Tanguy Pruvot
9 years ago
4 changed files with 200 additions and 504 deletions
@ -1,543 +1,223 @@
@@ -1,543 +1,223 @@
|
||||
#include <stdio.h> |
||||
#include <memory.h> |
||||
#include "cuda_lyra2_vectors.h" |
||||
#define TPB 8 |
||||
// |
||||
|
||||
#if __CUDA_ARCH__ < 500 |
||||
#define vectype ulonglong4 |
||||
#define u64type uint64_t |
||||
#define memshift 4 |
||||
#elif __CUDA_ARCH__ == 500 |
||||
#define u64type uint2 |
||||
#define vectype uint28 |
||||
#define memshift 3 |
||||
#else |
||||
#define u64type uint2 |
||||
#define vectype uint28 |
||||
#define memshift 4 |
||||
#endif |
||||
#include "cuda_helper.h" |
||||
|
||||
#define TPB 160 |
||||
|
||||
__device__ vectype *DMatrix; |
||||
static __constant__ uint2 blake2b_IV[8] = { |
||||
{ 0xf3bcc908, 0x6a09e667 }, |
||||
{ 0x84caa73b, 0xbb67ae85 }, |
||||
{ 0xfe94f82b, 0x3c6ef372 }, |
||||
{ 0x5f1d36f1, 0xa54ff53a }, |
||||
{ 0xade682d1, 0x510e527f }, |
||||
{ 0x2b3e6c1f, 0x9b05688c }, |
||||
{ 0xfb41bd6b, 0x1f83d9ab }, |
||||
{ 0x137e2179, 0x5be0cd19 } |
||||
}; |
||||
|
||||
#define reduceDuplexRow(rowIn, rowInOut, rowOut) { \ |
||||
for (int i = 0; i < 8; i++) { \ |
||||
for (int j = 0; j < 12; j++) \ |
||||
state[j] ^= Matrix[12 * i + j][rowIn] + Matrix[12 * i + j][rowInOut]; \ |
||||
round_lyra(state); \ |
||||
for (int j = 0; j < 12; j++) \ |
||||
Matrix[j + 12 * i][rowOut] ^= state[j]; \ |
||||
Matrix[0 + 12 * i][rowInOut] ^= state[11]; \ |
||||
Matrix[1 + 12 * i][rowInOut] ^= state[0]; \ |
||||
Matrix[2 + 12 * i][rowInOut] ^= state[1]; \ |
||||
Matrix[3 + 12 * i][rowInOut] ^= state[2]; \ |
||||
Matrix[4 + 12 * i][rowInOut] ^= state[3]; \ |
||||
Matrix[5 + 12 * i][rowInOut] ^= state[4]; \ |
||||
Matrix[6 + 12 * i][rowInOut] ^= state[5]; \ |
||||
Matrix[7 + 12 * i][rowInOut] ^= state[6]; \ |
||||
Matrix[8 + 12 * i][rowInOut] ^= state[7]; \ |
||||
Matrix[9 + 12 * i][rowInOut] ^= state[8]; \ |
||||
Matrix[10+ 12 * i][rowInOut] ^= state[9]; \ |
||||
Matrix[11+ 12 * i][rowInOut] ^= state[10]; \ |
||||
} \ |
||||
} |
||||
|
||||
#define absorbblock(in) { \ |
||||
state[0] ^= Matrix[0][in]; \ |
||||
state[1] ^= Matrix[1][in]; \ |
||||
state[2] ^= Matrix[2][in]; \ |
||||
state[3] ^= Matrix[3][in]; \ |
||||
state[4] ^= Matrix[4][in]; \ |
||||
state[5] ^= Matrix[5][in]; \ |
||||
state[6] ^= Matrix[6][in]; \ |
||||
state[7] ^= Matrix[7][in]; \ |
||||
state[8] ^= Matrix[8][in]; \ |
||||
state[9] ^= Matrix[9][in]; \ |
||||
state[10] ^= Matrix[10][in]; \ |
||||
state[11] ^= Matrix[11][in]; \ |
||||
round_lyra(state); \ |
||||
round_lyra(state); \ |
||||
round_lyra(state); \ |
||||
round_lyra(state); \ |
||||
round_lyra(state); \ |
||||
round_lyra(state); \ |
||||
round_lyra(state); \ |
||||
round_lyra(state); \ |
||||
round_lyra(state); \ |
||||
round_lyra(state); \ |
||||
round_lyra(state); \ |
||||
round_lyra(state); \ |
||||
} |
||||
|
||||
#ifdef __CUDA_ARCH__ |
||||
static __device__ __forceinline__ |
||||
void Gfunc_v35(uint2 &a, uint2 &b, uint2 &c, uint2 &d) |
||||
void Gfunc(uint2 & a, uint2 &b, uint2 &c, uint2 &d) |
||||
{ |
||||
a += b; d ^= a; d = SWAPUINT2(d); |
||||
c += d; b ^= c; b = ROR24(b); |
||||
a += b; d ^= a; d = ROR16(d); |
||||
c += d; b ^= c; b = ROR2(b, 24); |
||||
a += b; d ^= a; d = ROR2(d, 16); |
||||
c += d; b ^= c; b = ROR2(b, 63); |
||||
} |
||||
|
||||
#if __CUDA_ARCH__ < 500 |
||||
static __device__ __forceinline__ |
||||
void Gfunc_v35(unsigned long long &a, unsigned long long &b, unsigned long long &c, unsigned long long &d) |
||||
__device__ __forceinline__ |
||||
static void round_lyra(uint2 *s) |
||||
{ |
||||
a += b; d ^= a; d = ROTR64(d, 32); |
||||
c += d; b ^= c; b = ROTR64(b, 24); |
||||
a += b; d ^= a; d = ROTR64(d, 16); |
||||
c += d; b ^= c; b = ROTR64(b, 63); |
||||
Gfunc(s[0], s[4], s[8], s[12]); |
||||
Gfunc(s[1], s[5], s[9], s[13]); |
||||
Gfunc(s[2], s[6], s[10], s[14]); |
||||
Gfunc(s[3], s[7], s[11], s[15]); |
||||
Gfunc(s[0], s[5], s[10], s[15]); |
||||
Gfunc(s[1], s[6], s[11], s[12]); |
||||
Gfunc(s[2], s[7], s[8], s[13]); |
||||
Gfunc(s[3], s[4], s[9], s[14]); |
||||
} |
||||
#endif |
||||
|
||||
static __device__ __forceinline__ |
||||
void round_lyra_v35(vectype* s) |
||||
__device__ __forceinline__ |
||||
void reduceDuplexRowSetup(const int rowIn, const int rowInOut, const int rowOut, uint2 state[16], uint2 Matrix[96][8]) |
||||
{ |
||||
Gfunc_v35(s[0].x, s[1].x, s[2].x, s[3].x); |
||||
Gfunc_v35(s[0].y, s[1].y, s[2].y, s[3].y); |
||||
Gfunc_v35(s[0].z, s[1].z, s[2].z, s[3].z); |
||||
Gfunc_v35(s[0].w, s[1].w, s[2].w, s[3].w); |
||||
|
||||
Gfunc_v35(s[0].x, s[1].y, s[2].z, s[3].w); |
||||
Gfunc_v35(s[0].y, s[1].z, s[2].w, s[3].x); |
||||
Gfunc_v35(s[0].z, s[1].w, s[2].x, s[3].y); |
||||
Gfunc_v35(s[0].w, s[1].x, s[2].y, s[3].z); |
||||
} |
||||
#else |
||||
#define round_lyra_v35(s) {} |
||||
#if __CUDA_ARCH__ > 500 |
||||
#pragma unroll |
||||
#endif |
||||
|
||||
static __device__ __forceinline__ |
||||
void reduceDuplex(vectype state[4], uint32_t thread) |
||||
{ |
||||
vectype state1[3]; |
||||
uint32_t ps1 = (256 * thread); |
||||
uint32_t ps2 = (memshift * 7 + memshift * 8 + 256 * thread); |
||||
|
||||
#pragma unroll 4 |
||||
for (int i = 0; i < 8; i++) |
||||
{ |
||||
uint32_t s1 = ps1 + i*memshift; |
||||
uint32_t s2 = ps2 - i*memshift; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] = __ldg4(&(DMatrix+s1)[j]); |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= state1[j]; |
||||
|
||||
round_lyra_v35(state); |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] ^= state[j]; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s2)[j] = state1[j]; |
||||
} |
||||
} |
||||
|
||||
static __device__ __forceinline__ |
||||
void reduceDuplexV3(vectype state[4], uint32_t thread) |
||||
{ |
||||
vectype state1[3]; |
||||
uint32_t ps1 = (256 * thread); |
||||
// colomn row |
||||
uint32_t ps2 = (memshift * 7 * 8 + memshift * 1 + 64 * memshift * thread); |
||||
|
||||
#pragma unroll 4 |
||||
for (int i = 0; i < 8; i++) |
||||
{ |
||||
uint32_t s1 = ps1 + 8 * i *memshift; |
||||
uint32_t s2 = ps2 - 8 * i *memshift; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] = __ldg4(&(DMatrix + s1)[j]); |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= state1[j]; |
||||
|
||||
round_lyra_v35(state); |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] ^= state[j]; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s2)[j] = state1[j]; |
||||
} |
||||
} |
||||
|
||||
static __device__ __forceinline__ |
||||
void reduceDuplexRowSetupV2(const int rowIn, const int rowInOut, const int rowOut, vectype state[4], uint32_t thread) |
||||
{ |
||||
vectype state2[3],state1[3]; |
||||
|
||||
uint32_t ps1 = ( memshift * 8 * rowIn + 256 * thread); |
||||
uint32_t ps2 = ( memshift * 8 * rowInOut + 256 * thread); |
||||
uint32_t ps3 = (memshift*7 + memshift * 8 * rowOut + 256 * thread); |
||||
|
||||
#pragma unroll 1 |
||||
for (int i = 0; i < 8; i++) |
||||
{ |
||||
uint32_t s1 = ps1 + i*memshift; |
||||
uint32_t s2 = ps2 + i*memshift; |
||||
uint32_t s3 = ps3 - i*memshift; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state1[j]= __ldg4(&(DMatrix + s1)[j]); |
||||
for (int j = 0; j < 3; j++) |
||||
state2[j]= __ldg4(&(DMatrix + s2)[j]); |
||||
for (int j = 0; j < 3; j++) { |
||||
vectype tmp = state1[j] + state2[j]; |
||||
state[j] ^= tmp; |
||||
} |
||||
|
||||
round_lyra_v35(state); |
||||
|
||||
for (int j = 0; j < 3; j++) { |
||||
state1[j] ^= state[j]; |
||||
(DMatrix + s3)[j] = state1[j]; |
||||
} |
||||
|
||||
((uint2*)state2)[0] ^= ((uint2*)state)[11]; |
||||
for (int j = 0; j < 11; j++) |
||||
((uint2*)state2)[j+1] ^= ((uint2*)state)[j]; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s2)[j] = state2[j]; |
||||
} |
||||
} |
||||
|
||||
static __device__ __forceinline__ |
||||
void reduceDuplexRowSetupV3(const int rowIn, const int rowInOut, const int rowOut, vectype state[4], uint32_t thread) |
||||
{ |
||||
vectype state2[3], state1[3]; |
||||
|
||||
uint32_t ps1 = ( memshift * rowIn + 64 * memshift * thread); |
||||
uint32_t ps2 = (memshift * rowInOut + 64 * memshift* thread); |
||||
uint32_t ps3 = (8 * memshift * 7 + memshift * rowOut + 64 * memshift * thread); |
||||
/* |
||||
uint32_t ps1 = (256 * thread); |
||||
uint32_t ps2 = (256 * thread); |
||||
uint32_t ps3 = (256 * thread); |
||||
*/ |
||||
#pragma nounroll |
||||
for (int i = 0; i < 8; i++) |
||||
{ |
||||
uint32_t s1 = ps1 + 8*i*memshift; |
||||
uint32_t s2 = ps2 + 8*i*memshift; |
||||
uint32_t s3 = ps3 - 8*i*memshift; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] = __ldg4(&(DMatrix + s1 )[j]); |
||||
for (int j = 0; j < 3; j++) |
||||
state2[j] = __ldg4(&(DMatrix + s2 )[j]); |
||||
for (int j = 0; j < 3; j++) { |
||||
vectype tmp = state1[j] + state2[j]; |
||||
state[j] ^= tmp; |
||||
} |
||||
|
||||
round_lyra_v35(state); |
||||
|
||||
for (int j = 0; j < 3; j++) { |
||||
state1[j] ^= state[j]; |
||||
(DMatrix + s3)[j] = state1[j]; |
||||
} |
||||
|
||||
((uint2*)state2)[0] ^= ((uint2*)state)[11]; |
||||
for (int j = 0; j < 11; j++) |
||||
((uint2*)state2)[j + 1] ^= ((uint2*)state)[j]; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s2)[j] = state2[j]; |
||||
} |
||||
} |
||||
|
||||
|
||||
static __device__ __forceinline__ |
||||
void reduceDuplexRowtV2(const int rowIn, const int rowInOut, const int rowOut, vectype* state, uint32_t thread) |
||||
{ |
||||
vectype state1[3], state2[3]; |
||||
|
||||
uint32_t ps1 = (memshift * 8 * rowIn + 256 * thread); |
||||
uint32_t ps2 = (memshift * 8 * rowInOut + 256 * thread); |
||||
uint32_t ps3 = (memshift * 8 * rowOut + 256 * thread); |
||||
|
||||
#pragma unroll 1 |
||||
for (int i = 0; i < 8; i++) |
||||
{ |
||||
uint32_t s1 = ps1 + i*memshift; |
||||
uint32_t s2 = ps2 + i*memshift; |
||||
uint32_t s3 = ps3 + i*memshift; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] = __ldg4(&(DMatrix + s1)[j]); |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state2[j] = __ldg4(&(DMatrix + s2)[j]); |
||||
#pragma unroll |
||||
for (int j = 0; j < 12; j++) |
||||
state[j] ^= Matrix[12 * i + j][rowIn] + Matrix[12 * i + j][rowInOut]; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] += state2[j]; |
||||
round_lyra(state); |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= state1[j]; |
||||
|
||||
round_lyra_v35(state); |
||||
|
||||
((uint2*)state2)[0] ^= ((uint2*)state)[11]; |
||||
for (int j = 0; j < 11; j++) |
||||
((uint2*)state2)[j + 1] ^= ((uint2*)state)[j]; |
||||
|
||||
if (rowInOut != rowOut) { |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s2)[j] = state2[j]; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s3)[j] ^= state[j]; |
||||
|
||||
} else { |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state2[j] ^= state[j]; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s2)[j]=state2[j]; |
||||
} |
||||
#pragma unroll |
||||
for (int j = 0; j < 12; j++) |
||||
Matrix[j + 84 - 12 * i][rowOut] = Matrix[12 * i + j][rowIn] ^ state[j]; |
||||
|
||||
Matrix[0 + 12 * i][rowInOut] ^= state[11]; |
||||
Matrix[1 + 12 * i][rowInOut] ^= state[0]; |
||||
Matrix[2 + 12 * i][rowInOut] ^= state[1]; |
||||
Matrix[3 + 12 * i][rowInOut] ^= state[2]; |
||||
Matrix[4 + 12 * i][rowInOut] ^= state[3]; |
||||
Matrix[5 + 12 * i][rowInOut] ^= state[4]; |
||||
Matrix[6 + 12 * i][rowInOut] ^= state[5]; |
||||
Matrix[7 + 12 * i][rowInOut] ^= state[6]; |
||||
Matrix[8 + 12 * i][rowInOut] ^= state[7]; |
||||
Matrix[9 + 12 * i][rowInOut] ^= state[8]; |
||||
Matrix[10 + 12 * i][rowInOut] ^= state[9]; |
||||
Matrix[11 + 12 * i][rowInOut] ^= state[10]; |
||||
} |
||||
} |
||||
|
||||
static __device__ __forceinline__ |
||||
void reduceDuplexRowtV3(const int rowIn, const int rowInOut, const int rowOut, vectype* state, uint32_t thread) |
||||
{ |
||||
|
||||
vectype state1[3], state2[3]; |
||||
uint32_t ps1 = (memshift * rowIn + 64 * memshift * thread); |
||||
uint32_t ps2 = (memshift * rowInOut + 64 * memshift * thread); |
||||
uint32_t ps3 = (memshift * rowOut + 64 *memshift * thread); |
||||
|
||||
#pragma nounroll |
||||
for (int i = 0; i < 8; i++) |
||||
{ |
||||
uint32_t s1 = ps1 + 8 * i*memshift; |
||||
uint32_t s2 = ps2 + 8 * i*memshift; |
||||
uint32_t s3 = ps3 + 8 * i*memshift; |
||||
|
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] = __ldg4(&(DMatrix + s1)[j]); |
||||
|
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state2[j] = __ldg4(&(DMatrix + s2)[j]); |
||||
|
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] += state2[j]; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= state1[j]; |
||||
|
||||
|
||||
round_lyra_v35(state); |
||||
|
||||
((uint2*)state2)[0] ^= ((uint2*)state)[11]; |
||||
for (int j = 0; j < 11; j++) |
||||
((uint2*)state2)[j + 1] ^= ((uint2*)state)[j]; |
||||
|
||||
if (rowInOut != rowOut) { |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s2)[j] = state2[j]; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s3)[j] ^= state[j]; |
||||
|
||||
} |
||||
else { |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state2[j] ^= state[j]; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s2)[j] = state2[j]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
|
||||
#if __CUDA_ARCH__ < 500 |
||||
__global__ __launch_bounds__(48, 1) |
||||
#elif __CUDA_ARCH__ == 500 |
||||
__global__ __launch_bounds__(16, 1) |
||||
#else |
||||
__global__ __launch_bounds__(TPB, 1) |
||||
#endif |
||||
void lyra2_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint2 *outputHash) |
||||
void lyra2_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint64_t *outputHash) |
||||
{ |
||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
vectype state[4]; |
||||
|
||||
#if __CUDA_ARCH__ > 350 |
||||
const uint28 blake2b_IV[2] = { |
||||
{{ 0xf3bcc908, 0x6a09e667 }, { 0x84caa73b, 0xbb67ae85 }, { 0xfe94f82b, 0x3c6ef372 }, { 0x5f1d36f1, 0xa54ff53a }}, |
||||
{{ 0xade682d1, 0x510e527f }, { 0x2b3e6c1f, 0x9b05688c }, { 0xfb41bd6b, 0x1f83d9ab }, { 0x137e2179, 0x5be0cd19 }} |
||||
}; |
||||
#else |
||||
const ulonglong4 blake2b_IV[2] = { |
||||
{ 0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1 }, |
||||
{ 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179 } |
||||
}; |
||||
#endif |
||||
|
||||
#if __CUDA_ARCH__ == 350 |
||||
if (thread < threads) |
||||
#endif |
||||
{ |
||||
((uint2*)state)[0] = __ldg(&outputHash[thread]); |
||||
((uint2*)state)[1] = __ldg(&outputHash[thread + threads]); |
||||
((uint2*)state)[2] = __ldg(&outputHash[thread + 2 * threads]); |
||||
((uint2*)state)[3] = __ldg(&outputHash[thread + 3 * threads]); |
||||
// state[0] = __ldg4(&((vectype*)outputHash)[thread]); |
||||
state[1] = state[0]; |
||||
state[2] = ((vectype*)blake2b_IV)[0]; |
||||
state[3] = ((vectype*)blake2b_IV)[1]; |
||||
uint2 state[16]; |
||||
|
||||
#pragma unroll |
||||
for (int i = 0; i<4; i++) { |
||||
LOHI(state[i].x, state[i].y, outputHash[threads*i + thread]); |
||||
} //password |
||||
|
||||
for (int i = 0; i<24; i++) { //because 12 is not enough |
||||
round_lyra_v35(state); |
||||
#pragma unroll |
||||
for (int i = 0; i<4; i++) { |
||||
state[i + 4] = state[i]; |
||||
} //salt |
||||
|
||||
#pragma unroll |
||||
for (int i = 0; i<8; i++) { |
||||
state[i + 8] = blake2b_IV[i]; |
||||
} |
||||
|
||||
uint32_t ps1 = (memshift * 7 + 256 * thread); |
||||
// blake2blyra x2 |
||||
//#pragma unroll 24 |
||||
for (int i = 0; i<24; i++) { |
||||
round_lyra(state); |
||||
} //because 12 is not enough |
||||
|
||||
uint2 Matrix[96][8]; // not cool |
||||
|
||||
// reducedSqueezeRow0 |
||||
#pragma unroll 8 |
||||
for (int i = 0; i < 8; i++) |
||||
{ |
||||
uint32_t s1 = ps1 - memshift * i; |
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s1)[j] = (state)[j]; |
||||
|
||||
round_lyra_v35(state); |
||||
#pragma unroll 12 |
||||
for (int j = 0; j<12; j++) { |
||||
Matrix[j + 84 - 12 * i][0] = state[j]; |
||||
} |
||||
|
||||
|
||||
reduceDuplex(state, thread); |
||||
|
||||
reduceDuplexRowSetupV2(1, 0, 2, state, thread); |
||||
reduceDuplexRowSetupV2(2, 1, 3, state, thread); |
||||
reduceDuplexRowSetupV2(3, 0, 4, state, thread); |
||||
reduceDuplexRowSetupV2(4, 3, 5, state, thread); |
||||
reduceDuplexRowSetupV2(5, 2, 6, state, thread); |
||||
reduceDuplexRowSetupV2(6, 1, 7, state, thread); |
||||
uint32_t rowa = ((uint2*)state)[0].x & 7; |
||||
|
||||
reduceDuplexRowtV2(7, rowa, 0, state, thread); |
||||
rowa = ((uint2*)state)[0].x & 7; |
||||
reduceDuplexRowtV2(0, rowa, 3, state, thread); |
||||
rowa = ((uint2*)state)[0].x & 7; |
||||
reduceDuplexRowtV2(3, rowa, 6, state, thread); |
||||
rowa = ((uint2*)state)[0].x & 7; |
||||
reduceDuplexRowtV2(6, rowa, 1, state, thread); |
||||
rowa = ((uint2*)state)[0].x & 7; |
||||
reduceDuplexRowtV2(1, rowa, 4, state, thread); |
||||
rowa = ((uint2*)state)[0].x & 7; |
||||
reduceDuplexRowtV2(4, rowa, 7, state, thread); |
||||
rowa = ((uint2*)state)[0].x & 7; |
||||
reduceDuplexRowtV2(7, rowa, 2, state, thread); |
||||
rowa = ((uint2*)state)[0].x & 7; |
||||
reduceDuplexRowtV2(2, rowa, 5, state, thread); |
||||
|
||||
uint32_t shift = (memshift * 8 * rowa + 256 * thread); |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= __ldg4(&(DMatrix + shift)[j]); |
||||
|
||||
for (int i = 0; i < 12; i++) |
||||
round_lyra_v35(state); |
||||
|
||||
|
||||
outputHash[thread]= ((uint2*)state)[0]; |
||||
outputHash[thread + threads] = ((uint2*)state)[1]; |
||||
outputHash[thread + 2 * threads] = ((uint2*)state)[2]; |
||||
outputHash[thread + 3 * threads] = ((uint2*)state)[3]; |
||||
// ((vectype*)outputHash)[thread] = state[0]; |
||||
|
||||
} //thread |
||||
round_lyra(state); |
||||
} |
||||
|
||||
#if __CUDA_ARCH__ < 500 |
||||
__global__ __launch_bounds__(48, 1) |
||||
#elif __CUDA_ARCH__ == 500 |
||||
__global__ __launch_bounds__(16, 1) |
||||
#else |
||||
__global__ __launch_bounds__(TPB, 1) |
||||
#endif |
||||
void lyra2_gpu_hash_32_v3(uint32_t threads, uint32_t startNounce, uint2 *outputHash) |
||||
{ |
||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
|
||||
vectype state[4]; |
||||
|
||||
#if __CUDA_ARCH__ > 350 |
||||
const uint28 blake2b_IV[2] = { |
||||
{ { 0xf3bcc908, 0x6a09e667 }, { 0x84caa73b, 0xbb67ae85 }, { 0xfe94f82b, 0x3c6ef372 }, { 0x5f1d36f1, 0xa54ff53a } }, |
||||
{ { 0xade682d1, 0x510e527f }, { 0x2b3e6c1f, 0x9b05688c }, { 0xfb41bd6b, 0x1f83d9ab }, { 0x137e2179, 0x5be0cd19 } } |
||||
}; |
||||
#else |
||||
const ulonglong4 blake2b_IV[2] = { |
||||
{ 0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1 }, |
||||
{ 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179 } |
||||
}; |
||||
#endif |
||||
|
||||
|
||||
#if __CUDA_ARCH__ == 350 |
||||
if (thread < threads) |
||||
#endif |
||||
{ |
||||
((uint2*)state)[0] = __ldg(&outputHash[thread]); |
||||
((uint2*)state)[1] = __ldg(&outputHash[thread + threads]); |
||||
((uint2*)state)[2] = __ldg(&outputHash[thread + 2 * threads]); |
||||
((uint2*)state)[3] = __ldg(&outputHash[thread + 3 * threads]); |
||||
|
||||
state[1] = state[0]; |
||||
|
||||
state[2] = ((vectype*)blake2b_IV)[0]; |
||||
state[3] = ((vectype*)blake2b_IV)[1]; |
||||
|
||||
for (int i = 0; i<24; i++) |
||||
round_lyra_v35(state); //because 12 is not enough |
||||
|
||||
uint32_t ps1 = (8 * memshift * 7 + 64 * memshift * thread); |
||||
|
||||
// reducedSqueezeRow1 |
||||
#pragma unroll 8 |
||||
for (int i = 0; i < 8; i++) |
||||
{ |
||||
uint32_t s1 = ps1 - 8 * memshift * i; |
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s1)[j] = (state)[j]; |
||||
|
||||
round_lyra_v35(state); |
||||
} |
||||
|
||||
|
||||
reduceDuplexV3(state, thread); |
||||
|
||||
reduceDuplexRowSetupV3(1, 0, 2, state, thread); |
||||
reduceDuplexRowSetupV3(2, 1, 3, state, thread); |
||||
reduceDuplexRowSetupV3(3, 0, 4, state, thread); |
||||
reduceDuplexRowSetupV3(4, 3, 5, state, thread); |
||||
reduceDuplexRowSetupV3(5, 2, 6, state, thread); |
||||
reduceDuplexRowSetupV3(6, 1, 7, state, thread); |
||||
uint32_t rowa = ((uint2*)state)[0].x & 7; |
||||
|
||||
reduceDuplexRowtV3(7, rowa, 0, state, thread); |
||||
rowa = ((uint2*)state)[0].x & 7; |
||||
reduceDuplexRowtV3(0, rowa, 3, state, thread); |
||||
rowa = ((uint2*)state)[0].x & 7; |
||||
reduceDuplexRowtV3(3, rowa, 6, state, thread); |
||||
rowa = ((uint2*)state)[0].x & 7; |
||||
reduceDuplexRowtV3(6, rowa, 1, state, thread); |
||||
rowa = ((uint2*)state)[0].x & 7; |
||||
reduceDuplexRowtV3(1, rowa, 4, state, thread); |
||||
rowa = ((uint2*)state)[0].x & 7; |
||||
reduceDuplexRowtV3(4, rowa, 7, state, thread); |
||||
rowa = ((uint2*)state)[0].x & 7; |
||||
reduceDuplexRowtV3(7, rowa, 2, state, thread); |
||||
rowa = ((uint2*)state)[0].x & 7; |
||||
reduceDuplexRowtV3(2, rowa, 5, state, thread); |
||||
|
||||
uint32_t shift = (memshift * rowa + 64 * memshift * thread); |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= __ldg4(&(DMatrix + shift)[j]); |
||||
|
||||
for (int i = 0; i < 12; i++) |
||||
round_lyra_v35(state); |
||||
|
||||
|
||||
outputHash[thread] = ((uint2*)state)[0]; |
||||
outputHash[thread + threads] = ((uint2*)state)[1]; |
||||
outputHash[thread + 2 * threads] = ((uint2*)state)[2]; |
||||
outputHash[thread + 3 * threads] = ((uint2*)state)[3]; |
||||
#pragma unroll 12 |
||||
for (int j = 0; j<12; j++) { |
||||
state[j] ^= Matrix[j + 12 * i][0]; |
||||
} |
||||
round_lyra(state); |
||||
#pragma unroll 12 |
||||
for (int j = 0; j<12; j++) { |
||||
Matrix[j + 84 - 12 * i][1] = Matrix[j + 12 * i][0] ^ state[j]; |
||||
} |
||||
} |
||||
|
||||
reduceDuplexRowSetup(1, 0, 2,state, Matrix); |
||||
reduceDuplexRowSetup(2, 1, 3, state, Matrix); |
||||
reduceDuplexRowSetup(3, 0, 4, state, Matrix); |
||||
reduceDuplexRowSetup(4, 3, 5, state, Matrix); |
||||
reduceDuplexRowSetup(5, 2, 6, state, Matrix); |
||||
reduceDuplexRowSetup(6, 1, 7, state, Matrix); |
||||
|
||||
uint32_t rowa; |
||||
rowa = state[0].x & 7; |
||||
reduceDuplexRow(7, rowa, 0); |
||||
rowa = state[0].x & 7; |
||||
reduceDuplexRow(0, rowa, 3); |
||||
rowa = state[0].x & 7; |
||||
reduceDuplexRow(3, rowa, 6); |
||||
rowa = state[0].x & 7; |
||||
reduceDuplexRow(6, rowa, 1); |
||||
rowa = state[0].x & 7; |
||||
reduceDuplexRow(1, rowa, 4); |
||||
rowa = state[0].x & 7; |
||||
reduceDuplexRow(4, rowa, 7); |
||||
rowa = state[0].x & 7; |
||||
reduceDuplexRow(7, rowa, 2); |
||||
rowa = state[0].x & 7; |
||||
reduceDuplexRow(2, rowa, 5); |
||||
|
||||
absorbblock(rowa); |
||||
|
||||
#pragma unroll |
||||
for (int i = 0; i<4; i++) { |
||||
outputHash[threads*i + thread] = devectorize(state[i]); |
||||
} //password |
||||
|
||||
} //thread |
||||
} |
||||
|
||||
__host__ |
||||
void lyra2_cpu_init(int thr_id, uint32_t threads, uint64_t *hash) |
||||
{ |
||||
cudaMemcpyToSymbol(DMatrix, &hash, sizeof(hash), 0, cudaMemcpyHostToDevice); |
||||
} |
||||
|
||||
void lyra2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_outputHash, int order) |
||||
{ |
||||
uint32_t tpb; |
||||
if (device_sm[device_map[thr_id]]<500) |
||||
tpb = 48; |
||||
else if (device_sm[device_map[thr_id]]==500) |
||||
tpb = 16; |
||||
else |
||||
tpb = TPB; |
||||
|
||||
dim3 grid((threads + tpb - 1) / tpb); |
||||
dim3 block(tpb); |
||||
const uint32_t threadsperblock = TPB; |
||||
|
||||
if (device_sm[device_map[thr_id]] == 500) |
||||
lyra2_gpu_hash_32 <<< grid, block >>> (threads, startNounce, (uint2*)d_outputHash); |
||||
else |
||||
lyra2_gpu_hash_32_v3 <<< grid, block >>> (threads, startNounce, (uint2*)d_outputHash); |
||||
dim3 grid((threads + threadsperblock - 1) / threadsperblock); |
||||
dim3 block(threadsperblock); |
||||
|
||||
MyStreamSynchronize(NULL, order, thr_id); |
||||
lyra2_gpu_hash_32 <<<grid, block>>> (threads, startNounce, d_outputHash); |
||||
} |
||||
|
Loading…
Reference in new issue