0x00000010) << 1);
output[ 4] |= ((input[ 3] & 0x00000010) << 2);
output[ 4] |= ((other[ 3] & 0x00000010) << 3);
output[ 4] |= ((input[ 4] & 0x00000010) << 4);
output[ 4] |= ((other[ 4] & 0x00000010) << 5);
output[ 4] |= ((input[ 5] & 0x00000010) << 6);
output[ 4] |= ((other[ 5] & 0x00000010) << 7);
output[ 4] |= ((input[ 6] & 0x00000010) << 8);
output[ 4] |= ((other[ 6] & 0x00000010) << 9);
output[ 4] |= ((input[ 7] & 0x00000010) <<10);
output[ 4] |= ((other[ 7] & 0x00000010) <<11);
output[ 4] |= ((input[ 0] & 0x00001000) << 4);
output[ 4] |= ((other[ 0] & 0x00001000) << 5);
output[ 4] |= ((input[ 1] & 0x00001000) << 6);
output[ 4] |= ((other[ 1] & 0x00001000) << 7);
output[ 4] |= ((input[ 2] & 0x00001000) << 8);
output[ 4] |= ((other[ 2] & 0x00001000) << 9);
output[ 4] |= ((input[ 3] & 0x00001000) <<10);
output[ 4] |= ((other[ 3] & 0x00001000) <<11);
output[ 4] |= ((input[ 4] & 0x00001000) <<12);
output[ 4] |= ((other[ 4] & 0x00001000) <<13);
output[ 4] |= ((input[ 5] & 0x00001000) <<14);
output[ 4] |= ((other[ 5] & 0x00001000) <<15);
output[ 4] |= ((input[ 6] & 0x00001000) <<16);
output[ 4] |= ((other[ 6] & 0x00001000) <<17);
output[ 4] |= ((input[ 7] & 0x00001000) <<18);
output[ 4] |= ((other[ 7] & 0x00001000) <<19);
output[ 5] = ((input[ 0] & 0x00000020) >> 5);
output[ 5] |= ((other[ 0] & 0x00000020) >> 4);
output[ 5] |= ((input[ 1] & 0x00000020) >> 3);
output[ 5] |= ((other[ 1] & 0x00000020) >> 2);
output[ 5] |= ((input[ 2] & 0x00000020) >> 1);
output[ 5] |= (other[ 2] & 0x00000020);
output[ 5] |= ((input[ 3] & 0x00000020) << 1);
output[ 5] |= ((other[ 3] & 0x00000020) << 2);
output[ 5] |= ((input[ 4] & 0x00000020) << 3);
output[ 5] |= ((other[ 4] & 0x00000020) << 4);
output[ 5] |= ((input[ 5] & 0x00000020) << 5);
output[ 5] |= ((other[ 5] & 0x00000020) << 6);
output[ 5] |= ((input[ 6] & 0x00000020) << 7);
output[ 5] |= ((other[ 6] & 0x00000020) << 8);
output[ 5] |= ((input[ 7] & 0x00000020) << 9);
output[ 5] |= ((other[ 7] & 0x00000020) <<10);
output[ 5] |= ((input[ 0] & 0x00002000) << 3);
output[ 5] |= ((other[ 0] & 0x00002000) << 4);
output[ 5] |= ((input[ 1] & 0x00002000) << 5);
output[ 5] |= ((other[ 1] & 0x00002000) << 6);
output[ 5] |= ((input[ 2] & 0x00002000) << 7);
output[ 5] |= ((other[ 2] & 0x00002000) << 8);
output[ 5] |= ((input[ 3] & 0x00002000) << 9);
output[ 5] |= ((other[ 3] & 0x00002000) <<10);
output[ 5] |= ((input[ 4] & 0x00002000) <<11);
output[ 5] |= ((other[ 4] & 0x00002000) <<12);
output[ 5] |= ((input[ 5] & 0x00002000) <<13);
output[ 5] |= ((other[ 5] & 0x00002000) <<14);
output[ 5] |= ((input[ 6] & 0x00002000) <<15);
output[ 5] |= ((other[ 6] & 0x00002000) <<16);
output[ 5] |= ((input[ 7] & 0x00002000) <<17);
output[ 5] |= ((other[ 7] & 0x00002000) <<18);
output[ 6] = ((input[ 0] & 0x00000040) >> 6);
output[ 6] |= ((other[ 0] & 0x00000040) >> 5);
output[ 6] |= ((input[ 1] & 0x00000040) >> 4);
output[ 6] |= ((other[ 1] & 0x00000040) >> 3);
output[ 6] |= ((input[ 2] & 0x00000040) >> 2);
output[ 6] |= ((other[ 2] & 0x00000040) >> 1);
output[ 6] |= (input[ 3] & 0x00000040);
output[ 6] |= ((other[ 3] & 0x00000040) << 1);
output[ 6] |= ((input[ 4] & 0x00000040) << 2);
output[ 6] |= ((other[ 4] & 0x00000040) << 3);
output[ 6] |= ((input[ 5] & 0x00000040) << 4);
output[ 6] |= ((other[ 5] & 0x00000040) << 5);
output[ 6] |= ((input[ 6] & 0x00000040) << 6);
output[ 6] |= ((other[ 6] & 0x00000040) << 7);
output[ 6] |= ((input[ 7] & 0x00000040) << 8);
output[ 6] |= ((other[ 7] & 0x00000040) << 9);
output[ 6] |= ((input[ 0] & 0x00004000) << 2);
output[ 6] |= ((other[ 0] & 0x00004000) << 3);
output[ 6] |= ((input[ 1] & 0x00004000) << 4);
output[ 6] |= ((other[ 1] & 0x00004000) << 5);
output[ 6] |= ((input[ 2] & 0x00004000) << 6);
output[ 6] |= ((other[ 2] & 0x00004000) << 7);
output[ 6] |= ((input[ 3] & 0x00004000) << 8);
output[ 6] |= ((other[ 3] & 0x00004000) << 9);
output[ 6] |= ((input[ 4] & 0x00004000) <<10);
output[ 6] |= ((other[ 4] & 0x00004000) <<11);
output[ 6] |= ((input[ 5] & 0x00004000) <<12);
output[ 6] |= ((other[ 5] & 0x00004000) <<13);
output[ 6] |= ((input[ 6] & 0x00004000) <<14);
output[ 6] |= ((other[ 6] & 0x00004000) <<15);
output[ 6] |= ((input[ 7] & 0x00004000) <<16);
output[ 6] |= ((other[ 7] & 0x00004000) <<17);
output[ 7] = ((input[ 0] & 0x00000080) >> 7);
output[ 7] |= ((other[ 0] & 0x00000080) >> 6);
output[ 7] |= ((input[ 1] & 0x00000080) >> 5);
output[ 7] |= ((other[ 1] & 0x00000080) >> 4);
output[ 7] |= ((input[ 2] & 0x00000080) >> 3);
output[ 7] |= ((other[ 2] & 0x00000080) >> 2);
output[ 7] |= ((input[ 3] & 0x00000080) >> 1);
output[ 7] |= (other[ 3] & 0x00000080);
output[ 7] |= ((input[ 4] & 0x00000080) << 1);
output[ 7] |= ((other[ 4] & 0x00000080) << 2);
output[ 7] |= ((input[ 5] & 0x00000080) << 3);
output[ 7] |= ((other[ 5] & 0x00000080) << 4);
output[ 7] |= ((input[ 6] & 0x00000080) << 5);
output[ 7] |= ((other[ 6] & 0x00000080) << 6);
output[ 7] |= ((input[ 7] & 0x00000080) << 7);
output[ 7] |= ((other[ 7] & 0x00000080) << 8);
output[ 7] |= ((input[ 0] & 0x00008000) << 1);
output[ 7] |= ((other[ 0] & 0x00008000) << 2);
output[ 7] |= ((input[ 1] & 0x00008000) << 3);
output[ 7] |= ((other[ 1] & 0x00008000) << 4);
output[ 7] |= ((input[ 2] & 0x00008000) << 5);
output[ 7] |= ((other[ 2] & 0x00008000) << 6);
output[ 7] |= ((input[ 3] & 0x00008000) << 7);
output[ 7] |= ((other[ 3] & 0x00008000) << 8);
output[ 7] |= ((input[ 4] & 0x00008000) << 9);
output[ 7] |= ((other[ 4] & 0x00008000) <<10);
output[ 7] |= ((input[ 5] & 0x00008000) <<11);
output[ 7] |= ((other[ 5] & 0x00008000) <<12);
output[ 7] |= ((input[ 6] & 0x00008000) <<13);
output[ 7] |= ((other[ 6] & 0x00008000) <<14);
output[ 7] |= ((input[ 7] & 0x00008000) <<15);
output[ 7] |= ((other[ 7] & 0x00008000) <<16);
uint32_t other[8];
uint32_t d[8];
uint32_t t;
const unsigned int n = threadIdx.x & 3;
#pragma unroll
for (int i = 0; i < 8; i++) {
input[i] = __shfl((int)input[i], n ^ (3*(n >=1 && n <=2)), 4);
other[i] = __shfl((int)input[i], (threadIdx.x + 1) & 3, 4);
input[i] = __shfl((int)input[i], threadIdx.x & 2, 4);
other[i] = __shfl((int)other[i], threadIdx.x & 2, 4);
if (threadIdx.x & 1) {
input[i] = __byte_perm(input[i], 0, 0x1032);
other[i] = __byte_perm(other[i], 0, 0x1032);
}
}
merge8(d[0], input[0], input[4]);
merge8(d[1], other[0], other[4]);
merge8(d[2], input[1], input[5]);
merge8(d[3], other[1], other[5]);
merge8(d[4], input[2], input[6]);
merge8(d[5], other[2], other[6]);
merge8(d[6], input[3], input[7]);
merge8(d[7], other[3], other[7]);
SWAP1(d[0], d[1]);
SWAP1(d[2], d[3]);
SWAP1(d[4], d[5]);
SWAP1(d[6], d[7]);
SWAP2(d[0], d[2]);
SWAP2(d[1], d[3]);
SWAP2(d[4], d[6]);
SWAP2(d[5], d[7]);
SWAP4(d[0], d[4]);
SWAP4(d[1], d[5]);
SWAP4(d[2], d[6]);
SWAP4(d[3], d[7]);
output[0] = d[0];
output[1] = d[1];
output[2] = d[2];
output[3] = d[3];
output[4] = d[4];
output[5] = d[5];
output[6] = d[6];
output[7] = d[7];
}
__device__ __forceinline__
void from_bitslice_quad(uint32_t *input, uint32_t *output)
void from_bitslice_quad(const uint32_t *const __restrict__ input, uint32_t *const __restrict__ output)
{
output[ 0] = ((input[ 0] & 0x00000100) >> 8);
output[ 0] |= ((input[ 1] & 0x00000100) >> 7);
output[ 0] |= ((input[ 2] & 0x00000100) >> 6);
output[ 0] |= ((input[ 3] & 0x00000100) >> 5);
output[ 0] |= ((input[ 4] & 0x00000100) >> 4);
output[ 0] |= ((input[ 5] & 0x00000100) >> 3);
output[ 0] |= ((input[ 6] & 0x00000100) >> 2);
output[ 0] |= ((input[ 7] & 0x00000100) >> 1);
output[ 0] |= ((input[ 0] & 0x01000000) >>16);
output[ 0] |= ((input[ 1] & 0x01000000) >>15);
output[ 0] |= ((input[ 2] & 0x01000000) >>14);
output[ 0] |= ((input[ 3] & 0x01000000) >>13);
output[ 0] |= ((input[ 4] & 0x01000000) >>12);
output[ 0] |= ((input[ 5] & 0x01000000) >>11);
output[ 0] |= ((input[ 6] & 0x01000000) >>10);
output[ 0] |= ((input[ 7] & 0x01000000) >> 9);
output[ 2] = ((input[ 0] & 0x00000200) >> 9);
output[ 2] |= ((input[ 1] & 0x00000200) >> 8);
output[ 2] |= ((input[ 2] & 0x00000200) >> 7);
output[ 2] |= ((input[ 3] & 0x00000200) >> 6);
output[ 2] |= ((input[ 4] & 0x00000200) >> 5);
output[ 2] |= ((input[ 5] & 0x00000200) >> 4);
output[ 2] |= ((input[ 6] & 0x00000200) >> 3);
output[ 2] |= ((input[ 7] & 0x00000200) >> 2);
output[ 2] |= ((input[ 0] & 0x02000000) >>17);
output[ 2] |= ((input[ 1] & 0x02000000) >>16);
output[ 2] |= ((input[ 2] & 0x02000000) >>15);
output[ 2] |= ((input[ 3] & 0x02000000) >>14);
output[ 2] |= ((input[ 4] & 0x02000000) >>13);
output[ 2] |= ((input[ 5] & 0x02000000) >>12);
output[ 2] |= ((input[ 6] & 0x02000000) >>11);
output[ 2] |= ((input[ 7] & 0x02000000) >>10);
output[ 4] = ((input[ 0] & 0x00000400) >>10);
output[ 4] |= ((input[ 1] & 0x00000400) >> 9);
output[ 4] |= ((input[ 2] & 0x00000400) >> 8);
output[ 4] |= ((input[ 3] & 0x00000400) >> 7);
output[ 4] |= ((input[ 4] & 0x00000400) >> 6);
output[ 4] |= ((input[ 5] & 0x00000400) >> 5);
output[ 4] |= ((input[ 6] & 0x00000400) >> 4);
output[ 4] |= ((input[ 7] & 0x00000400) >> 3);
output[ 4] |= ((input[ 0] & 0x04000000) >>18);
output[ 4] |= ((input[ 1] & 0x04000000) >>17);
output[ 4] |= ((input[ 2] & 0x04000000) >>16);
output[ 4] |= ((input[ 3] & 0x04000000) >>15);
output[ 4] |= ((input[ 4] & 0x04000000) >>14);
output[ 4] |= ((input[ 5] & 0x04000000) >>13);
output[ 4] |= ((input[ 6] & 0x04000000) >>12);
output[ 4] |= ((input[ 7] & 0x04000000) >>11);
output[ 6] = ((input[ 0] & 0x00000800) >>11);
output[ 6] |= ((input[ 1] & 0x00000800) >>10);
output[ 6] |= ((input[ 2] & 0x00000800) >> 9);
output[ 6] |= ((input[ 3] & 0x00000800) >> 8);
output[ 6] |= ((input[ 4] & 0x00000800) >> 7);
output[ 6] |= ((input[ 5] & 0x00000800) >> 6);
output[ 6] |= ((input[ 6] & 0x00000800) >> 5);
output[ 6] |= ((input[ 7] & 0x00000800) >> 4);
output[ 6] |= ((input[ 0] & 0x08000000) >>19);
output[ 6] |= ((input[ 1] & 0x08000000) >>18);
output[ 6] |= ((input[ 2] & 0x08000000) >>17);
output[ 6] |= ((input[ 3] & 0x08000000) >>16);
output[ 6] |= ((input[ 4] & 0x08000000) >>15);
output[ 6] |= ((input[ 5] & 0x08000000) >>14);
output[ 6] |= ((input[ 6] & 0x08000000) >>13);
output[ 6] |= ((input[ 7] & 0x08000000) >>12);
output[ 8] = ((input[ 0] & 0x00001000) >>12);
output[ 8] |= ((input[ 1] & 0x00001000) >>11);
output[ 8] |= ((input[ 2] & 0x00001000) >>10);
output[ 8] |= ((input[ 3] & 0x00001000) >> 9);
output[ 8] |= ((input[ 4] & 0x00001000) >> 8);
output[ 8] |= ((input[ 5] & 0x00001000) >> 7);
output[ 8] |= ((input[ 6] & 0x00001000) >> 6);
output[ 8] |= ((input[ 7] & 0x00001000) >> 5);
output[ 8] |= ((input[ 0] & 0x10000000) >>20);
output[ 8] |= ((input[ 1] & 0x10000000) >>19);
output[ 8] |= ((input[ 2] & 0x10000000) >>18);
output[ 8] |= ((input[ 3] & 0x10000000) >>17);
output[ 8] |= ((input[ 4] & 0x10000000) >>16);
output[ 8] |= ((input[ 5] & 0x10000000) >>15);
output[ 8] |= ((input[ 6] & 0x10000000) >>14);
output[ 8] |= ((input[ 7] & 0x10000000) >>13);
output[10] = ((input[ 0] & 0x00002000) >>13);
output[10] |= ((input[ 1] & 0x00002000) >>12);
output[10] |= ((input[ 2] & 0x00002000) >>11);
output[10] |= ((input[ 3] & 0x00002000) >>10);
output[10] |= ((input[ 4] & 0x00002000) >> 9);
output[10] |= ((input[ 5] & 0x00002000) >> 8);
output[10] |= ((input[ 6] & 0x00002000) >> 7);
output[10] |= ((input[ 7] & 0x00002000) >> 6);
output[10] |= ((input[ 0] & 0x20000000) >>21);
output[10] |= ((input[ 1] & 0x20000000) >>20);
output[10] |= ((input[ 2] & 0x20000000) >>19);
output[10] |= ((input[ 3] & 0x20000000) >>18);
output[10] |= ((input[ 4] & 0x20000000) >>17);
output[10] |= ((input[ 5] & 0x20000000) >>16);
output[10] |= ((input[ 6] & 0x20000000) >>15);
output[10] |= ((input[ 7] & 0x20000000) >>14);
output[12] = ((input[ 0] & 0x00004000) >>14);
output[12] |= ((input[ 1] & 0x00004000) >>13);
output[12] |= ((input[ 2] & 0x00004000) >>12);
output[12] |= ((input[ 3] & 0x00004000) >>11);
output[12] |= ((input[ 4] & 0x00004000) >>10);
output[12] |= ((input[ 5] & 0x00004000) >> 9);
output[12] |= ((input[ 6] & 0x00004000) >> 8);
output[12] |= ((input[ 7] & 0x00004000) >> 7);
output[12] |= ((input[ 0] & 0x40000000) >>22);
output[12] |= ((input[ 1] & 0x40000000) >>21);
output[12] |= ((input[ 2] & 0x40000000) >>20);
output[12] |= ((input[ 3] & 0x40000000) >>19);
output[12] |= ((input[ 4] & 0x40000000) >>18);
output[12] |= ((input[ 5] & 0x40000000) >>17);
output[12] |= ((input[ 6] & 0x40000000) >>16);
output[12] |= ((input[ 7] & 0x40000000) >>15);
output[14] = ((input[ 0] & 0x00008000) >>15);
output[14] |= ((input[ 1] & 0x00008000) >>14);
output[14] |= ((input[ 2] & 0x00008000) >>13);
output[14] |= ((input[ 3] & 0x00008000) >>12);
output[14] |= ((input[ 4] & 0x00008000) >>11);
output[14] |= ((input[ 5] & 0x00008000) >>10);
output[14] |= ((input[ 6] & 0x00008000) >> 9);
output[14] |= ((input[ 7] & 0x00008000) >> 8);
output[14] |= ((input[ 0] & 0x80000000) >>23);
output[14] |= ((input[ 1] & 0x80000000) >>22);
output[14] |= ((input[ 2] & 0x80000000) >>21);
output[14] |= ((input[ 3] & 0x80000000) >>20);
output[14] |= ((input[ 4] & 0x80000000) >>19);
output[14] |= ((input[ 5] & 0x80000000) >>18);
output[14] |= ((input[ 6] & 0x80000000) >>17);
output[14] |= ((input[ 7] & 0x80000000) >>16);
#pragma unroll 8
for (int i = 0; i < 16; i+=2) {
if (threadIdx.x & 1) output[i] = __byte_perm(output[i], 0, 0x1032);
output[i] = __byte_perm(output[i], __shfl((int)output[i], (threadIdx.x+1)&3, 4), 0x7610);
output[i+1] = __shfl((int)output[i], (threadIdx.x+2)&3, 4);
if (threadIdx.x & 3) output[i] = output[i+1] = 0;
}
uint32_t d[8];
uint32_t t;
d[0] = __byte_perm(input[0], input[4], 0x7531);
d[1] = __byte_perm(input[1], input[5], 0x7531);
d[2] = __byte_perm(input[2], input[6], 0x7531);
d[3] = __byte_perm(input[3], input[7], 0x7531);
SWAP1(d[0], d[1]);
SWAP1(d[2], d[3]);
SWAP2(d[0], d[2]);
SWAP2(d[1], d[3]);
t = __byte_perm(d[0], d[2], 0x5410);
d[2] = __byte_perm(d[0], d[2], 0x7632);
d[0] = t;
t = __byte_perm(d[1], d[3], 0x5410);
d[3] = __byte_perm(d[1], d[3], 0x7632);
d[1] = t;
SWAP4(d[0], d[2]);
SWAP4(d[1], d[3]);
output[0] = d[0];
output[2] = d[1];
output[4] = d[0] >> 16;
output[6] = d[1] >> 16;
output[8] = d[2];
output[10] = d[3];
output[12] = d[2] >> 16;
output[14] = d[3] >> 16;
#pragma unroll 8
for (int i = 0; i < 16; i+=2) {
if (threadIdx.x & 1) output[i] = __byte_perm(output[i], 0, 0x1032);
output[i] = __byte_perm(output[i], __shfl((int)output[i], (threadIdx.x+1)&3, 4), 0x7610);
output[i+1] = __shfl((int)output[i], (threadIdx.x+2)&3, 4);
if (threadIdx.x & 3) output[i] = output[i+1] = 0;
}
}
#else
/* host "fake" functions */
#define from_bitslice_quad(st, out)
#define to_bitslice_quad(in, msg) in[0] = (uint32_t) in[0];
#endif /* device only code */

2
configure.ac

@ -1,4 +1,4 @@ @@ -1,4 +1,4 @@
AC_INIT([ccminer], [1.5.2-git])
AC_INIT([ccminer], [1.5.2])
AC_PREREQ([2.59c])
AC_CANONICAL_SYSTEM

6
cpuminer-config.h

@ -156,7 +156,7 @@ @@ -156,7 +156,7 @@
#define PACKAGE_NAME "ccminer"
/* Define to the full name and version of this package. */
#define PACKAGE_STRING "ccminer 1.5.2-git"
#define PACKAGE_STRING "ccminer 1.5.2"
/* Define to the one symbol short name of this package. */
#define PACKAGE_TARNAME "ccminer"
@ -165,7 +165,7 @@ @@ -165,7 +165,7 @@
#define PACKAGE_URL ""
/* Define to the version of this package. */
#define PACKAGE_VERSION "1.5.2-git"
#define PACKAGE_VERSION "1.5.2"
/* If using the C implementation of alloca, define if you know the
direction of stack growth for your system; otherwise it will be
@ -188,7 +188,7 @@ @@ -188,7 +188,7 @@
#define USE_XOP 1
/* Version number of package */
#define VERSION "1.5.2-git"
#define VERSION "1.5.2"
/* Define curl_free() as free() if our version of curl lacks curl_free. */
/* #undef curl_free */

13
cuda_groestlcoin.cu

@ -12,15 +12,20 @@ extern uint32_t *d_resultNonce[8]; @@ -12,15 +12,20 @@ extern uint32_t *d_resultNonce[8];
__constant__ uint32_t groestlcoin_gpu_msg[32];
// 64 Register Variante für Compute 3.0
#if __CUDA_ARCH__ >= 300
// 64 Registers Variant for Compute 3.0
#include "groestl_functions_quad.cu"
#include "bitslice_transformations_quad.cu"
#endif
#define SWAB32(x) cuda_swab32(x)
__global__ __launch_bounds__(256, 4)
void groestlcoin_gpu_hash_quad(int threads, uint32_t startNounce, uint32_t *resNounce)
{
#if __CUDA_ARCH__ >= 300
// durch 4 dividieren, weil jeweils 4 Threads zusammen ein Hash berechnen
int thread = (blockDim.x * blockIdx.x + threadIdx.x) / 4;
if (thread < threads)
@ -86,6 +91,7 @@ void groestlcoin_gpu_hash_quad(int threads, uint32_t startNounce, uint32_t *resN @@ -86,6 +91,7 @@ void groestlcoin_gpu_hash_quad(int threads, uint32_t startNounce, uint32_t *resN
resNounce[0] = nounce;
}
}
#endif
}
// Setup-Funktionen
@ -139,6 +145,11 @@ __host__ void groestlcoin_cpu_hash(int thr_id, int threads, uint32_t startNounce @@ -139,6 +145,11 @@ __host__ void groestlcoin_cpu_hash(int thr_id, int threads, uint32_t startNounce
// Größe des dynamischen Shared Memory Bereichs
size_t shared_size = 0;
if (device_sm[device_map[thr_id]] < 300) {
printf("Sorry, This algo is not supported by this GPU arch (SM 3.0 required)");
return;
}
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t));
groestlcoin_gpu_hash_quad<<<grid, block, shared_size>>>(threads, startNounce, d_resultNonce[thr_id]);

47
cuda_myriadgroestl.cu

@ -5,6 +5,14 @@ @@ -5,6 +5,14 @@
#include "cuda_helper.h"
#if __CUDA_ARCH__ >= 300
// 64 Registers Variant for Compute 3.0
#include "groestl_functions_quad.cu"
#include "bitslice_transformations_quad.cu"
#endif
// globaler Speicher für alle HeftyHashes aller Threads
__constant__ uint32_t pTarget[8]; // Single GPU
uint32_t *d_outputHashes[8];
@ -17,7 +25,7 @@ __constant__ uint32_t myr_sha256_gpu_constantTable[64]; @@ -17,7 +25,7 @@ __constant__ uint32_t myr_sha256_gpu_constantTable[64];
__constant__ uint32_t myr_sha256_gpu_constantTable2[64];
__constant__ uint32_t myr_sha256_gpu_hashTable[8];
uint32_t myr_sha256_cpu_hashTable[] = {
uint32_t myr_sha256_cpu_hashTable[] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 };
uint32_t myr_sha256_cpu_constantTable[] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
@ -31,7 +39,7 @@ uint32_t myr_sha256_cpu_constantTable[] = { @@ -31,7 +39,7 @@ uint32_t myr_sha256_cpu_constantTable[] = {
};
uint32_t myr_sha256_cpu_w2Table[] = {
0x80000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x80000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000200,
0x80000000, 0x01400000, 0x00205000, 0x00005088, 0x22000800, 0x22550014, 0x05089742, 0xa0000020,
0x5a880000, 0x005c9400, 0x0016d49d, 0xfa801f00, 0xd33225d0, 0x11675959, 0xf6e6bfda, 0xb30c1549,
@ -40,13 +48,9 @@ uint32_t myr_sha256_cpu_w2Table[] = { @@ -40,13 +48,9 @@ uint32_t myr_sha256_cpu_w2Table[] = {
0x69bc7ac4, 0xbd11375b, 0xe3ba71e5, 0x3b209ff2, 0x18feee17, 0xe25ad9e7, 0x13375046, 0x0515089d,
0x4f0d0f04, 0x2627484e, 0x310128d2, 0xc668b434, 0x420841cc, 0x62d311b8, 0xe59ba771, 0x85a7a484 };
// 64 Register Variante für Compute 3.0
#include "groestl_functions_quad.cu"
#include "bitslice_transformations_quad.cu"
#define SWAB32(x) ( ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24) )
#if __CUDA_ARCH__ < 350
#if __CUDA_ARCH__ < 320
// Kepler (Compute 3.0)
#define ROTR32(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
#else
@ -77,7 +81,7 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message) @@ -77,7 +81,7 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
regs[k] = myr_sha256_gpu_hashTable[k];
hash[k] = regs[k];
}
#pragma unroll 16
for(int k=0;k<16;k++)
W1[k] = SWAB32(message[k]);
@ -89,7 +93,7 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message) @@ -89,7 +93,7 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j] + W1[j];
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int k=6; k >= 0; k--) regs[k+1] = regs[k];
regs[0] = T1 + T2;
@ -118,7 +122,7 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message) @@ -118,7 +122,7 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 16] + W2[j];
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
regs[0] = T1 + T2;
@ -146,7 +150,7 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message) @@ -146,7 +150,7 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 32] + W1[j];
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
regs[0] = T1 + T2;
@ -174,7 +178,7 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message) @@ -174,7 +178,7 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 48] + W2[j];
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
regs[0] = T1 + T2;
@ -199,7 +203,7 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message) @@ -199,7 +203,7 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable2[j];
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int k=6; k >= 0; k--) regs[k+1] = regs[k];
regs[0] = T1 + T2;
@ -220,6 +224,7 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message) @@ -220,6 +224,7 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
__global__ void __launch_bounds__(256, 4)
myriadgroestl_gpu_hash_quad(int threads, uint32_t startNounce, uint32_t *hashBuffer)
{
#if __CUDA_ARCH__ >= 300
// durch 4 dividieren, weil jeweils 4 Threads zusammen ein Hash berechnen
int thread = (blockDim.x * blockIdx.x + threadIdx.x) / 4;
if (thread < threads)
@ -250,11 +255,13 @@ __global__ void __launch_bounds__(256, 4) @@ -250,11 +255,13 @@ __global__ void __launch_bounds__(256, 4)
for(int k=0;k<16;k++) outpHash[k] = out_state[k];
}
}
#endif
}
__global__ void
myriadgroestl_gpu_hash_quad2(int threads, uint32_t startNounce, uint32_t *resNounce, uint32_t *hashBuffer)
{
#if __CUDA_ARCH__ >= 300
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
@ -267,7 +274,7 @@ __global__ void @@ -267,7 +274,7 @@ __global__ void
out_state[i] = inpHash[i];
myriadgroestl_gpu_sha256(out_state);
int i, position = -1;
bool rc = true;
@ -291,13 +298,14 @@ __global__ void @@ -291,13 +298,14 @@ __global__ void
if(resNounce[0] > nounce)
resNounce[0] = nounce;
}
#endif
}
// Setup-Funktionen
__host__ void myriadgroestl_cpu_init(int thr_id, int threads)
{
cudaSetDevice(device_map[thr_id]);
cudaMemcpyToSymbol( myr_sha256_gpu_hashTable,
myr_sha256_cpu_hashTable,
sizeof(uint32_t) * 8 );
@ -316,10 +324,10 @@ __host__ void myriadgroestl_cpu_init(int thr_id, int threads) @@ -316,10 +324,10 @@ __host__ void myriadgroestl_cpu_init(int thr_id, int threads)
sizeof(uint32_t) * 64 );
// Speicher für Gewinner-Nonce belegen
cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t));
cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t));
// Speicher für temporäreHashes
cudaMalloc(&d_outputHashes[thr_id], 16*sizeof(uint32_t)*threads);
cudaMalloc(&d_outputHashes[thr_id], 16*sizeof(uint32_t)*threads);
}
__host__ void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn)
@ -365,6 +373,11 @@ __host__ void myriadgroestl_cpu_hash(int thr_id, int threads, uint32_t startNoun @@ -365,6 +373,11 @@ __host__ void myriadgroestl_cpu_hash(int thr_id, int threads, uint32_t startNoun
dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock));
dim3 block(threadsperblock);
if (device_sm[device_map[thr_id]] < 300) {
printf("Sorry, This algo is not supported by this GPU arch (SM 3.0 required)");
return;
}
myriadgroestl_gpu_hash_quad<<<grid, block, shared_size>>>(threads, startNounce, d_outputHashes[thr_id]);
dim3 grid2((threads + threadsperblock-1)/threadsperblock);
myriadgroestl_gpu_hash_quad2<<<grid2, block, shared_size>>>(threads, startNounce, d_resultNonce[thr_id], d_outputHashes[thr_id]);

32
quark/cuda_quark_groestl512.cu

@ -8,13 +8,17 @@ @@ -8,13 +8,17 @@
#define TPB 256
#define THF 4
// 64 Register Variante für Compute 3.0
#if __CUDA_ARCH__ >= 300
#include "groestl_functions_quad.cu"
#include "bitslice_transformations_quad.cu"
#endif
#include "quark/cuda_quark_groestl512_sm20.cu"
__global__ __launch_bounds__(TPB, THF)
void quark_groestl512_gpu_hash_64_quad(int threads, uint32_t startNounce, uint32_t * __restrict g_hash, uint32_t * __restrict g_nonceVector)
{
#if __CUDA_ARCH__ >= 300
// durch 4 dividieren, weil jeweils 4 Threads zusammen ein Hash berechnen
int thread = (blockDim.x * blockIdx.x + threadIdx.x) >> 2;
if (thread < threads)
@ -54,11 +58,13 @@ void quark_groestl512_gpu_hash_64_quad(int threads, uint32_t startNounce, uint32 @@ -54,11 +58,13 @@ void quark_groestl512_gpu_hash_64_quad(int threads, uint32_t startNounce, uint32
for(int k=0;k<16;k++) outpHash[k] = hash[k];
}
}
#endif
}
__global__ void __launch_bounds__(TPB, THF)
quark_doublegroestl512_gpu_hash_64_quad(int threads, uint32_t startNounce, uint32_t *g_hash, uint32_t *g_nonceVector)
{
#if __CUDA_ARCH__ >= 300
int thread = (blockDim.x * blockIdx.x + threadIdx.x)>>2;
if (thread < threads)
{
@ -113,11 +119,15 @@ __global__ void __launch_bounds__(TPB, THF) @@ -113,11 +119,15 @@ __global__ void __launch_bounds__(TPB, THF)
for(int k=0;k<16;k++) outpHash[k] = hash[k];
}
}
#endif
}
// Setup-Funktionen
__host__ void quark_groestl512_cpu_init(int thr_id, int threads)
{
if (device_sm[device_map[thr_id]] < 300)
quark_groestl512_sm20_init(thr_id, threads);
}
__host__ void quark_groestl512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
@ -135,7 +145,10 @@ __host__ void quark_groestl512_cpu_hash_64(int thr_id, int threads, uint32_t sta @@ -135,7 +145,10 @@ __host__ void quark_groestl512_cpu_hash_64(int thr_id, int threads, uint32_t sta
// Größe des dynamischen Shared Memory Bereichs
size_t shared_size = 0;
quark_groestl512_gpu_hash_64_quad<<<grid, block, shared_size>>>(threads, startNounce, d_hash, d_nonceVector);
if (device_sm[device_map[thr_id]] >= 300)
quark_groestl512_gpu_hash_64_quad<<<grid, block, shared_size>>>(threads, startNounce, d_hash, d_nonceVector);
else
quark_groestl512_sm20_hash_64(thr_id, threads, startNounce, d_nonceVector, d_hash, order);
// Strategisches Sleep Kommando zur Senkung der CPU Last
MyStreamSynchronize(NULL, order, thr_id);
@ -143,21 +156,18 @@ __host__ void quark_groestl512_cpu_hash_64(int thr_id, int threads, uint32_t sta @@ -143,21 +156,18 @@ __host__ void quark_groestl512_cpu_hash_64(int thr_id, int threads, uint32_t sta
__host__ void quark_doublegroestl512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
{
int threadsperblock = TPB;
// Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle
// mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl
const int factor = THF;
int threadsperblock = TPB;
// berechne wie viele Thread Blocks wir brauchen
dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock));
dim3 block(threadsperblock);
// Größe des dynamischen Shared Memory Bereichs
size_t shared_size = 0;
quark_doublegroestl512_gpu_hash_64_quad<<<grid, block, shared_size>>>(threads, startNounce, d_hash, d_nonceVector);
if (device_sm[device_map[thr_id]] >= 300)
quark_doublegroestl512_gpu_hash_64_quad<<<grid, block, shared_size>>>(threads, startNounce, d_hash, d_nonceVector);
else
quark_doublegroestl512_sm20_hash_64(thr_id, threads, startNounce, d_nonceVector, d_hash, order);
// Strategisches Sleep Kommando zur Senkung der CPU Last
MyStreamSynchronize(NULL, order, thr_id);
}

330
quark/cuda_quark_groestl512_sm20.cu

@ -0,0 +1,330 @@ @@ -0,0 +1,330 @@
// SM 2.1 variant
// #include "cuda_helper.h"
#define MAXWELL_OR_FERMI 0
#define USE_SHARED 1
#define SPH_C32(x) ((uint32_t)(x ## U))
#define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF))
#define PC32up(j, r) ((uint32_t)((j) + (r)))
#define PC32dn(j, r) 0
#define QC32up(j, r) 0xFFFFFFFF
#define QC32dn(j, r) (((uint32_t)(r) << 24) ^ SPH_T32(~((uint32_t)(j) << 24)))
#define B32_0(x) __byte_perm(x, 0, 0x4440)
//((x) & 0xFF)
#define B32_1(x) __byte_perm(x, 0, 0x4441)
//(((x) >> 8) & 0xFF)
#define B32_2(x) __byte_perm(x, 0, 0x4442)
//(((x) >> 16) & 0xFF)
#define B32_3(x) __byte_perm(x, 0, 0x4443)
//((x) >> 24)
// a healthy mix between shared and textured access provides the highest speed on Compute 3.0 and 3.5!
#define T0up(x) (*((uint32_t*)mixtabs + ( (x))))
#define T0dn(x) tex1Dfetch(t0dn1, x)
#define T1up(x) tex1Dfetch(t1up1, x)
#define T1dn(x) (*((uint32_t*)mixtabs + (768+(x))))
#define T2up(x) tex1Dfetch(t2up1, x)
#define T2dn(x) (*((uint32_t*)mixtabs + (1280+(x))))
#define T3up(x) (*((uint32_t*)mixtabs + (1536+(x))))
#define T3dn(x) tex1Dfetch(t3dn1, x)
texture<unsigned int, 1, cudaReadModeElementType> t0up1;
texture<unsigned int, 1, cudaReadModeElementType> t0dn1;
texture<unsigned int, 1, cudaReadModeElementType> t1up1;
texture<unsigned int, 1, cudaReadModeElementType> t1dn1;
texture<unsigned int, 1, cudaReadModeElementType> t2up1;
texture<unsigned int, 1, cudaReadModeElementType> t2dn1;
texture<unsigned int, 1, cudaReadModeElementType> t3up1;
texture<unsigned int, 1, cudaReadModeElementType> t3dn1;
extern uint32_t T0up_cpu[];
extern uint32_t T0dn_cpu[];
extern uint32_t T1up_cpu[];
extern uint32_t T1dn_cpu[];
extern uint32_t T2up_cpu[];
extern uint32_t T2dn_cpu[];
extern uint32_t T3up_cpu[];
extern uint32_t T3dn_cpu[];
#if __CUDA_ARCH__ < 300
__device__ __forceinline__
void quark_groestl512_perm_P(uint32_t *a, char *mixtabs)
{
uint32_t t[32];
for(int r=0; r<14; r++)
{
switch(r) {
case 0:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 0); break;
case 1:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 1); break;
case 2:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 2); break;
case 3:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 3); break;
case 4:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 4); break;
case 5:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 5); break;
case 6:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 6); break;
case 7:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 7); break;
case 8:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 8); break;
case 9:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 9); break;
case 10:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 10); break;
case 11:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 11); break;
case 12:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 12); break;
case 13:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 13); break;
}
// RBTT
#pragma unroll 16
for(int k=0;k<32;k+=2) {
uint32_t t0_0 = B32_0(a[(k ) & 0x1f]), t9_0 = B32_0(a[(k + 9) & 0x1f]);
uint32_t t2_1 = B32_1(a[(k + 2) & 0x1f]), t11_1 = B32_1(a[(k + 11) & 0x1f]);
uint32_t t4_2 = B32_2(a[(k + 4) & 0x1f]), t13_2 = B32_2(a[(k + 13) & 0x1f]);
uint32_t t6_3 = B32_3(a[(k + 6) & 0x1f]), t23_3 = B32_3(a[(k + 23) & 0x1f]);
t[k + 0] = T0up( t0_0 ) ^ T1up( t2_1 ) ^ T2up( t4_2 ) ^ T3up( t6_3 ) ^
T0dn( t9_0 ) ^ T1dn( t11_1 ) ^ T2dn( t13_2 ) ^ T3dn( t23_3 );
t[k + 1] = T0dn( t0_0 ) ^ T1dn( t2_1 ) ^ T2dn( t4_2 ) ^ T3dn( t6_3 ) ^
T0up( t9_0 ) ^ T1up( t11_1 ) ^ T2up( t13_2 ) ^ T3up( t23_3 );
}
#pragma unroll 32
for(int k=0; k<32; k++) {
a[k] = t[k];
}
}
}
__device__ __forceinline__
void quark_groestl512_perm_Q(uint32_t *a, char *mixtabs)
{
for(int r=0; r<14; r++)
{
uint32_t t[32];
switch(r) {
case 0:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 0); a[(k*2)+1] ^= QC32dn(k<< 4, 0);} break;
case 1:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 1); a[(k*2)+1] ^= QC32dn(k<< 4, 1);} break;
case 2:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 2); a[(k*2)+1] ^= QC32dn(k<< 4, 2);} break;
case 3:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 3); a[(k*2)+1] ^= QC32dn(k<< 4, 3);} break;
case 4:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 4); a[(k*2)+1] ^= QC32dn(k<< 4, 4);} break;
case 5:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 5); a[(k*2)+1] ^= QC32dn(k<< 4, 5);} break;
case 6:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 6); a[(k*2)+1] ^= QC32dn(k<< 4, 6);} break;
case 7:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 7); a[(k*2)+1] ^= QC32dn(k<< 4, 7);} break;
case 8:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 8); a[(k*2)+1] ^= QC32dn(k<< 4, 8);} break;
case 9:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 9); a[(k*2)+1] ^= QC32dn(k<< 4, 9);} break;
case 10:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 10); a[(k*2)+1] ^= QC32dn(k<< 4, 10);} break;
case 11:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 11); a[(k*2)+1] ^= QC32dn(k<< 4, 11);} break;
case 12:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 12); a[(k*2)+1] ^= QC32dn(k<< 4, 12);} break;
case 13:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 13); a[(k*2)+1] ^= QC32dn(k<< 4, 13);} break;
}
// RBTT
#pragma unroll 16
for(int k=0;k<32;k+=2)
{
uint32_t t2_0 = B32_0(a[(k + 2) & 0x1f]), t1_0 = B32_0(a[(k + 1) & 0x1f]);
uint32_t t6_1 = B32_1(a[(k + 6) & 0x1f]), t5_1 = B32_1(a[(k + 5) & 0x1f]);
uint32_t t10_2 = B32_2(a[(k + 10) & 0x1f]), t9_2 = B32_2(a[(k + 9) & 0x1f]);
uint32_t t22_3 = B32_3(a[(k + 22) & 0x1f]), t13_3 = B32_3(a[(k + 13) & 0x1f]);
t[k + 0] = T0up( t2_0 ) ^ T1up( t6_1 ) ^ T2up( t10_2 ) ^ T3up( t22_3 ) ^
T0dn( t1_0 ) ^ T1dn( t5_1 ) ^ T2dn( t9_2 ) ^ T3dn( t13_3 );
t[k + 1] = T0dn( t2_0 ) ^ T1dn( t6_1 ) ^ T2dn( t10_2 ) ^ T3dn( t22_3 ) ^
T0up( t1_0 ) ^ T1up( t5_1 ) ^ T2up( t9_2 ) ^ T3up( t13_3 );
}
#pragma unroll 32
for(int k=0;k<32;k++)
a[k] = t[k];
}
}
#endif
__global__
void quark_groestl512_gpu_hash_64(int threads, uint32_t startNounce, uint32_t *g_hash, uint32_t *g_nonceVector)
{
#if __CUDA_ARCH__ < 300
extern __shared__ char mixtabs[];
if (threadIdx.x < 256)
{
*((uint32_t*)mixtabs + ( threadIdx.x)) = tex1Dfetch(t0up1, threadIdx.x);
*((uint32_t*)mixtabs + (256+threadIdx.x)) = tex1Dfetch(t0dn1, threadIdx.x);
*((uint32_t*)mixtabs + (512+threadIdx.x)) = tex1Dfetch(t1up1, threadIdx.x);
*((uint32_t*)mixtabs + (768+threadIdx.x)) = tex1Dfetch(t1dn1, threadIdx.x);
*((uint32_t*)mixtabs + (1024+threadIdx.x)) = tex1Dfetch(t2up1, threadIdx.x);
*((uint32_t*)mixtabs + (1280+threadIdx.x)) = tex1Dfetch(t2dn1, threadIdx.x);
*((uint32_t*)mixtabs + (1536+threadIdx.x)) = tex1Dfetch(t3up1, threadIdx.x);
*((uint32_t*)mixtabs + (1792+threadIdx.x)) = tex1Dfetch(t3dn1, threadIdx.x);
}
__syncthreads();
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
// GROESTL
uint32_t message[32];
uint32_t state[32];
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread);
int hashPosition = nounce - startNounce;
uint32_t *inpHash = &g_hash[16 * hashPosition];
#pragma unroll 16
for(int k=0; k<16; k++)
message[k] = inpHash[k];
#pragma unroll 14
for(int k=1; k<15; k++)
message[k+16] = 0;
message[16] = 0x80;
message[31] = 0x01000000;
#pragma unroll 32
for(int u=0; u<32; u++)
state[u] = message[u];
state[31] ^= 0x20000;
// Perm
quark_groestl512_perm_P(state, mixtabs);
state[31] ^= 0x20000;
quark_groestl512_perm_Q(message, mixtabs);
#pragma unroll 32
for(int u=0;u<32;u++) state[u] ^= message[u];
#pragma unroll 32
for(int u=0;u<32;u++) message[u] = state[u];
quark_groestl512_perm_P(message, mixtabs);
#pragma unroll 32
for(int u=0;u<32;u++) state[u] ^= message[u];
// Erzeugten Hash rausschreiben
uint32_t *outpHash = &g_hash[16 * hashPosition];
#pragma unroll 16
for(int k=0;k<16;k++) outpHash[k] = state[k+16];
}
#endif
}
#define texDef(texname, texmem, texsource, texsize) \
unsigned int *texmem; \
cudaMalloc(&texmem, texsize); \
cudaMemcpy(texmem, texsource, texsize, cudaMemcpyHostToDevice); \
texname.normalized = 0; \
texname.filterMode = cudaFilterModePoint; \
texname.addressMode[0] = cudaAddressModeClamp; \
{ cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<unsigned int>(); \
cudaBindTexture(NULL, &texname, texmem, &channelDesc, texsize ); } \
__host__
void quark_groestl512_sm20_init(int thr_id, int threads)
{
// Texturen mit obigem Makro initialisieren
texDef(t0up1, d_T0up, T0up_cpu, sizeof(uint32_t)*256);
texDef(t0dn1, d_T0dn, T0dn_cpu, sizeof(uint32_t)*256);
texDef(t1up1, d_T1up, T1up_cpu, sizeof(uint32_t)*256);
texDef(t1dn1, d_T1dn, T1dn_cpu, sizeof(uint32_t)*256);
texDef(t2up1, d_T2up, T2up_cpu, sizeof(uint32_t)*256);
texDef(t2dn1, d_T2dn, T2dn_cpu, sizeof(uint32_t)*256);
texDef(t3up1, d_T3up, T3up_cpu, sizeof(uint32_t)*256);
texDef(t3dn1, d_T3dn, T3dn_cpu, sizeof(uint32_t)*256);
}
__host__
void quark_groestl512_sm20_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
{
int threadsperblock = 512;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
size_t shared_size = 8 * 256 * sizeof(uint32_t);
quark_groestl512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, d_hash, d_nonceVector);
// MyStreamSynchronize(NULL, order, thr_id);
}
__host__
void quark_doublegroestl512_sm20_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
{
int threadsperblock = 512;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
size_t shared_size = 8 * 256 * sizeof(uint32_t);
quark_groestl512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, d_hash, d_nonceVector);
quark_groestl512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, d_hash, d_nonceVector);
// MyStreamSynchronize(NULL, order, thr_id);
}

7
x11/cuda_x11_simd512.cu

@ -181,6 +181,13 @@ do { \ @@ -181,6 +181,13 @@ do { \
#undef BUTTERFLY
}
#if defined(__CUDA_ARCH__)
#if __CUDA_ARCH__ < 300
#define __shfl(var, srcLane, width) (uint32_t)(var)
// #error __shfl() not supported by SM 2.x
#endif
#endif
/**
* FFT_16 using w=2 as 16th root of unity
* Unrolled decimation in frequency (DIF) radix-2 NTT.

Loading…
Cancel
Save