Add Lyra2 algo, based on Vertcoin published code
Seems to be djm34 work, i recognize the code style ;) Code was cleaned/indented and adapted to my fork... Only usable on the test pool until 16 december 2014!
This commit is contained in:
parent
6c7fce187b
commit
c5b349e079
250
Algo256/cuda_blake256.cu
Normal file
250
Algo256/cuda_blake256.cu
Normal file
@ -0,0 +1,250 @@
|
|||||||
|
/**
|
||||||
|
* Blake-256 Cuda Kernel (Tested on SM 5.0)
|
||||||
|
*
|
||||||
|
* Tanguy Pruvot - Nov. 2014
|
||||||
|
*/
|
||||||
|
extern "C" {
|
||||||
|
#include "sph/sph_blake.h"
|
||||||
|
}
|
||||||
|
|
||||||
|
#include "cuda_helper.h"
|
||||||
|
|
||||||
|
#include <memory.h>
|
||||||
|
|
||||||
|
static __device__ uint64_t cuda_swab32ll(uint64_t x) {
|
||||||
|
return MAKE_ULONGLONG(cuda_swab32(_LOWORD(x)), cuda_swab32(_HIWORD(x)));
|
||||||
|
}
|
||||||
|
|
||||||
|
__constant__ static uint32_t c_data[20];
|
||||||
|
|
||||||
|
__constant__ static uint32_t sigma[16][16];
|
||||||
|
static uint32_t c_sigma[16][16] = {
|
||||||
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
|
||||||
|
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
|
||||||
|
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
|
||||||
|
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
|
||||||
|
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
|
||||||
|
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
|
||||||
|
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
|
||||||
|
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
|
||||||
|
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
|
||||||
|
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
|
||||||
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
|
||||||
|
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
|
||||||
|
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
|
||||||
|
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
|
||||||
|
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
|
||||||
|
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }
|
||||||
|
};
|
||||||
|
|
||||||
|
static const uint32_t c_IV256[8] = {
|
||||||
|
0x6A09E667, 0xBB67AE85,
|
||||||
|
0x3C6EF372, 0xA54FF53A,
|
||||||
|
0x510E527F, 0x9B05688C,
|
||||||
|
0x1F83D9AB, 0x5BE0CD19
|
||||||
|
};
|
||||||
|
|
||||||
|
__device__ __constant__ static uint32_t cpu_h[8];
|
||||||
|
|
||||||
|
__device__ __constant__ static uint32_t u256[16];
|
||||||
|
static const uint32_t c_u256[16] = {
|
||||||
|
0x243F6A88, 0x85A308D3,
|
||||||
|
0x13198A2E, 0x03707344,
|
||||||
|
0xA4093822, 0x299F31D0,
|
||||||
|
0x082EFA98, 0xEC4E6C89,
|
||||||
|
0x452821E6, 0x38D01377,
|
||||||
|
0xBE5466CF, 0x34E90C6C,
|
||||||
|
0xC0AC29B7, 0xC97C50DD,
|
||||||
|
0x3F84D5B5, 0xB5470917
|
||||||
|
};
|
||||||
|
|
||||||
|
#define GS2(a,b,c,d,x) { \
|
||||||
|
const uint32_t idx1 = sigma[r][x]; \
|
||||||
|
const uint32_t idx2 = sigma[r][x+1]; \
|
||||||
|
v[a] += (m[idx1] ^ u256[idx2]) + v[b]; \
|
||||||
|
v[d] = SPH_ROTL32(v[d] ^ v[a], 16); \
|
||||||
|
v[c] += v[d]; \
|
||||||
|
v[b] = SPH_ROTR32(v[b] ^ v[c], 12); \
|
||||||
|
\
|
||||||
|
v[a] += (m[idx2] ^ u256[idx1]) + v[b]; \
|
||||||
|
v[d] = SPH_ROTR32(v[d] ^ v[a], 8); \
|
||||||
|
v[c] += v[d]; \
|
||||||
|
v[b] = SPH_ROTR32(v[b] ^ v[c], 7); \
|
||||||
|
}
|
||||||
|
|
||||||
|
//#define ROTL32(x, n) ((x) << (n)) | ((x) >> (32 - (n)))
|
||||||
|
#define ROTR32(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
|
||||||
|
#define hostGS(a,b,c,d,x) { \
|
||||||
|
const uint32_t idx1 = c_sigma[r][x]; \
|
||||||
|
const uint32_t idx2 = c_sigma[r][x+1]; \
|
||||||
|
v[a] += (m[idx1] ^ c_u256[idx2]) + v[b]; \
|
||||||
|
v[d] = ROTR32(v[d] ^ v[a], 16); \
|
||||||
|
v[c] += v[d]; \
|
||||||
|
v[b] = ROTR32(v[b] ^ v[c], 12); \
|
||||||
|
\
|
||||||
|
v[a] += (m[idx2] ^ c_u256[idx1]) + v[b]; \
|
||||||
|
v[d] = ROTR32(v[d] ^ v[a], 8); \
|
||||||
|
v[c] += v[d]; \
|
||||||
|
v[b] = ROTR32(v[b] ^ v[c], 7); \
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Second part (64-80) msg never change, store it */
|
||||||
|
__device__ __constant__ static const uint32_t c_Padding[16] = {
|
||||||
|
0, 0, 0, 0,
|
||||||
|
0x80000000, 0, 0, 0,
|
||||||
|
0, 0, 0, 0,
|
||||||
|
0, 1, 0, 640,
|
||||||
|
};
|
||||||
|
|
||||||
|
__host__ __forceinline__
|
||||||
|
static void blake256_compress1st(uint32_t *h, const uint32_t *block, const uint32_t T0)
|
||||||
|
{
|
||||||
|
uint32_t m[16];
|
||||||
|
uint32_t v[16];
|
||||||
|
|
||||||
|
for (int i = 0; i < 16; i++) {
|
||||||
|
m[i] = block[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < 8; i++)
|
||||||
|
v[i] = h[i];
|
||||||
|
|
||||||
|
v[8] = c_u256[0];
|
||||||
|
v[9] = c_u256[1];
|
||||||
|
v[10] = c_u256[2];
|
||||||
|
v[11] = c_u256[3];
|
||||||
|
|
||||||
|
v[12] = c_u256[4] ^ T0;
|
||||||
|
v[13] = c_u256[5] ^ T0;
|
||||||
|
v[14] = c_u256[6];
|
||||||
|
v[15] = c_u256[7];
|
||||||
|
|
||||||
|
for (int r = 0; r < 14; r++) {
|
||||||
|
/* column step */
|
||||||
|
hostGS(0, 4, 0x8, 0xC, 0x0);
|
||||||
|
hostGS(1, 5, 0x9, 0xD, 0x2);
|
||||||
|
hostGS(2, 6, 0xA, 0xE, 0x4);
|
||||||
|
hostGS(3, 7, 0xB, 0xF, 0x6);
|
||||||
|
/* diagonal step */
|
||||||
|
hostGS(0, 5, 0xA, 0xF, 0x8);
|
||||||
|
hostGS(1, 6, 0xB, 0xC, 0xA);
|
||||||
|
hostGS(2, 7, 0x8, 0xD, 0xC);
|
||||||
|
hostGS(3, 4, 0x9, 0xE, 0xE);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < 16; i++) {
|
||||||
|
int j = i & 7;
|
||||||
|
h[j] ^= v[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__device__ __forceinline__
|
||||||
|
static void blake256_compress2nd(uint32_t *h, const uint32_t *block, const uint32_t T0)
|
||||||
|
{
|
||||||
|
uint32_t m[16];
|
||||||
|
uint32_t v[16];
|
||||||
|
|
||||||
|
m[0] = block[0];
|
||||||
|
m[1] = block[1];
|
||||||
|
m[2] = block[2];
|
||||||
|
m[3] = block[3];
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 4; i < 16; i++) {
|
||||||
|
m[i] = c_Padding[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll 8
|
||||||
|
for (int i = 0; i < 8; i++)
|
||||||
|
v[i] = h[i];
|
||||||
|
|
||||||
|
v[8] = u256[0];
|
||||||
|
v[9] = u256[1];
|
||||||
|
v[10] = u256[2];
|
||||||
|
v[11] = u256[3];
|
||||||
|
|
||||||
|
v[12] = u256[4] ^ T0;
|
||||||
|
v[13] = u256[5] ^ T0;
|
||||||
|
v[14] = u256[6];
|
||||||
|
v[15] = u256[7];
|
||||||
|
|
||||||
|
#pragma unroll 14
|
||||||
|
for (int r = 0; r < 14; r++) {
|
||||||
|
/* column step */
|
||||||
|
GS2(0, 4, 0x8, 0xC, 0x0);
|
||||||
|
GS2(1, 5, 0x9, 0xD, 0x2);
|
||||||
|
GS2(2, 6, 0xA, 0xE, 0x4);
|
||||||
|
GS2(3, 7, 0xB, 0xF, 0x6);
|
||||||
|
/* diagonal step */
|
||||||
|
GS2(0, 5, 0xA, 0xF, 0x8);
|
||||||
|
GS2(1, 6, 0xB, 0xC, 0xA);
|
||||||
|
GS2(2, 7, 0x8, 0xD, 0xC);
|
||||||
|
GS2(3, 4, 0x9, 0xE, 0xE);
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll 16
|
||||||
|
for (int i = 0; i < 16; i++) {
|
||||||
|
int j = i & 7;
|
||||||
|
h[j] ^= v[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__global__ __launch_bounds__(256,3)
|
||||||
|
void blake256_gpu_hash_80(const uint32_t threads, const uint32_t startNonce, uint64_t * Hash)
|
||||||
|
{
|
||||||
|
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
||||||
|
if (thread < threads)
|
||||||
|
{
|
||||||
|
const uint32_t nonce = startNonce + thread;
|
||||||
|
uint32_t h[8];
|
||||||
|
uint32_t input[4];
|
||||||
|
|
||||||
|
#pragma unroll 8
|
||||||
|
for (int i = 0; i<8; i++) { h[i] = cpu_h[i];}
|
||||||
|
|
||||||
|
#pragma unroll 3
|
||||||
|
for (int i = 0; i < 3; ++i) input[i] = c_data[16 + i];
|
||||||
|
|
||||||
|
input[3] = nonce;
|
||||||
|
blake256_compress2nd(h, input, 640);
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i<4; i++) {
|
||||||
|
Hash[i*threads + thread] = cuda_swab32ll(MAKE_ULONGLONG(h[2 * i], h[2*i+1]));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__host__
|
||||||
|
void blake256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, uint64_t *Hash, int order)
|
||||||
|
{
|
||||||
|
const int threadsperblock = 256;
|
||||||
|
|
||||||
|
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
|
||||||
|
dim3 block(threadsperblock);
|
||||||
|
|
||||||
|
blake256_gpu_hash_80 <<<grid, block>>> (threads, startNonce, Hash);
|
||||||
|
MyStreamSynchronize(NULL, order, thr_id);
|
||||||
|
}
|
||||||
|
|
||||||
|
__host__
|
||||||
|
void blake256_cpu_setBlock_80(uint32_t *pdata)
|
||||||
|
{
|
||||||
|
uint32_t h[8];
|
||||||
|
uint32_t data[20];
|
||||||
|
memcpy(data, pdata, 80);
|
||||||
|
for (int i = 0; i<8; i++) {
|
||||||
|
h[i] = c_IV256[i];
|
||||||
|
}
|
||||||
|
blake256_compress1st(h, pdata, 512);
|
||||||
|
|
||||||
|
cudaMemcpyToSymbol(cpu_h, h, sizeof(h), 0, cudaMemcpyHostToDevice);
|
||||||
|
cudaMemcpyToSymbol(c_data, data, sizeof(data), 0, cudaMemcpyHostToDevice);
|
||||||
|
}
|
||||||
|
|
||||||
|
__host__
|
||||||
|
void blake256_cpu_init(int thr_id, int threads)
|
||||||
|
{
|
||||||
|
cudaMemcpyToSymbol(u256, c_u256, sizeof(c_u256), 0, cudaMemcpyHostToDevice);
|
||||||
|
cudaMemcpyToSymbol(sigma, c_sigma, sizeof(c_sigma), 0, cudaMemcpyHostToDevice);
|
||||||
|
}
|
@ -571,7 +571,7 @@ fugue256_gpu_hash(int thr_id, int threads, uint32_t startNounce, void *outputHas
|
|||||||
for(int i=0;i<30;i++)
|
for(int i=0;i<30;i++)
|
||||||
sc[i] = GPUstate[i];
|
sc[i] = GPUstate[i];
|
||||||
|
|
||||||
uint32_t nounce = startNounce + thread; // muss noch ermittelt werden
|
uint32_t nounce = startNounce + thread; // muss noch ermittelt werden
|
||||||
uint32_t q;
|
uint32_t q;
|
||||||
|
|
||||||
|
|
||||||
@ -687,7 +687,7 @@ fugue256_gpu_hash(int thr_id, int threads, uint32_t startNounce, void *outputHas
|
|||||||
|
|
||||||
int i;
|
int i;
|
||||||
bool rc = true;
|
bool rc = true;
|
||||||
|
|
||||||
for (i = 7; i >= 0; i--) {
|
for (i = 7; i >= 0; i--) {
|
||||||
if (hash[i] > pTarget[i]) {
|
if (hash[i] > pTarget[i]) {
|
||||||
rc = false;
|
rc = false;
|
||||||
@ -730,7 +730,7 @@ void fugue256_cpu_init(int thr_id, int threads)
|
|||||||
|
|
||||||
// Speicher für alle Ergebnisse belegen
|
// Speicher für alle Ergebnisse belegen
|
||||||
cudaMalloc(&d_fugue256_hashoutput[thr_id], 8 * sizeof(uint32_t) * threads);
|
cudaMalloc(&d_fugue256_hashoutput[thr_id], 8 * sizeof(uint32_t) * threads);
|
||||||
cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t));
|
cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t));
|
||||||
}
|
}
|
||||||
|
|
||||||
__host__ void fugue256_cpu_setBlock(int thr_id, void *data, void *pTargetIn)
|
__host__ void fugue256_cpu_setBlock(int thr_id, void *data, void *pTargetIn)
|
309
Algo256/cuda_groestl256.cu
Normal file
309
Algo256/cuda_groestl256.cu
Normal file
@ -0,0 +1,309 @@
|
|||||||
|
#include <memory.h>
|
||||||
|
|
||||||
|
#include "cuda_helper.h"
|
||||||
|
|
||||||
|
uint32_t *d_gnounce[8];
|
||||||
|
uint32_t *d_GNonce[8];
|
||||||
|
|
||||||
|
__constant__ uint32_t pTarget[8];
|
||||||
|
|
||||||
|
#define SPH_C32(x) ((uint32_t)(x ## U))
|
||||||
|
#define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF))
|
||||||
|
|
||||||
|
#define C32e(x) \
|
||||||
|
((SPH_C32(x) >> 24) \
|
||||||
|
| ((SPH_C32(x) >> 8) & SPH_C32(0x0000FF00)) \
|
||||||
|
| ((SPH_C32(x) << 8) & SPH_C32(0x00FF0000)) \
|
||||||
|
| ((SPH_C32(x) << 24) & SPH_C32(0xFF000000)))
|
||||||
|
|
||||||
|
#define PC32up(j, r) ((uint32_t)((j) + (r)))
|
||||||
|
#define PC32dn(j, r) 0
|
||||||
|
#define QC32up(j, r) 0xFFFFFFFF
|
||||||
|
#define QC32dn(j, r) (((uint32_t)(r) << 24) ^ SPH_T32(~((uint32_t)(j) << 24)))
|
||||||
|
|
||||||
|
#define B32_0(x) __byte_perm(x, 0, 0x4440)
|
||||||
|
//((x) & 0xFF)
|
||||||
|
#define B32_1(x) __byte_perm(x, 0, 0x4441)
|
||||||
|
//(((x) >> 8) & 0xFF)
|
||||||
|
#define B32_2(x) __byte_perm(x, 0, 0x4442)
|
||||||
|
//(((x) >> 16) & 0xFF)
|
||||||
|
#define B32_3(x) __byte_perm(x, 0, 0x4443)
|
||||||
|
//((x) >> 24)
|
||||||
|
|
||||||
|
#define MAXWELL_OR_FERMI 1
|
||||||
|
#if MAXWELL_OR_FERMI
|
||||||
|
#define USE_SHARED 1
|
||||||
|
// Maxwell and Fermi cards get the best speed with SHARED access it seems.
|
||||||
|
#if USE_SHARED
|
||||||
|
#define T0up(x) (*((uint32_t*)mixtabs + ( (x))))
|
||||||
|
#define T0dn(x) (*((uint32_t*)mixtabs + (256+(x))))
|
||||||
|
#define T1up(x) (*((uint32_t*)mixtabs + (512+(x))))
|
||||||
|
#define T1dn(x) (*((uint32_t*)mixtabs + (768+(x))))
|
||||||
|
#define T2up(x) (*((uint32_t*)mixtabs + (1024+(x))))
|
||||||
|
#define T2dn(x) (*((uint32_t*)mixtabs + (1280+(x))))
|
||||||
|
#define T3up(x) (*((uint32_t*)mixtabs + (1536+(x))))
|
||||||
|
#define T3dn(x) (*((uint32_t*)mixtabs + (1792+(x))))
|
||||||
|
#else
|
||||||
|
#define T0up(x) tex1Dfetch(t0up2, x)
|
||||||
|
#define T0dn(x) tex1Dfetch(t0dn2, x)
|
||||||
|
#define T1up(x) tex1Dfetch(t1up2, x)
|
||||||
|
#define T1dn(x) tex1Dfetch(t1dn2, x)
|
||||||
|
#define T2up(x) tex1Dfetch(t2up2, x)
|
||||||
|
#define T2dn(x) tex1Dfetch(t2dn2, x)
|
||||||
|
#define T3up(x) tex1Dfetch(t3up2, x)
|
||||||
|
#define T3dn(x) tex1Dfetch(t3dn2, x)
|
||||||
|
#endif
|
||||||
|
#else
|
||||||
|
#define USE_SHARED 1
|
||||||
|
// a healthy mix between shared and textured access provides the highest speed on Compute 3.0 and 3.5!
|
||||||
|
#define T0up(x) (*((uint32_t*)mixtabs + ( (x))))
|
||||||
|
#define T0dn(x) tex1Dfetch(t0dn2, x)
|
||||||
|
#define T1up(x) tex1Dfetch(t1up2, x)
|
||||||
|
#define T1dn(x) (*((uint32_t*)mixtabs + (768+(x))))
|
||||||
|
#define T2up(x) tex1Dfetch(t2up2, x)
|
||||||
|
#define T2dn(x) (*((uint32_t*)mixtabs + (1280+(x))))
|
||||||
|
#define T3up(x) (*((uint32_t*)mixtabs + (1536+(x))))
|
||||||
|
#define T3dn(x) tex1Dfetch(t3dn2, x)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
texture<unsigned int, 1, cudaReadModeElementType> t0up2;
|
||||||
|
texture<unsigned int, 1, cudaReadModeElementType> t0dn2;
|
||||||
|
texture<unsigned int, 1, cudaReadModeElementType> t1up2;
|
||||||
|
texture<unsigned int, 1, cudaReadModeElementType> t1dn2;
|
||||||
|
texture<unsigned int, 1, cudaReadModeElementType> t2up2;
|
||||||
|
texture<unsigned int, 1, cudaReadModeElementType> t2dn2;
|
||||||
|
texture<unsigned int, 1, cudaReadModeElementType> t3up2;
|
||||||
|
texture<unsigned int, 1, cudaReadModeElementType> t3dn2;
|
||||||
|
|
||||||
|
#define RSTT(d0, d1, a, b0, b1, b2, b3, b4, b5, b6, b7) do { \
|
||||||
|
t[d0] = T0up(B32_0(a[b0])) \
|
||||||
|
^ T1up(B32_1(a[b1])) \
|
||||||
|
^ T2up(B32_2(a[b2])) \
|
||||||
|
^ T3up(B32_3(a[b3])) \
|
||||||
|
^ T0dn(B32_0(a[b4])) \
|
||||||
|
^ T1dn(B32_1(a[b5])) \
|
||||||
|
^ T2dn(B32_2(a[b6])) \
|
||||||
|
^ T3dn(B32_3(a[b7])); \
|
||||||
|
t[d1] = T0dn(B32_0(a[b0])) \
|
||||||
|
^ T1dn(B32_1(a[b1])) \
|
||||||
|
^ T2dn(B32_2(a[b2])) \
|
||||||
|
^ T3dn(B32_3(a[b3])) \
|
||||||
|
^ T0up(B32_0(a[b4])) \
|
||||||
|
^ T1up(B32_1(a[b5])) \
|
||||||
|
^ T2up(B32_2(a[b6])) \
|
||||||
|
^ T3up(B32_3(a[b7])); \
|
||||||
|
} while (0)
|
||||||
|
|
||||||
|
|
||||||
|
extern uint32_t T0up_cpu[];
|
||||||
|
extern uint32_t T0dn_cpu[];
|
||||||
|
extern uint32_t T1up_cpu[];
|
||||||
|
extern uint32_t T1dn_cpu[];
|
||||||
|
extern uint32_t T2up_cpu[];
|
||||||
|
extern uint32_t T2dn_cpu[];
|
||||||
|
extern uint32_t T3up_cpu[];
|
||||||
|
extern uint32_t T3dn_cpu[];
|
||||||
|
|
||||||
|
__device__ __forceinline__
|
||||||
|
void groestl256_perm_P(int thread,uint32_t *a, char *mixtabs)
|
||||||
|
{
|
||||||
|
#pragma unroll 10
|
||||||
|
for (int r = 0; r<10; r++)
|
||||||
|
{
|
||||||
|
uint32_t t[16];
|
||||||
|
|
||||||
|
a[0x0] ^= PC32up(0x00, r);
|
||||||
|
a[0x2] ^= PC32up(0x10, r);
|
||||||
|
a[0x4] ^= PC32up(0x20, r);
|
||||||
|
a[0x6] ^= PC32up(0x30, r);
|
||||||
|
a[0x8] ^= PC32up(0x40, r);
|
||||||
|
a[0xA] ^= PC32up(0x50, r);
|
||||||
|
a[0xC] ^= PC32up(0x60, r);
|
||||||
|
a[0xE] ^= PC32up(0x70, r);
|
||||||
|
RSTT(0x0, 0x1, a, 0x0, 0x2, 0x4, 0x6, 0x9, 0xB, 0xD, 0xF);
|
||||||
|
RSTT(0x2, 0x3, a, 0x2, 0x4, 0x6, 0x8, 0xB, 0xD, 0xF, 0x1);
|
||||||
|
RSTT(0x4, 0x5, a, 0x4, 0x6, 0x8, 0xA, 0xD, 0xF, 0x1, 0x3);
|
||||||
|
RSTT(0x6, 0x7, a, 0x6, 0x8, 0xA, 0xC, 0xF, 0x1, 0x3, 0x5);
|
||||||
|
RSTT(0x8, 0x9, a, 0x8, 0xA, 0xC, 0xE, 0x1, 0x3, 0x5, 0x7);
|
||||||
|
RSTT(0xA, 0xB, a, 0xA, 0xC, 0xE, 0x0, 0x3, 0x5, 0x7, 0x9);
|
||||||
|
RSTT(0xC, 0xD, a, 0xC, 0xE, 0x0, 0x2, 0x5, 0x7, 0x9, 0xB);
|
||||||
|
RSTT(0xE, 0xF, a, 0xE, 0x0, 0x2, 0x4, 0x7, 0x9, 0xB, 0xD);
|
||||||
|
|
||||||
|
#pragma unroll 16
|
||||||
|
for (int k = 0; k<16; k++)
|
||||||
|
a[k] = t[k];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__device__ __forceinline__
|
||||||
|
void groestl256_perm_Q(int thread, uint32_t *a, char *mixtabs)
|
||||||
|
{
|
||||||
|
#pragma unroll
|
||||||
|
for (int r = 0; r<10; r++)
|
||||||
|
{
|
||||||
|
uint32_t t[16];
|
||||||
|
|
||||||
|
a[0x0] ^= QC32up(0x00, r);
|
||||||
|
a[0x1] ^= QC32dn(0x00, r);
|
||||||
|
a[0x2] ^= QC32up(0x10, r);
|
||||||
|
a[0x3] ^= QC32dn(0x10, r);
|
||||||
|
a[0x4] ^= QC32up(0x20, r);
|
||||||
|
a[0x5] ^= QC32dn(0x20, r);
|
||||||
|
a[0x6] ^= QC32up(0x30, r);
|
||||||
|
a[0x7] ^= QC32dn(0x30, r);
|
||||||
|
a[0x8] ^= QC32up(0x40, r);
|
||||||
|
a[0x9] ^= QC32dn(0x40, r);
|
||||||
|
a[0xA] ^= QC32up(0x50, r);
|
||||||
|
a[0xB] ^= QC32dn(0x50, r);
|
||||||
|
a[0xC] ^= QC32up(0x60, r);
|
||||||
|
a[0xD] ^= QC32dn(0x60, r);
|
||||||
|
a[0xE] ^= QC32up(0x70, r);
|
||||||
|
a[0xF] ^= QC32dn(0x70, r);
|
||||||
|
RSTT(0x0, 0x1, a, 0x2, 0x6, 0xA, 0xE, 0x1, 0x5, 0x9, 0xD);
|
||||||
|
RSTT(0x2, 0x3, a, 0x4, 0x8, 0xC, 0x0, 0x3, 0x7, 0xB, 0xF);
|
||||||
|
RSTT(0x4, 0x5, a, 0x6, 0xA, 0xE, 0x2, 0x5, 0x9, 0xD, 0x1);
|
||||||
|
RSTT(0x6, 0x7, a, 0x8, 0xC, 0x0, 0x4, 0x7, 0xB, 0xF, 0x3);
|
||||||
|
RSTT(0x8, 0x9, a, 0xA, 0xE, 0x2, 0x6, 0x9, 0xD, 0x1, 0x5);
|
||||||
|
RSTT(0xA, 0xB, a, 0xC, 0x0, 0x4, 0x8, 0xB, 0xF, 0x3, 0x7);
|
||||||
|
RSTT(0xC, 0xD, a, 0xE, 0x2, 0x6, 0xA, 0xD, 0x1, 0x5, 0x9);
|
||||||
|
RSTT(0xE, 0xF, a, 0x0, 0x4, 0x8, 0xC, 0xF, 0x3, 0x7, 0xB);
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k = 0; k<16; k++)
|
||||||
|
a[k] = t[k];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__global__ __launch_bounds__(256,1)
|
||||||
|
void groestl256_gpu_hash32(int threads, uint32_t startNounce, uint64_t *outputHash, uint32_t *nonceVector)
|
||||||
|
{
|
||||||
|
#if USE_SHARED
|
||||||
|
extern __shared__ char mixtabs[];
|
||||||
|
|
||||||
|
if (threadIdx.x < 256) {
|
||||||
|
*((uint32_t*)mixtabs + (threadIdx.x)) = tex1Dfetch(t0up2, threadIdx.x);
|
||||||
|
*((uint32_t*)mixtabs + (256 + threadIdx.x)) = tex1Dfetch(t0dn2, threadIdx.x);
|
||||||
|
*((uint32_t*)mixtabs + (512 + threadIdx.x)) = tex1Dfetch(t1up2, threadIdx.x);
|
||||||
|
*((uint32_t*)mixtabs + (768 + threadIdx.x)) = tex1Dfetch(t1dn2, threadIdx.x);
|
||||||
|
*((uint32_t*)mixtabs + (1024 + threadIdx.x)) = tex1Dfetch(t2up2, threadIdx.x);
|
||||||
|
*((uint32_t*)mixtabs + (1280 + threadIdx.x)) = tex1Dfetch(t2dn2, threadIdx.x);
|
||||||
|
*((uint32_t*)mixtabs + (1536 + threadIdx.x)) = tex1Dfetch(t3up2, threadIdx.x);
|
||||||
|
*((uint32_t*)mixtabs + (1792 + threadIdx.x)) = tex1Dfetch(t3dn2, threadIdx.x);
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
#endif
|
||||||
|
|
||||||
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
||||||
|
if (thread < threads)
|
||||||
|
{
|
||||||
|
// GROESTL
|
||||||
|
uint32_t message[16];
|
||||||
|
uint32_t state[16];
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k = 0; k<4; k++)
|
||||||
|
LOHI(message[2*k], message[2*k+1], outputHash[k*threads+thread]);
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k = 9; k<15; k++)
|
||||||
|
message[k] = 0;
|
||||||
|
|
||||||
|
message[8] = 0x80;
|
||||||
|
message[15] = 0x01000000;
|
||||||
|
|
||||||
|
#pragma unroll 16
|
||||||
|
for (int u = 0; u<16; u++)
|
||||||
|
state[u] = message[u];
|
||||||
|
|
||||||
|
state[15] ^= 0x10000;
|
||||||
|
|
||||||
|
// Perm
|
||||||
|
|
||||||
|
#if USE_SHARED
|
||||||
|
groestl256_perm_P(thread, state, mixtabs);
|
||||||
|
state[15] ^= 0x10000;
|
||||||
|
groestl256_perm_Q(thread, message, mixtabs);
|
||||||
|
#else
|
||||||
|
groestl256_perm_P(thread, state, NULL);
|
||||||
|
state[15] ^= 0x10000;
|
||||||
|
groestl256_perm_P(thread, message, NULL);
|
||||||
|
#endif
|
||||||
|
#pragma unroll 16
|
||||||
|
for (int u = 0; u<16; u++) state[u] ^= message[u];
|
||||||
|
#pragma unroll 16
|
||||||
|
for (int u = 0; u<16; u++) message[u] = state[u];
|
||||||
|
#if USE_SHARED
|
||||||
|
groestl256_perm_P(thread, message, mixtabs);
|
||||||
|
#else
|
||||||
|
groestl256_perm_P(thread, message, NULL);
|
||||||
|
#endif
|
||||||
|
state[14] ^= message[14];
|
||||||
|
state[15] ^= message[15];
|
||||||
|
|
||||||
|
uint32_t nonce = startNounce + thread;
|
||||||
|
if (state[15] <= pTarget[7]) {
|
||||||
|
nonceVector[0] = nonce;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#define texDef(texname, texmem, texsource, texsize) \
|
||||||
|
unsigned int *texmem; \
|
||||||
|
cudaMalloc(&texmem, texsize); \
|
||||||
|
cudaMemcpy(texmem, texsource, texsize, cudaMemcpyHostToDevice); \
|
||||||
|
texname.normalized = 0; \
|
||||||
|
texname.filterMode = cudaFilterModePoint; \
|
||||||
|
texname.addressMode[0] = cudaAddressModeClamp; \
|
||||||
|
{ cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<unsigned int>(); \
|
||||||
|
cudaBindTexture(NULL, &texname, texmem, &channelDesc, texsize ); } \
|
||||||
|
|
||||||
|
__host__
|
||||||
|
void groestl256_cpu_init(int thr_id, int threads)
|
||||||
|
{
|
||||||
|
|
||||||
|
// Texturen mit obigem Makro initialisieren
|
||||||
|
texDef(t0up2, d_T0up, T0up_cpu, sizeof(uint32_t) * 256);
|
||||||
|
texDef(t0dn2, d_T0dn, T0dn_cpu, sizeof(uint32_t) * 256);
|
||||||
|
texDef(t1up2, d_T1up, T1up_cpu, sizeof(uint32_t) * 256);
|
||||||
|
texDef(t1dn2, d_T1dn, T1dn_cpu, sizeof(uint32_t) * 256);
|
||||||
|
texDef(t2up2, d_T2up, T2up_cpu, sizeof(uint32_t) * 256);
|
||||||
|
texDef(t2dn2, d_T2dn, T2dn_cpu, sizeof(uint32_t) * 256);
|
||||||
|
texDef(t3up2, d_T3up, T3up_cpu, sizeof(uint32_t) * 256);
|
||||||
|
texDef(t3dn2, d_T3dn, T3dn_cpu, sizeof(uint32_t) * 256);
|
||||||
|
|
||||||
|
cudaMalloc(&d_GNonce[thr_id], sizeof(uint32_t));
|
||||||
|
cudaMallocHost(&d_gnounce[thr_id], 1*sizeof(uint32_t));
|
||||||
|
}
|
||||||
|
|
||||||
|
__host__
|
||||||
|
uint32_t groestl256_cpu_hash_32(int thr_id, int threads, uint32_t startNounce, uint64_t *d_outputHash, int order)
|
||||||
|
{
|
||||||
|
uint32_t result = 0xffffffff;
|
||||||
|
cudaMemset(d_GNonce[thr_id], 0xff, sizeof(uint32_t));
|
||||||
|
const int threadsperblock = 256;
|
||||||
|
|
||||||
|
// berechne wie viele Thread Blocks wir brauchen
|
||||||
|
dim3 grid((threads + threadsperblock-1)/threadsperblock);
|
||||||
|
dim3 block(threadsperblock);
|
||||||
|
|
||||||
|
#if USE_SHARED
|
||||||
|
size_t shared_size = 8 * 256 * sizeof(uint32_t);
|
||||||
|
#else
|
||||||
|
size_t shared_size = 0;
|
||||||
|
#endif
|
||||||
|
groestl256_gpu_hash32<<<grid, block, shared_size>>>(threads, startNounce, d_outputHash, d_GNonce[thr_id]);
|
||||||
|
|
||||||
|
MyStreamSynchronize(NULL, order, thr_id);
|
||||||
|
cudaMemcpy(d_gnounce[thr_id], d_GNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost);
|
||||||
|
cudaThreadSynchronize();
|
||||||
|
result = *d_gnounce[thr_id];
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
__host__
|
||||||
|
void groestl256_setTarget(const void *pTargetIn)
|
||||||
|
{
|
||||||
|
cudaMemcpyToSymbol(pTarget, pTargetIn, 8 * sizeof(uint32_t), 0, cudaMemcpyHostToDevice);
|
||||||
|
}
|
@ -27,11 +27,81 @@ uint32_t *d_KNonce[8];
|
|||||||
|
|
||||||
__constant__ uint32_t pTarget[8];
|
__constant__ uint32_t pTarget[8];
|
||||||
__constant__ uint64_t keccak_round_constants[24];
|
__constant__ uint64_t keccak_round_constants[24];
|
||||||
__constant__ uint64_t c_PaddedMessage80[10]; // padded message (80 bytes + padding)
|
__constant__ uint64_t c_PaddedMessage80[10]; // padded message (80 bytes + padding?)
|
||||||
|
|
||||||
|
#if __CUDA_ARCH__ >= 350
|
||||||
|
__device__ __forceinline__
|
||||||
|
static void keccak_blockv35(uint2 *s, const uint64_t *keccak_round_constants)
|
||||||
|
{
|
||||||
|
size_t i;
|
||||||
|
uint2 t[5], u[5], v, w;
|
||||||
|
|
||||||
static __device__ __forceinline__
|
#pragma unroll
|
||||||
void keccak_block(uint64_t *s, const uint64_t *keccak_round_constants) {
|
for (i = 0; i < 24; i++) {
|
||||||
|
/* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */
|
||||||
|
t[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20];
|
||||||
|
t[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21];
|
||||||
|
t[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22];
|
||||||
|
t[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23];
|
||||||
|
t[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24];
|
||||||
|
|
||||||
|
/* theta: d[i] = c[i+4] ^ rotl(c[i+1],1) */
|
||||||
|
u[0] = t[4] ^ ROL2(t[1], 1);
|
||||||
|
u[1] = t[0] ^ ROL2(t[2], 1);
|
||||||
|
u[2] = t[1] ^ ROL2(t[3], 1);
|
||||||
|
u[3] = t[2] ^ ROL2(t[4], 1);
|
||||||
|
u[4] = t[3] ^ ROL2(t[0], 1);
|
||||||
|
|
||||||
|
/* theta: a[0,i], a[1,i], .. a[4,i] ^= d[i] */
|
||||||
|
s[0] ^= u[0]; s[5] ^= u[0]; s[10] ^= u[0]; s[15] ^= u[0]; s[20] ^= u[0];
|
||||||
|
s[1] ^= u[1]; s[6] ^= u[1]; s[11] ^= u[1]; s[16] ^= u[1]; s[21] ^= u[1];
|
||||||
|
s[2] ^= u[2]; s[7] ^= u[2]; s[12] ^= u[2]; s[17] ^= u[2]; s[22] ^= u[2];
|
||||||
|
s[3] ^= u[3]; s[8] ^= u[3]; s[13] ^= u[3]; s[18] ^= u[3]; s[23] ^= u[3];
|
||||||
|
s[4] ^= u[4]; s[9] ^= u[4]; s[14] ^= u[4]; s[19] ^= u[4]; s[24] ^= u[4];
|
||||||
|
|
||||||
|
/* rho pi: b[..] = rotl(a[..], ..) */
|
||||||
|
v = s[1];
|
||||||
|
s[1] = ROL2(s[6], 44);
|
||||||
|
s[6] = ROL2(s[9], 20);
|
||||||
|
s[9] = ROL2(s[22], 61);
|
||||||
|
s[22] = ROL2(s[14], 39);
|
||||||
|
s[14] = ROL2(s[20], 18);
|
||||||
|
s[20] = ROL2(s[2], 62);
|
||||||
|
s[2] = ROL2(s[12], 43);
|
||||||
|
s[12] = ROL2(s[13], 25);
|
||||||
|
s[13] = ROL2(s[19], 8);
|
||||||
|
s[19] = ROL2(s[23], 56);
|
||||||
|
s[23] = ROL2(s[15], 41);
|
||||||
|
s[15] = ROL2(s[4], 27);
|
||||||
|
s[4] = ROL2(s[24], 14);
|
||||||
|
s[24] = ROL2(s[21], 2);
|
||||||
|
s[21] = ROL2(s[8], 55);
|
||||||
|
s[8] = ROL2(s[16], 45);
|
||||||
|
s[16] = ROL2(s[5], 36);
|
||||||
|
s[5] = ROL2(s[3], 28);
|
||||||
|
s[3] = ROL2(s[18], 21);
|
||||||
|
s[18] = ROL2(s[17], 15);
|
||||||
|
s[17] = ROL2(s[11], 10);
|
||||||
|
s[11] = ROL2(s[7], 6);
|
||||||
|
s[7] = ROL2(s[10], 3);
|
||||||
|
s[10] = ROL2(v, 1);
|
||||||
|
|
||||||
|
/* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */
|
||||||
|
v = s[0]; w = s[1]; s[0] ^= (~w) & s[2]; s[1] ^= (~s[2]) & s[3]; s[2] ^= (~s[3]) & s[4]; s[3] ^= (~s[4]) & v; s[4] ^= (~v) & w;
|
||||||
|
v = s[5]; w = s[6]; s[5] ^= (~w) & s[7]; s[6] ^= (~s[7]) & s[8]; s[7] ^= (~s[8]) & s[9]; s[8] ^= (~s[9]) & v; s[9] ^= (~v) & w;
|
||||||
|
v = s[10]; w = s[11]; s[10] ^= (~w) & s[12]; s[11] ^= (~s[12]) & s[13]; s[12] ^= (~s[13]) & s[14]; s[13] ^= (~s[14]) & v; s[14] ^= (~v) & w;
|
||||||
|
v = s[15]; w = s[16]; s[15] ^= (~w) & s[17]; s[16] ^= (~s[17]) & s[18]; s[17] ^= (~s[18]) & s[19]; s[18] ^= (~s[19]) & v; s[19] ^= (~v) & w;
|
||||||
|
v = s[20]; w = s[21]; s[20] ^= (~w) & s[22]; s[21] ^= (~s[22]) & s[23]; s[22] ^= (~s[23]) & s[24]; s[23] ^= (~s[24]) & v; s[24] ^= (~v) & w;
|
||||||
|
|
||||||
|
/* iota: a[0,0] ^= round constant */
|
||||||
|
s[0] ^= vectorize(keccak_round_constants[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
__device__ __forceinline__
|
||||||
|
static void keccak_blockv30(uint64_t *s, const uint64_t *keccak_round_constants)
|
||||||
|
{
|
||||||
size_t i;
|
size_t i;
|
||||||
uint64_t t[5], u[5], v, w;
|
uint64_t t[5], u[5], v, w;
|
||||||
|
|
||||||
@ -109,14 +179,16 @@ void keccak256_gpu_hash_80(int threads, uint32_t startNounce, void *outputHash,
|
|||||||
|
|
||||||
//#pragma unroll 25
|
//#pragma unroll 25
|
||||||
for (int i=0; i<25; i++) {
|
for (int i=0; i<25; i++) {
|
||||||
if(i<9) {keccak_gpu_state[i] = c_PaddedMessage80[i];}
|
if (i < 9)
|
||||||
else {keccak_gpu_state[i] = 0;}
|
keccak_gpu_state[i] = c_PaddedMessage80[i];
|
||||||
|
else
|
||||||
|
keccak_gpu_state[i] = 0;
|
||||||
}
|
}
|
||||||
keccak_gpu_state[9]=REPLACE_HIWORD(c_PaddedMessage80[9],cuda_swab32(nounce));
|
keccak_gpu_state[9] = REPLACE_HIWORD(c_PaddedMessage80[9], cuda_swab32(nounce));
|
||||||
keccak_gpu_state[10]=0x0000000000000001;
|
keccak_gpu_state[10] = 0x0000000000000001;
|
||||||
keccak_gpu_state[16]=0x8000000000000000;
|
keccak_gpu_state[16] = 0x8000000000000000;
|
||||||
|
|
||||||
keccak_block(keccak_gpu_state,keccak_round_constants);
|
keccak_blockv30(keccak_gpu_state, keccak_round_constants);
|
||||||
|
|
||||||
bool rc = false;
|
bool rc = false;
|
||||||
if (keccak_gpu_state[3] <= ((uint64_t*)pTarget)[3]) {rc = true;}
|
if (keccak_gpu_state[3] <= ((uint64_t*)pTarget)[3]) {rc = true;}
|
||||||
@ -125,18 +197,7 @@ void keccak256_gpu_hash_80(int threads, uint32_t startNounce, void *outputHash,
|
|||||||
if(resNounce[0] > nounce)
|
if(resNounce[0] > nounce)
|
||||||
resNounce[0] = nounce;
|
resNounce[0] = nounce;
|
||||||
}
|
}
|
||||||
} //thread
|
}
|
||||||
}
|
|
||||||
|
|
||||||
void keccak256_cpu_init(int thr_id, int threads)
|
|
||||||
{
|
|
||||||
CUDA_SAFE_CALL(cudaMemcpyToSymbol(keccak_round_constants,
|
|
||||||
host_keccak_round_constants,
|
|
||||||
sizeof(host_keccak_round_constants),
|
|
||||||
0, cudaMemcpyHostToDevice));
|
|
||||||
|
|
||||||
CUDA_SAFE_CALL(cudaMalloc(&d_KNonce[thr_id], sizeof(uint32_t)));
|
|
||||||
CUDA_SAFE_CALL(cudaMallocHost(&d_nounce[thr_id], 1*sizeof(uint32_t)));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
__host__
|
__host__
|
||||||
@ -161,6 +222,66 @@ uint32_t keccak256_cpu_hash_80(int thr_id, int threads, uint32_t startNounce, ui
|
|||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#ifdef _MSC_VER
|
||||||
|
#define UINT2(a, b) { a, b }
|
||||||
|
#else
|
||||||
|
#define UINT2(a, b) (uint2) { a, b }
|
||||||
|
#endif
|
||||||
|
|
||||||
|
__global__ __launch_bounds__(256,3)
|
||||||
|
void keccak256_gpu_hash_32(int threads, uint32_t startNounce, uint64_t *outputHash)
|
||||||
|
{
|
||||||
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
||||||
|
if (thread < threads)
|
||||||
|
{
|
||||||
|
#if __CUDA_ARCH__ >= 350 /* tpr: to double check if faster on SM5+ */
|
||||||
|
uint2 keccak_gpu_state[25];
|
||||||
|
#pragma unroll 25
|
||||||
|
for (int i = 0; i<25; i++) {
|
||||||
|
if (i < 4)
|
||||||
|
keccak_gpu_state[i] = vectorize(outputHash[i*threads+thread]);
|
||||||
|
else
|
||||||
|
keccak_gpu_state[i] = UINT2(0, 0);
|
||||||
|
}
|
||||||
|
keccak_gpu_state[4] = UINT2(1, 0);
|
||||||
|
keccak_gpu_state[16] = UINT2(0, 0x80000000);
|
||||||
|
keccak_blockv35(keccak_gpu_state, keccak_round_constants);
|
||||||
|
|
||||||
|
#pragma unroll 4
|
||||||
|
for (int i=0; i<4;i++)
|
||||||
|
outputHash[i*threads+thread]=devectorize(keccak_gpu_state[i]);
|
||||||
|
#else
|
||||||
|
uint64_t keccak_gpu_state[25];
|
||||||
|
#pragma unroll 25
|
||||||
|
for (int i = 0; i<25; i++) {
|
||||||
|
if (i<4)
|
||||||
|
keccak_gpu_state[i] = outputHash[i*threads+thread];
|
||||||
|
else
|
||||||
|
keccak_gpu_state[i] = 0;
|
||||||
|
}
|
||||||
|
keccak_gpu_state[4] = 0x0000000000000001;
|
||||||
|
keccak_gpu_state[16] = 0x8000000000000000;
|
||||||
|
|
||||||
|
keccak_blockv30(keccak_gpu_state, keccak_round_constants);
|
||||||
|
#pragma unroll 4
|
||||||
|
for (int i = 0; i<4; i++)
|
||||||
|
outputHash[i*threads + thread] = keccak_gpu_state[i];
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__host__
|
||||||
|
void keccak256_cpu_hash_32(int thr_id, int threads, uint32_t startNounce, uint64_t *d_outputHash, int order)
|
||||||
|
{
|
||||||
|
const int threadsperblock = 256;
|
||||||
|
|
||||||
|
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
|
||||||
|
dim3 block(threadsperblock);
|
||||||
|
|
||||||
|
keccak256_gpu_hash_32 <<<grid, block>>> (threads, startNounce, d_outputHash);
|
||||||
|
MyStreamSynchronize(NULL, order, thr_id);
|
||||||
|
}
|
||||||
|
|
||||||
__host__
|
__host__
|
||||||
void keccak256_setBlock_80(void *pdata,const void *pTargetIn)
|
void keccak256_setBlock_80(void *pdata,const void *pTargetIn)
|
||||||
{
|
{
|
||||||
@ -168,4 +289,13 @@ void keccak256_setBlock_80(void *pdata,const void *pTargetIn)
|
|||||||
memcpy(PaddedMessage, pdata, 80);
|
memcpy(PaddedMessage, pdata, 80);
|
||||||
CUDA_SAFE_CALL(cudaMemcpyToSymbol(pTarget, pTargetIn, 8*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
|
CUDA_SAFE_CALL(cudaMemcpyToSymbol(pTarget, pTargetIn, 8*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
|
||||||
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_PaddedMessage80, PaddedMessage, 10*sizeof(uint64_t), 0, cudaMemcpyHostToDevice));
|
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_PaddedMessage80, PaddedMessage, 10*sizeof(uint64_t), 0, cudaMemcpyHostToDevice));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
__host__
|
||||||
|
void keccak256_cpu_init(int thr_id, int threads)
|
||||||
|
{
|
||||||
|
CUDA_SAFE_CALL(cudaMemcpyToSymbol(keccak_round_constants, host_keccak_round_constants,
|
||||||
|
sizeof(host_keccak_round_constants), 0, cudaMemcpyHostToDevice));
|
||||||
|
CUDA_SAFE_CALL(cudaMalloc(&d_KNonce[thr_id], sizeof(uint32_t)));
|
||||||
|
CUDA_SAFE_CALL(cudaMallocHost(&d_nounce[thr_id], 1*sizeof(uint32_t)));
|
||||||
|
}
|
196
Algo256/cuda_skein256.cu
Normal file
196
Algo256/cuda_skein256.cu
Normal file
@ -0,0 +1,196 @@
|
|||||||
|
#include <memory.h>
|
||||||
|
|
||||||
|
#include "cuda_helper.h"
|
||||||
|
|
||||||
|
#if 0
|
||||||
|
static __constant__ uint64_t SKEIN_IV512_256[8] = {
|
||||||
|
0xCCD044A12FDB3E13, 0xE83590301A79A9EB,
|
||||||
|
0x55AEA0614F816E6F, 0x2A2767A4AE9B94DB,
|
||||||
|
0xEC06025E74DD7683, 0xE7A436CDC4746251,
|
||||||
|
0xC36FBAF9393AD185, 0x3EEDBA1833EDFC13
|
||||||
|
};
|
||||||
|
#endif
|
||||||
|
|
||||||
|
static __constant__ uint2 vSKEIN_IV512_256[8] = {
|
||||||
|
{ 0x2FDB3E13, 0xCCD044A1 },
|
||||||
|
{ 0x1A79A9EB, 0xE8359030 },
|
||||||
|
{ 0x4F816E6F, 0x55AEA061 },
|
||||||
|
{ 0xAE9B94DB, 0x2A2767A4 },
|
||||||
|
{ 0x74DD7683, 0xEC06025E },
|
||||||
|
{ 0xC4746251, 0xE7A436CD },
|
||||||
|
{ 0x393AD185, 0xC36FBAF9 },
|
||||||
|
{ 0x33EDFC13, 0x3EEDBA18 }
|
||||||
|
};
|
||||||
|
|
||||||
|
static __constant__ int ROT256[8][4] =
|
||||||
|
{
|
||||||
|
46,36, 19, 37,
|
||||||
|
33,27, 14, 42,
|
||||||
|
17,49, 36, 39,
|
||||||
|
44, 9, 54, 56,
|
||||||
|
39,30, 34, 24,
|
||||||
|
13,50, 10, 17,
|
||||||
|
25,29, 39, 43,
|
||||||
|
8, 35, 56, 22,
|
||||||
|
};
|
||||||
|
|
||||||
|
static __constant__ uint2 skein_ks_parity = { 0xA9FC1A22,0x1BD11BDA};
|
||||||
|
static __constant__ uint2 t12[6] = {
|
||||||
|
{ 0x20, 0 },
|
||||||
|
{ 0, 0xf0000000 },
|
||||||
|
{ 0x20, 0xf0000000 },
|
||||||
|
{ 0x08, 0 },
|
||||||
|
{ 0, 0xff000000 },
|
||||||
|
{ 0x08, 0xff000000 }
|
||||||
|
};
|
||||||
|
|
||||||
|
#if 0
|
||||||
|
static __constant__ uint64_t t12_30[6] = {
|
||||||
|
0x20,
|
||||||
|
0xf000000000000000,
|
||||||
|
0xf000000000000020,
|
||||||
|
0x08,
|
||||||
|
0xff00000000000000,
|
||||||
|
0xff00000000000008
|
||||||
|
};
|
||||||
|
#endif
|
||||||
|
|
||||||
|
static __forceinline__ __device__
|
||||||
|
void Round512v35(uint2 &p0, uint2 &p1, uint2 &p2, uint2 &p3, uint2 &p4, uint2 &p5, uint2 &p6, uint2 &p7, int ROT)
|
||||||
|
{
|
||||||
|
p0 += p1; p1 = ROL2(p1, ROT256[ROT][0]); p1 ^= p0;
|
||||||
|
p2 += p3; p3 = ROL2(p3, ROT256[ROT][1]); p3 ^= p2;
|
||||||
|
p4 += p5; p5 = ROL2(p5, ROT256[ROT][2]); p5 ^= p4;
|
||||||
|
p6 += p7; p7 = ROL2(p7, ROT256[ROT][3]); p7 ^= p6;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
static __forceinline__ __device__
|
||||||
|
void Round_8_512v35(uint2 *ks, uint2 *ts,
|
||||||
|
uint2 &p0, uint2 &p1, uint2 &p2, uint2 &p3,
|
||||||
|
uint2 &p4, uint2 &p5, uint2 &p6, uint2 &p7, int R)
|
||||||
|
{
|
||||||
|
Round512v35(p0, p1, p2, p3, p4, p5, p6, p7, 0);
|
||||||
|
Round512v35(p2, p1, p4, p7, p6, p5, p0, p3, 1);
|
||||||
|
Round512v35(p4, p1, p6, p3, p0, p5, p2, p7, 2);
|
||||||
|
Round512v35(p6, p1, p0, p7, p2, p5, p4, p3, 3);
|
||||||
|
p0 += ks[((R)+0) % 9]; /* inject the key schedule value */
|
||||||
|
p1 += ks[((R)+1) % 9];
|
||||||
|
p2 += ks[((R)+2) % 9];
|
||||||
|
p3 += ks[((R)+3) % 9];
|
||||||
|
p4 += ks[((R)+4) % 9];
|
||||||
|
p5 += ks[((R)+5) % 9] + ts[((R)+0) % 3];
|
||||||
|
p6 += ks[((R)+6) % 9] + ts[((R)+1) % 3];
|
||||||
|
p7 += ks[((R)+7) % 9] + make_uint2((R),0);
|
||||||
|
Round512v35(p0, p1, p2, p3, p4, p5, p6, p7, 4);
|
||||||
|
Round512v35(p2, p1, p4, p7, p6, p5, p0, p3, 5);
|
||||||
|
Round512v35(p4, p1, p6, p3, p0, p5, p2, p7, 6);
|
||||||
|
Round512v35(p6, p1, p0, p7, p2, p5, p4, p3, 7);
|
||||||
|
p0 += ks[((R)+1) % 9]; /* inject the key schedule value */
|
||||||
|
p1 += ks[((R)+2) % 9];
|
||||||
|
p2 += ks[((R)+3) % 9];
|
||||||
|
p3 += ks[((R)+4) % 9];
|
||||||
|
p4 += ks[((R)+5) % 9];
|
||||||
|
p5 += ks[((R)+6) % 9] + ts[((R)+1) % 3];
|
||||||
|
p6 += ks[((R)+7) % 9] + ts[((R)+2) % 3];
|
||||||
|
p7 += ks[((R)+8) % 9] + make_uint2((R)+1, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
__global__ __launch_bounds__(256,3)
|
||||||
|
void skein256_gpu_hash_32(int threads, uint32_t startNounce, uint64_t *outputHash)
|
||||||
|
{
|
||||||
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
||||||
|
if (thread < threads)
|
||||||
|
{
|
||||||
|
uint2 h[9];
|
||||||
|
uint2 t[3];
|
||||||
|
uint2 dt0,dt1,dt2,dt3;
|
||||||
|
uint2 p0, p1, p2, p3, p4, p5, p6, p7;
|
||||||
|
|
||||||
|
h[8] = skein_ks_parity;
|
||||||
|
for (int i = 0; i<8; i++) {
|
||||||
|
h[i] = vSKEIN_IV512_256[i];
|
||||||
|
h[8] ^= h[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
t[0]=t12[0];
|
||||||
|
t[1]=t12[1];
|
||||||
|
t[2]=t12[2];
|
||||||
|
|
||||||
|
LOHI(dt0.x,dt0.y,outputHash[thread]);
|
||||||
|
LOHI(dt1.x,dt1.y,outputHash[threads+thread]);
|
||||||
|
LOHI(dt2.x,dt2.y,outputHash[2*threads+thread]);
|
||||||
|
LOHI(dt3.x,dt3.y,outputHash[3*threads+thread]);
|
||||||
|
|
||||||
|
p0 = h[0] + dt0;
|
||||||
|
p1 = h[1] + dt1;
|
||||||
|
p2 = h[2] + dt2;
|
||||||
|
p3 = h[3] + dt3;
|
||||||
|
p4 = h[4];
|
||||||
|
p5 = h[5] + t[0];
|
||||||
|
p6 = h[6] + t[1];
|
||||||
|
p7 = h[7];
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 1; i<19; i+=2) {
|
||||||
|
Round_8_512v35(h,t,p0,p1,p2,p3,p4,p5,p6,p7,i);
|
||||||
|
}
|
||||||
|
|
||||||
|
p0 ^= dt0;
|
||||||
|
p1 ^= dt1;
|
||||||
|
p2 ^= dt2;
|
||||||
|
p3 ^= dt3;
|
||||||
|
|
||||||
|
h[0] = p0;
|
||||||
|
h[1] = p1;
|
||||||
|
h[2] = p2;
|
||||||
|
h[3] = p3;
|
||||||
|
h[4] = p4;
|
||||||
|
h[5] = p5;
|
||||||
|
h[6] = p6;
|
||||||
|
h[7] = p7;
|
||||||
|
h[8] = skein_ks_parity;
|
||||||
|
|
||||||
|
#pragma unroll 8
|
||||||
|
for (int i = 0; i<8; i++) {
|
||||||
|
h[8] ^= h[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
t[0] = t12[3];
|
||||||
|
t[1] = t12[4];
|
||||||
|
t[2] = t12[5];
|
||||||
|
p5 += t[0]; //p5 already equal h[5]
|
||||||
|
p6 += t[1];
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 1; i<19; i+=2) {
|
||||||
|
Round_8_512v35(h, t, p0, p1, p2, p3, p4, p5, p6, p7, i);
|
||||||
|
}
|
||||||
|
|
||||||
|
outputHash[thread] = devectorize(p0);
|
||||||
|
outputHash[threads+thread] = devectorize(p1);
|
||||||
|
outputHash[2*threads+thread] = devectorize(p2);
|
||||||
|
outputHash[3*threads+thread] = devectorize(p3);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__host__
|
||||||
|
void skein256_cpu_init(int thr_id, int threads)
|
||||||
|
{
|
||||||
|
//empty
|
||||||
|
}
|
||||||
|
|
||||||
|
__host__
|
||||||
|
void skein256_cpu_hash_32(int thr_id, int threads, uint32_t startNounce, uint64_t *d_outputHash, int order)
|
||||||
|
{
|
||||||
|
const int threadsperblock = 256;
|
||||||
|
|
||||||
|
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
|
||||||
|
dim3 block(threadsperblock);
|
||||||
|
|
||||||
|
skein256_gpu_hash_32<<<grid, block>>>(threads, startNounce, d_outputHash);
|
||||||
|
|
||||||
|
MyStreamSynchronize(NULL, order, thr_id);
|
||||||
|
}
|
||||||
|
|
15
Makefile.am
15
Makefile.am
@ -10,11 +10,11 @@ EXTRA_DIST = autogen.sh README.txt LICENSE.txt \
|
|||||||
cudaminer.sln cudaminer.vcxproj cudaminer.vcxproj.filters \
|
cudaminer.sln cudaminer.vcxproj cudaminer.vcxproj.filters \
|
||||||
compat/gettimeofday.c compat/getopt/getopt_long.c cpuminer-config.h.in
|
compat/gettimeofday.c compat/getopt/getopt_long.c cpuminer-config.h.in
|
||||||
|
|
||||||
SUBDIRS = compat
|
SUBDIRS = compat
|
||||||
|
|
||||||
bin_PROGRAMS = ccminer
|
bin_PROGRAMS = ccminer
|
||||||
|
|
||||||
ccminer_SOURCES = elist.h miner.h compat.h \
|
ccminer_SOURCES = elist.h miner.h compat.h \
|
||||||
compat/inttypes.h compat/stdbool.h compat/unistd.h \
|
compat/inttypes.h compat/stdbool.h compat/unistd.h \
|
||||||
compat/sys/time.h compat/getopt/getopt.h \
|
compat/sys/time.h compat/getopt/getopt.h \
|
||||||
crc32.c hefty1.c scrypt.c \
|
crc32.c hefty1.c scrypt.c \
|
||||||
@ -27,17 +27,20 @@ ccminer_SOURCES = elist.h miner.h compat.h \
|
|||||||
heavy/cuda_hefty1.cu heavy/cuda_hefty1.h \
|
heavy/cuda_hefty1.cu heavy/cuda_hefty1.h \
|
||||||
heavy/cuda_keccak512.cu heavy/cuda_keccak512.h \
|
heavy/cuda_keccak512.cu heavy/cuda_keccak512.h \
|
||||||
heavy/cuda_sha256.cu heavy/cuda_sha256.h \
|
heavy/cuda_sha256.cu heavy/cuda_sha256.h \
|
||||||
keccak/cuda_keccak256.cu keccak/keccak256.cu \
|
fuguecoin.cpp Algo256/cuda_fugue256.cu sph/fugue.c uint256.h \
|
||||||
fuguecoin.cpp cuda_fugue256.cu sph/fugue.c sph/sph_fugue.h uint256.h \
|
|
||||||
groestlcoin.cpp cuda_groestlcoin.cu cuda_groestlcoin.h \
|
groestlcoin.cpp cuda_groestlcoin.cu cuda_groestlcoin.h \
|
||||||
myriadgroestl.cpp cuda_myriadgroestl.cu \
|
myriadgroestl.cpp cuda_myriadgroestl.cu \
|
||||||
|
lyra2/Lyra2.c lyra2/Sponge.c \
|
||||||
|
lyra2/lyra2RE.cu lyra2/cuda_lyra2.cu \
|
||||||
|
Algo256/cuda_blake256.cu Algo256/cuda_groestl256.cu Algo256/cuda_keccak256.cu Algo256/cuda_skein256.cu \
|
||||||
|
Algo256/blake256.cu Algo256/keccak256.cu \
|
||||||
JHA/jackpotcoin.cu JHA/cuda_jha_keccak512.cu \
|
JHA/jackpotcoin.cu JHA/cuda_jha_keccak512.cu \
|
||||||
JHA/cuda_jha_compactionTest.cu cuda_checkhash.cu \
|
JHA/cuda_jha_compactionTest.cu cuda_checkhash.cu \
|
||||||
quark/cuda_jh512.cu quark/cuda_quark_blake512.cu quark/cuda_quark_groestl512.cu quark/cuda_skein512.cu \
|
quark/cuda_jh512.cu quark/cuda_quark_blake512.cu quark/cuda_quark_groestl512.cu quark/cuda_skein512.cu \
|
||||||
quark/cuda_bmw512.cu quark/cuda_quark_keccak512.cu \
|
quark/cuda_bmw512.cu quark/cuda_quark_keccak512.cu \
|
||||||
quark/quarkcoin.cu quark/animecoin.cu \
|
quark/quarkcoin.cu quark/animecoin.cu \
|
||||||
quark/cuda_quark_compactionTest.cu \
|
quark/cuda_quark_compactionTest.cu \
|
||||||
cuda_nist5.cu blake32.cu pentablake.cu \
|
cuda_nist5.cu pentablake.cu \
|
||||||
sph/bmw.c sph/blake.c sph/groestl.c sph/jh.c sph/keccak.c sph/skein.c \
|
sph/bmw.c sph/blake.c sph/groestl.c sph/jh.c sph/keccak.c sph/skein.c \
|
||||||
sph/cubehash.c sph/echo.c sph/luffa.c sph/sha2.c sph/shavite.c sph/simd.c \
|
sph/cubehash.c sph/echo.c sph/luffa.c sph/sha2.c sph/shavite.c sph/simd.c \
|
||||||
sph/hamsi.c sph/hamsi_helper.c sph/sph_hamsi.h \
|
sph/hamsi.c sph/hamsi_helper.c sph/sph_hamsi.h \
|
||||||
|
10
README.txt
10
README.txt
@ -1,5 +1,5 @@
|
|||||||
|
|
||||||
ccMiner release 1.5.0-tpruvot (27 Nov 2014) - "Extra nonce"
|
ccMiner release 1.5.1-tpruvot (16 Dec 2014) - "Vertcoin Lyra2"
|
||||||
---------------------------------------------------------------
|
---------------------------------------------------------------
|
||||||
|
|
||||||
***************************************************************
|
***************************************************************
|
||||||
@ -38,6 +38,7 @@ Keccak (Maxcoin)
|
|||||||
Deep, Doom and Qubit
|
Deep, Doom and Qubit
|
||||||
Pentablake (Blake 512 x5)
|
Pentablake (Blake 512 x5)
|
||||||
S3 (OneCoin)
|
S3 (OneCoin)
|
||||||
|
Lyra2RE (new VertCoin algo)
|
||||||
|
|
||||||
where some of these coins have a VERY NOTABLE nVidia advantage
|
where some of these coins have a VERY NOTABLE nVidia advantage
|
||||||
over competing AMD (OpenCL Only) implementations.
|
over competing AMD (OpenCL Only) implementations.
|
||||||
@ -68,6 +69,7 @@ its command line interface and options.
|
|||||||
jackpot use to mine Jackpotcoin
|
jackpot use to mine Jackpotcoin
|
||||||
keccak use to mine Maxcoin
|
keccak use to mine Maxcoin
|
||||||
luffa use to mine Doomcoin
|
luffa use to mine Doomcoin
|
||||||
|
lyra2 use to mine Vertcoin
|
||||||
mjollnir use to mine Mjollnircoin
|
mjollnir use to mine Mjollnircoin
|
||||||
myr-gr use to mine Myriad-Groest
|
myr-gr use to mine Myriad-Groest
|
||||||
nist5 use to mine TalkCoin
|
nist5 use to mine TalkCoin
|
||||||
@ -169,6 +171,12 @@ features.
|
|||||||
|
|
||||||
>>> RELEASE HISTORY <<<
|
>>> RELEASE HISTORY <<<
|
||||||
|
|
||||||
|
Dec. 2014 v1.5.1 (not released yet!)
|
||||||
|
Add lyra2 algo for Vertcoin (Release is 16 Dec 2014)
|
||||||
|
Multiple shares support (2 for the moment)
|
||||||
|
X11 optimisations (From klaust and sp-hash)
|
||||||
|
HTML5 WebSocket api compatibility (see api/websocket.htm)
|
||||||
|
|
||||||
Nov. 27th 2014 v1.5.0
|
Nov. 27th 2014 v1.5.0
|
||||||
Upgrade compat jansson to 2.6 (for windows)
|
Upgrade compat jansson to 2.6 (for windows)
|
||||||
Add pool mining.set_extranonce support
|
Add pool mining.set_extranonce support
|
||||||
|
@ -138,6 +138,7 @@ enum sha_algos {
|
|||||||
ALGO_KECCAK,
|
ALGO_KECCAK,
|
||||||
ALGO_JACKPOT,
|
ALGO_JACKPOT,
|
||||||
ALGO_LUFFA_DOOM,
|
ALGO_LUFFA_DOOM,
|
||||||
|
ALGO_LYRA,
|
||||||
ALGO_MJOLLNIR, /* Hefty hash */
|
ALGO_MJOLLNIR, /* Hefty hash */
|
||||||
ALGO_MYR_GR,
|
ALGO_MYR_GR,
|
||||||
ALGO_NIST5,
|
ALGO_NIST5,
|
||||||
@ -167,6 +168,7 @@ static const char *algo_names[] = {
|
|||||||
"keccak",
|
"keccak",
|
||||||
"jackpot",
|
"jackpot",
|
||||||
"luffa",
|
"luffa",
|
||||||
|
"lyra2",
|
||||||
"mjollnir",
|
"mjollnir",
|
||||||
"myr-gr",
|
"myr-gr",
|
||||||
"nist5",
|
"nist5",
|
||||||
@ -272,6 +274,7 @@ Options:\n\
|
|||||||
jackpot Jackpot\n\
|
jackpot Jackpot\n\
|
||||||
keccak Keccak-256 (Maxcoin)\n\
|
keccak Keccak-256 (Maxcoin)\n\
|
||||||
luffa Doomcoin\n\
|
luffa Doomcoin\n\
|
||||||
|
lyra2 VertCoin\n\
|
||||||
mjollnir Mjollnircoin\n\
|
mjollnir Mjollnircoin\n\
|
||||||
myr-gr Myriad-Groestl\n\
|
myr-gr Myriad-Groestl\n\
|
||||||
nist5 NIST5 (TalkCoin)\n\
|
nist5 NIST5 (TalkCoin)\n\
|
||||||
@ -1255,6 +1258,11 @@ static void *miner_thread(void *userdata)
|
|||||||
max_nonce, &hashes_done);
|
max_nonce, &hashes_done);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
|
case ALGO_LYRA:
|
||||||
|
rc = scanhash_lyra(thr_id, work.data, work.target,
|
||||||
|
max_nonce, &hashes_done);
|
||||||
|
break;
|
||||||
|
|
||||||
case ALGO_NIST5:
|
case ALGO_NIST5:
|
||||||
rc = scanhash_nist5(thr_id, work.data, work.target,
|
rc = scanhash_nist5(thr_id, work.data, work.target,
|
||||||
max_nonce, &hashes_done);
|
max_nonce, &hashes_done);
|
||||||
|
@ -105,7 +105,7 @@
|
|||||||
<MaxRegCount>80</MaxRegCount>
|
<MaxRegCount>80</MaxRegCount>
|
||||||
<PtxAsOptionV>true</PtxAsOptionV>
|
<PtxAsOptionV>true</PtxAsOptionV>
|
||||||
<Keep>false</Keep>
|
<Keep>false</Keep>
|
||||||
<CodeGeneration>compute_50,sm_50</CodeGeneration>
|
<CodeGeneration>compute_30,sm_30;compute_50,sm_50</CodeGeneration>
|
||||||
</CudaCompile>
|
</CudaCompile>
|
||||||
</ItemDefinitionGroup>
|
</ItemDefinitionGroup>
|
||||||
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
|
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
|
||||||
@ -173,7 +173,7 @@
|
|||||||
<MaxRegCount>80</MaxRegCount>
|
<MaxRegCount>80</MaxRegCount>
|
||||||
<PtxAsOptionV>true</PtxAsOptionV>
|
<PtxAsOptionV>true</PtxAsOptionV>
|
||||||
<Keep>false</Keep>
|
<Keep>false</Keep>
|
||||||
<CodeGeneration>compute_30,sm_30;compute_50,sm_50;</CodeGeneration>
|
<CodeGeneration>compute_50,sm_50;</CodeGeneration>
|
||||||
<AdditionalOptions>--ptxas-options="-O2" %(AdditionalOptions)</AdditionalOptions>
|
<AdditionalOptions>--ptxas-options="-O2" %(AdditionalOptions)</AdditionalOptions>
|
||||||
<Defines>
|
<Defines>
|
||||||
</Defines>
|
</Defines>
|
||||||
@ -257,6 +257,8 @@
|
|||||||
<Optimization Condition="'$(Configuration)'=='Release'">Full</Optimization>
|
<Optimization Condition="'$(Configuration)'=='Release'">Full</Optimization>
|
||||||
<AdditionalOptions>/Tp %(AdditionalOptions)</AdditionalOptions>
|
<AdditionalOptions>/Tp %(AdditionalOptions)</AdditionalOptions>
|
||||||
</ClCompile>
|
</ClCompile>
|
||||||
|
<ClCompile Include="lyra2\Lyra2.c" />
|
||||||
|
<ClCompile Include="lyra2\Sponge.c" />
|
||||||
<ClCompile Include="sph\aes_helper.c" />
|
<ClCompile Include="sph\aes_helper.c" />
|
||||||
<ClCompile Include="sph\blake.c" />
|
<ClCompile Include="sph\blake.c" />
|
||||||
<ClCompile Include="sph\bmw.c" />
|
<ClCompile Include="sph\bmw.c" />
|
||||||
@ -330,13 +332,15 @@
|
|||||||
<ClInclude Include="sph\sph_whirlpool.h" />
|
<ClInclude Include="sph\sph_whirlpool.h" />
|
||||||
<ClInclude Include="uint256.h" />
|
<ClInclude Include="uint256.h" />
|
||||||
</ItemGroup>
|
</ItemGroup>
|
||||||
|
<ItemGroup>
|
||||||
|
<ClInclude Include="lyra2\Lyra2.h" />
|
||||||
|
<ClInclude Include="lyra2\Sponge.h" />
|
||||||
|
</ItemGroup>
|
||||||
<ItemGroup>
|
<ItemGroup>
|
||||||
<CudaCompile Include="cuda.cpp" />
|
<CudaCompile Include="cuda.cpp" />
|
||||||
<CudaCompile Include="bitslice_transformations_quad.cu">
|
<CudaCompile Include="bitslice_transformations_quad.cu">
|
||||||
<ExcludedFromBuild>true</ExcludedFromBuild>
|
<ExcludedFromBuild>true</ExcludedFromBuild>
|
||||||
</CudaCompile>
|
</CudaCompile>
|
||||||
<CudaCompile Include="cuda_fugue256.cu">
|
|
||||||
</CudaCompile>
|
|
||||||
<CudaCompile Include="cuda_groestlcoin.cu">
|
<CudaCompile Include="cuda_groestlcoin.cu">
|
||||||
</CudaCompile>
|
</CudaCompile>
|
||||||
<CudaCompile Include="cuda_myriadgroestl.cu">
|
<CudaCompile Include="cuda_myriadgroestl.cu">
|
||||||
@ -369,15 +373,19 @@
|
|||||||
</CudaCompile>
|
</CudaCompile>
|
||||||
<CudaCompile Include="JHA\jackpotcoin.cu">
|
<CudaCompile Include="JHA\jackpotcoin.cu">
|
||||||
</CudaCompile>
|
</CudaCompile>
|
||||||
<CudaCompile Include="blake32.cu">
|
<CudaCompile Include="Algo256\blake256.cu">
|
||||||
<MaxRegCount>64</MaxRegCount>
|
<MaxRegCount>64</MaxRegCount>
|
||||||
<AdditionalOptions Condition="'$(Configuration)'=='Release'">--ptxas-options="-dlcm=cg" %(AdditionalOptions)</AdditionalOptions>
|
<AdditionalOptions Condition="'$(Configuration)'=='Release'">--ptxas-options="-dlcm=cg" %(AdditionalOptions)</AdditionalOptions>
|
||||||
<FastMath>true</FastMath>
|
<FastMath>true</FastMath>
|
||||||
</CudaCompile>
|
</CudaCompile>
|
||||||
<CudaCompile Include="keccak\cuda_keccak256.cu">
|
<CudaCompile Include="Algo256\keccak256.cu" />
|
||||||
|
<CudaCompile Include="Algo256\cuda_blake256.cu" />
|
||||||
|
<CudaCompile Include="Algo256\cuda_fugue256.cu" />
|
||||||
|
<CudaCompile Include="Algo256\cuda_groestl256.cu" />
|
||||||
|
<CudaCompile Include="Algo256\cuda_keccak256.cu">
|
||||||
<MaxRegCount>92</MaxRegCount>
|
<MaxRegCount>92</MaxRegCount>
|
||||||
</CudaCompile>
|
</CudaCompile>
|
||||||
<CudaCompile Include="keccak\keccak256.cu" />
|
<CudaCompile Include="Algo256\cuda_skein256.cu" />
|
||||||
<CudaCompile Include="pentablake.cu">
|
<CudaCompile Include="pentablake.cu">
|
||||||
<MaxRegCount>80</MaxRegCount>
|
<MaxRegCount>80</MaxRegCount>
|
||||||
<AdditionalOptions Condition="'$(Configuration)'=='Release'">--ptxas-options="-dlcm=cg" %(AdditionalOptions)</AdditionalOptions>
|
<AdditionalOptions Condition="'$(Configuration)'=='Release'">--ptxas-options="-dlcm=cg" %(AdditionalOptions)</AdditionalOptions>
|
||||||
@ -418,6 +426,8 @@
|
|||||||
</CudaCompile>
|
</CudaCompile>
|
||||||
<CudaCompile Include="qubit\qubit_luffa512.cu">
|
<CudaCompile Include="qubit\qubit_luffa512.cu">
|
||||||
</CudaCompile>
|
</CudaCompile>
|
||||||
|
<CudaCompile Include="lyra2\lyra2RE.cu" />
|
||||||
|
<CudaCompile Include="lyra2\cuda_lyra2.cu" />
|
||||||
<CudaCompile Include="x11\cuda_x11_aes.cu">
|
<CudaCompile Include="x11\cuda_x11_aes.cu">
|
||||||
<ExcludedFromBuild>true</ExcludedFromBuild>
|
<ExcludedFromBuild>true</ExcludedFromBuild>
|
||||||
</CudaCompile>
|
</CudaCompile>
|
||||||
|
@ -61,12 +61,15 @@
|
|||||||
<Filter Include="Source Files\jansson">
|
<Filter Include="Source Files\jansson">
|
||||||
<UniqueIdentifier>{17b56151-79ec-4a32-bac3-9d94ae7f68fe}</UniqueIdentifier>
|
<UniqueIdentifier>{17b56151-79ec-4a32-bac3-9d94ae7f68fe}</UniqueIdentifier>
|
||||||
</Filter>
|
</Filter>
|
||||||
<Filter Include="Source Files\CUDA\keccak">
|
|
||||||
<UniqueIdentifier>{9762c92c-9677-4044-8292-ff6ba4bfdd89}</UniqueIdentifier>
|
|
||||||
</Filter>
|
|
||||||
<Filter Include="Header Files\compat\nvapi">
|
<Filter Include="Header Files\compat\nvapi">
|
||||||
<UniqueIdentifier>{ef6f9983-bda5-4fb2-adfa-ac4f29b74f25}</UniqueIdentifier>
|
<UniqueIdentifier>{ef6f9983-bda5-4fb2-adfa-ac4f29b74f25}</UniqueIdentifier>
|
||||||
</Filter>
|
</Filter>
|
||||||
|
<Filter Include="Source Files\CUDA\Algo256">
|
||||||
|
<UniqueIdentifier>{9762c92c-9677-4044-8292-ff6ba4bfdd89}</UniqueIdentifier>
|
||||||
|
</Filter>
|
||||||
|
<Filter Include="Header Files\lyra2">
|
||||||
|
<UniqueIdentifier>{2ff6e4ce-7c92-4cb2-a3ad-c331e94fd81d}</UniqueIdentifier>
|
||||||
|
</Filter>
|
||||||
</ItemGroup>
|
</ItemGroup>
|
||||||
<ItemGroup>
|
<ItemGroup>
|
||||||
<ClCompile Include="compat\jansson\dump.c">
|
<ClCompile Include="compat\jansson\dump.c">
|
||||||
@ -213,6 +216,12 @@
|
|||||||
<ClCompile Include="compat\jansson\error.c">
|
<ClCompile Include="compat\jansson\error.c">
|
||||||
<Filter>Source Files\jansson</Filter>
|
<Filter>Source Files\jansson</Filter>
|
||||||
</ClCompile>
|
</ClCompile>
|
||||||
|
<ClCompile Include="lyra2\Lyra2.c">
|
||||||
|
<Filter>Source Files\sph</Filter>
|
||||||
|
</ClCompile>
|
||||||
|
<ClCompile Include="lyra2\Sponge.c">
|
||||||
|
<Filter>Source Files\sph</Filter>
|
||||||
|
</ClCompile>
|
||||||
</ItemGroup>
|
</ItemGroup>
|
||||||
<ItemGroup>
|
<ItemGroup>
|
||||||
<ClInclude Include="compat.h">
|
<ClInclude Include="compat.h">
|
||||||
@ -347,14 +356,17 @@
|
|||||||
<ClInclude Include="compat\jansson\jansson_config.h">
|
<ClInclude Include="compat\jansson\jansson_config.h">
|
||||||
<Filter>Header Files\compat</Filter>
|
<Filter>Header Files\compat</Filter>
|
||||||
</ClInclude>
|
</ClInclude>
|
||||||
|
<ClInclude Include="lyra2\Lyra2.h">
|
||||||
|
<Filter>Header Files\lyra2</Filter>
|
||||||
|
</ClInclude>
|
||||||
|
<ClInclude Include="lyra2\Sponge.h">
|
||||||
|
<Filter>Header Files\lyra2</Filter>
|
||||||
|
</ClInclude>
|
||||||
</ItemGroup>
|
</ItemGroup>
|
||||||
<ItemGroup>
|
<ItemGroup>
|
||||||
<CudaCompile Include="cuda.cpp">
|
<CudaCompile Include="cuda.cpp">
|
||||||
<Filter>Source Files\CUDA</Filter>
|
<Filter>Source Files\CUDA</Filter>
|
||||||
</CudaCompile>
|
</CudaCompile>
|
||||||
<CudaCompile Include="cuda_fugue256.cu">
|
|
||||||
<Filter>Source Files\CUDA</Filter>
|
|
||||||
</CudaCompile>
|
|
||||||
<CudaCompile Include="cuda_groestlcoin.cu">
|
<CudaCompile Include="cuda_groestlcoin.cu">
|
||||||
<Filter>Source Files\CUDA</Filter>
|
<Filter>Source Files\CUDA</Filter>
|
||||||
</CudaCompile>
|
</CudaCompile>
|
||||||
@ -505,20 +517,38 @@
|
|||||||
<CudaCompile Include="x17\x17.cu">
|
<CudaCompile Include="x17\x17.cu">
|
||||||
<Filter>Source Files\CUDA\x17</Filter>
|
<Filter>Source Files\CUDA\x17</Filter>
|
||||||
</CudaCompile>
|
</CudaCompile>
|
||||||
<CudaCompile Include="blake32.cu">
|
|
||||||
<Filter>Source Files\CUDA</Filter>
|
|
||||||
</CudaCompile>
|
|
||||||
<CudaCompile Include="pentablake.cu">
|
<CudaCompile Include="pentablake.cu">
|
||||||
<Filter>Source Files\CUDA</Filter>
|
<Filter>Source Files\CUDA</Filter>
|
||||||
</CudaCompile>
|
</CudaCompile>
|
||||||
<CudaCompile Include="keccak\cuda_keccak256.cu">
|
|
||||||
<Filter>Source Files\CUDA\keccak</Filter>
|
|
||||||
</CudaCompile>
|
|
||||||
<CudaCompile Include="keccak\keccak256.cu">
|
|
||||||
<Filter>Source Files\CUDA\keccak</Filter>
|
|
||||||
</CudaCompile>
|
|
||||||
<CudaCompile Include="x11\s3.cu">
|
<CudaCompile Include="x11\s3.cu">
|
||||||
<Filter>Source Files\CUDA\x11</Filter>
|
<Filter>Source Files\CUDA\x11</Filter>
|
||||||
</CudaCompile>
|
</CudaCompile>
|
||||||
|
<CudaCompile Include="Algo256\blake256.cu">
|
||||||
|
<Filter>Source Files\CUDA</Filter>
|
||||||
|
</CudaCompile>
|
||||||
|
<CudaCompile Include="Algo256\keccak256.cu">
|
||||||
|
<Filter>Source Files\CUDA</Filter>
|
||||||
|
</CudaCompile>
|
||||||
|
<CudaCompile Include="Algo256\cuda_blake256.cu">
|
||||||
|
<Filter>Source Files\CUDA\Algo256</Filter>
|
||||||
|
</CudaCompile>
|
||||||
|
<CudaCompile Include="Algo256\cuda_fugue256.cu">
|
||||||
|
<Filter>Source Files\CUDA\Algo256</Filter>
|
||||||
|
</CudaCompile>
|
||||||
|
<CudaCompile Include="Algo256\cuda_groestl256.cu">
|
||||||
|
<Filter>Source Files\CUDA\Algo256</Filter>
|
||||||
|
</CudaCompile>
|
||||||
|
<CudaCompile Include="Algo256\cuda_keccak256.cu">
|
||||||
|
<Filter>Source Files\CUDA\Algo256</Filter>
|
||||||
|
</CudaCompile>
|
||||||
|
<CudaCompile Include="Algo256\cuda_skein256.cu">
|
||||||
|
<Filter>Source Files\CUDA\Algo256</Filter>
|
||||||
|
</CudaCompile>
|
||||||
|
<CudaCompile Include="lyra2\cuda_lyra2.cu">
|
||||||
|
<Filter>Source Files\CUDA</Filter>
|
||||||
|
</CudaCompile>
|
||||||
|
<CudaCompile Include="lyra2\lyra2RE.cu">
|
||||||
|
<Filter>Source Files\CUDA</Filter>
|
||||||
|
</CudaCompile>
|
||||||
</ItemGroup>
|
</ItemGroup>
|
||||||
</Project>
|
</Project>
|
@ -355,7 +355,7 @@ uint64_t ROTL64(const uint64_t x, const int offset)
|
|||||||
"setp.lt.u32 p, %2, 32;\n\t"
|
"setp.lt.u32 p, %2, 32;\n\t"
|
||||||
"@!p mov.b64 %0, {vl,vh};\n\t"
|
"@!p mov.b64 %0, {vl,vh};\n\t"
|
||||||
"@p mov.b64 %0, {vh,vl};\n\t"
|
"@p mov.b64 %0, {vh,vl};\n\t"
|
||||||
"}"
|
"}"
|
||||||
: "=l"(res) : "l"(x) , "r"(offset)
|
: "=l"(res) : "l"(x) , "r"(offset)
|
||||||
);
|
);
|
||||||
return res;
|
return res;
|
||||||
@ -378,4 +378,99 @@ uint64_t SWAPDWORDS(uint64_t value)
|
|||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* lyra2 - int2 operators */
|
||||||
|
|
||||||
|
__device__ __forceinline__
|
||||||
|
void LOHI(uint32_t &lo, uint32_t &hi, uint64_t x) {
|
||||||
|
asm("mov.b64 {%0,%1},%2; \n\t"
|
||||||
|
: "=r"(lo), "=r"(hi) : "l"(x));
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ uint64_t devectorize(uint2 v) { return MAKE_ULONGLONG(v.x, v.y); }
|
||||||
|
static __device__ __forceinline__ uint2 vectorize(uint64_t v) {
|
||||||
|
uint2 result;
|
||||||
|
LOHI(result.x, result.y, v);
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ uint2 operator^ (uint2 a, uint2 b) { return make_uint2(a.x ^ b.x, a.y ^ b.y); }
|
||||||
|
static __device__ __forceinline__ uint2 operator& (uint2 a, uint2 b) { return make_uint2(a.x & b.x, a.y & b.y); }
|
||||||
|
static __device__ __forceinline__ uint2 operator| (uint2 a, uint2 b) { return make_uint2(a.x | b.x, a.y | b.y); }
|
||||||
|
static __device__ __forceinline__ uint2 operator~ (uint2 a) { return make_uint2(~a.x, ~a.y); }
|
||||||
|
static __device__ __forceinline__ void operator^= (uint2 &a, uint2 b) { a = a ^ b; }
|
||||||
|
static __device__ __forceinline__ uint2 operator+ (uint2 a, uint2 b)
|
||||||
|
{
|
||||||
|
uint2 result;
|
||||||
|
asm("{\n\t"
|
||||||
|
"add.cc.u32 %0,%2,%4; \n\t"
|
||||||
|
"addc.u32 %1,%3,%5; \n\t"
|
||||||
|
"}\n\t"
|
||||||
|
: "=r"(result.x), "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(b.x), "r"(b.y));
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
static __device__ __forceinline__ void operator+= (uint2 &a, uint2 b) { a = a + b; }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* basic multiplication between 64bit no carry outside that range (ie mul.lo.b64(a*b))
|
||||||
|
* (what does uint64 "*" operator)
|
||||||
|
*/
|
||||||
|
static __device__ __forceinline__ uint2 operator* (uint2 a, uint2 b)
|
||||||
|
{
|
||||||
|
uint2 result;
|
||||||
|
asm("{\n\t"
|
||||||
|
"mul.lo.u32 %0,%2,%4; \n\t"
|
||||||
|
"mul.hi.u32 %1,%2,%4; \n\t"
|
||||||
|
"mad.lo.cc.u32 %1,%3,%4,%1; \n\t"
|
||||||
|
"madc.lo.u32 %1,%3,%5,%1; \n\t"
|
||||||
|
"}\n\t"
|
||||||
|
: "=r"(result.x), "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(b.x), "r"(b.y));
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
// uint2 method
|
||||||
|
#if __CUDA_ARCH__ >= 350
|
||||||
|
__device__ __inline__ uint2 ROR2(const uint2 a, const int offset) {
|
||||||
|
uint2 result;
|
||||||
|
if (offset < 32) {
|
||||||
|
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(a.x), "r"(a.y), "r"(offset));
|
||||||
|
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(a.y), "r"(a.x), "r"(offset));
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(a.y), "r"(a.x), "r"(offset));
|
||||||
|
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(offset));
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
__device__ __inline__ uint2 ROR2(const uint2 v, const int n) {
|
||||||
|
uint2 result;
|
||||||
|
result.x = (((v.x) >> (n)) | ((v.x) << (64 - (n))));
|
||||||
|
result.y = (((v.y) >> (n)) | ((v.y) << (64 - (n))));
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if __CUDA_ARCH__ >= 350
|
||||||
|
__inline__ __device__ uint2 ROL2(const uint2 a, const int offset) {
|
||||||
|
uint2 result;
|
||||||
|
if (offset >= 32) {
|
||||||
|
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(a.x), "r"(a.y), "r"(offset));
|
||||||
|
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(a.y), "r"(a.x), "r"(offset));
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(a.y), "r"(a.x), "r"(offset));
|
||||||
|
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(offset));
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
__inline__ __device__ uint2 ROL2(const uint2 v, const int n) {
|
||||||
|
uint2 result;
|
||||||
|
result.x = (((v.x) << (n)) | ((v.x) >> (64 - (n))));
|
||||||
|
result.y = (((v.y) << (n)) | ((v.y) >> (64 - (n))));
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
#endif // #ifndef CUDA_HELPER_H
|
#endif // #ifndef CUDA_HELPER_H
|
||||||
|
211
lyra2/Lyra2.c
Normal file
211
lyra2/Lyra2.c
Normal file
@ -0,0 +1,211 @@
|
|||||||
|
/**
|
||||||
|
* Implementation of the Lyra2 Password Hashing Scheme (PHS).
|
||||||
|
*
|
||||||
|
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
|
||||||
|
*
|
||||||
|
* This software is hereby placed in the public domain.
|
||||||
|
*
|
||||||
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
|
||||||
|
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||||
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
|
||||||
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||||
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||||
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
||||||
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
||||||
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
||||||
|
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
||||||
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
*/
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <string.h>
|
||||||
|
#include <time.h>
|
||||||
|
|
||||||
|
#include "Lyra2.h"
|
||||||
|
#include "Sponge.h"
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Executes Lyra2 based on the G function from Blake2b. This version supports salts and passwords
|
||||||
|
* whose combined length is smaller than the size of the memory matrix, (i.e., (nRows x nCols x b) bits,
|
||||||
|
* where "b" is the underlying sponge's bitrate). In this implementation, the "basil" is composed by all
|
||||||
|
* integer parameters (treated as type "unsigned int") in the order they are provided, plus the value
|
||||||
|
* of nCols, (i.e., basil = kLen || pwdlen || saltlen || timeCost || nRows || nCols).
|
||||||
|
*
|
||||||
|
* @param K The derived key to be output by the algorithm
|
||||||
|
* @param kLen Desired key length
|
||||||
|
* @param pwd User password
|
||||||
|
* @param pwdlen Password length
|
||||||
|
* @param salt Salt
|
||||||
|
* @param saltlen Salt length
|
||||||
|
* @param timeCost Parameter to determine the processing time (T)
|
||||||
|
* @param nRows Number or rows of the memory matrix (R)
|
||||||
|
* @param nCols Number of columns of the memory matrix (C)
|
||||||
|
*
|
||||||
|
* @return 0 if the key is generated correctly; -1 if there is an error (usually due to lack of memory for allocation)
|
||||||
|
*/
|
||||||
|
int LYRA2(void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen, const void *salt, uint64_t saltlen, uint64_t timeCost, uint64_t nRows, uint64_t nCols)
|
||||||
|
{
|
||||||
|
//============================= Basic variables ============================//
|
||||||
|
int64_t row = 2; //index of row to be processed
|
||||||
|
int64_t prev = 1; //index of prev (last row ever computed/modified)
|
||||||
|
int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering)
|
||||||
|
int64_t tau; //Time Loop iterator
|
||||||
|
int64_t step = 1; //Visitation step (used during Setup and Wandering phases)
|
||||||
|
int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup)
|
||||||
|
int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1
|
||||||
|
int64_t i; //auxiliary iteration counter
|
||||||
|
//==========================================================================/
|
||||||
|
|
||||||
|
//========== Initializing the Memory Matrix and pointers to it =============//
|
||||||
|
//Tries to allocate enough space for the whole memory matrix
|
||||||
|
i = (int64_t) ((int64_t) nRows * (int64_t) ROW_LEN_BYTES);
|
||||||
|
uint64_t *wholeMatrix = (uint64_t*) malloc((size_t) i);
|
||||||
|
if (wholeMatrix == NULL) {
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
memset(wholeMatrix, 0, (size_t) i);
|
||||||
|
|
||||||
|
//Allocates pointers to each row of the matrix
|
||||||
|
uint64_t **memMatrix = malloc((size_t) nRows * sizeof(uint64_t*));
|
||||||
|
if (memMatrix == NULL) {
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
//Places the pointers in the correct positions
|
||||||
|
uint64_t *ptrWord = wholeMatrix;
|
||||||
|
for (i = 0; i < (int64_t) nRows; i++) {
|
||||||
|
memMatrix[i] = ptrWord;
|
||||||
|
ptrWord += ROW_LEN_INT64;
|
||||||
|
}
|
||||||
|
//==========================================================================/
|
||||||
|
|
||||||
|
//============= Getting the password + salt + basil padded with 10*1 ===============//
|
||||||
|
//OBS.:The memory matrix will temporarily hold the password: not for saving memory,
|
||||||
|
//but this ensures that the password copied locally will be overwritten as soon as possible
|
||||||
|
|
||||||
|
//First, we clean enough blocks for the password, salt, basil and padding
|
||||||
|
uint64_t nBlocksInput = ((saltlen + pwdlen + 6 * sizeof (uint64_t)) / BLOCK_LEN_BLAKE2_SAFE_BYTES) + 1;
|
||||||
|
|
||||||
|
byte *ptrByte = (byte*) wholeMatrix;
|
||||||
|
memset(ptrByte, 0, (size_t) nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES);
|
||||||
|
|
||||||
|
//Prepends the password
|
||||||
|
memcpy(ptrByte, pwd, (size_t) pwdlen);
|
||||||
|
ptrByte += pwdlen;
|
||||||
|
|
||||||
|
//Concatenates the salt
|
||||||
|
memcpy(ptrByte, salt, (size_t) saltlen);
|
||||||
|
ptrByte += saltlen;
|
||||||
|
|
||||||
|
//Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface
|
||||||
|
memcpy(ptrByte, &kLen, sizeof (uint64_t));
|
||||||
|
ptrByte += sizeof (uint64_t);
|
||||||
|
memcpy(ptrByte, &pwdlen, sizeof (uint64_t));
|
||||||
|
ptrByte += sizeof (uint64_t);
|
||||||
|
memcpy(ptrByte, &saltlen, sizeof (uint64_t));
|
||||||
|
ptrByte += sizeof (uint64_t);
|
||||||
|
memcpy(ptrByte, &timeCost, sizeof (uint64_t));
|
||||||
|
ptrByte += sizeof (uint64_t);
|
||||||
|
memcpy(ptrByte, &nRows, sizeof (uint64_t));
|
||||||
|
ptrByte += sizeof (uint64_t);
|
||||||
|
memcpy(ptrByte, &nCols, sizeof (uint64_t));
|
||||||
|
ptrByte += sizeof (uint64_t);
|
||||||
|
|
||||||
|
//Now comes the padding
|
||||||
|
*ptrByte = 0x80; //first byte of padding: right after the password
|
||||||
|
ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix
|
||||||
|
ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block
|
||||||
|
*ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block
|
||||||
|
//==========================================================================/
|
||||||
|
|
||||||
|
//======================= Initializing the Sponge State ====================//
|
||||||
|
//Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c)
|
||||||
|
uint64_t *state = malloc(16 * sizeof (uint64_t));
|
||||||
|
if (state == NULL) {
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
initState(state);
|
||||||
|
//==========================================================================/
|
||||||
|
|
||||||
|
//================================ Setup Phase =============================//
|
||||||
|
//Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits
|
||||||
|
ptrWord = wholeMatrix;
|
||||||
|
for (i = 0; i < (int64_t) nBlocksInput; i++) {
|
||||||
|
absorbBlockBlake2Safe(state, ptrWord); //absorbs each block of pad(pwd || salt || basil)
|
||||||
|
ptrWord += BLOCK_LEN_BLAKE2_SAFE_BYTES; //goes to next block of pad(pwd || salt || basil)
|
||||||
|
}
|
||||||
|
|
||||||
|
//Initializes M[0] and M[1]
|
||||||
|
reducedSqueezeRow0(state, memMatrix[0]); //The locally copied password is most likely overwritten here
|
||||||
|
|
||||||
|
reducedDuplexRow1(state, memMatrix[0], memMatrix[1]);
|
||||||
|
|
||||||
|
do {
|
||||||
|
//M[row] = rand; //M[row*] = M[row*] XOR rotW(rand)
|
||||||
|
|
||||||
|
reducedDuplexRowSetup(state, memMatrix[prev], memMatrix[rowa], memMatrix[row]);
|
||||||
|
|
||||||
|
//updates the value of row* (deterministically picked during Setup))
|
||||||
|
rowa = (rowa + step) & (window - 1);
|
||||||
|
//update prev: it now points to the last row ever computed
|
||||||
|
prev = row;
|
||||||
|
//updates row: goes to the next row to be computed
|
||||||
|
row++;
|
||||||
|
|
||||||
|
//Checks if all rows in the window where visited.
|
||||||
|
if (rowa == 0) {
|
||||||
|
step = window + gap; //changes the step: approximately doubles its value
|
||||||
|
window *= 2; //doubles the size of the re-visitation window
|
||||||
|
gap = -gap; //inverts the modifier to the step
|
||||||
|
}
|
||||||
|
|
||||||
|
} while (row < (int64_t) nRows);
|
||||||
|
//==========================================================================/
|
||||||
|
|
||||||
|
//============================ Wandering Phase =============================//
|
||||||
|
row = 0; //Resets the visitation to the first row of the memory matrix
|
||||||
|
for (tau = 1; tau <= (int64_t) timeCost; tau++) {
|
||||||
|
//Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1
|
||||||
|
step = (tau % 2 == 0) ? -1 : nRows / 2 - 1;
|
||||||
|
do {
|
||||||
|
//Selects a pseudorandom index row*
|
||||||
|
//------------------------------------------------------------------------------------------
|
||||||
|
//rowa = ((unsigned int)state[0]) & (nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
|
||||||
|
rowa = ((uint64_t) (state[0])) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
|
||||||
|
//------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
//Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row]
|
||||||
|
reducedDuplexRow(state, memMatrix[prev], memMatrix[rowa], memMatrix[row]);
|
||||||
|
|
||||||
|
//update prev: it now points to the last row ever computed
|
||||||
|
prev = row;
|
||||||
|
|
||||||
|
//updates row: goes to the next row to be computed
|
||||||
|
//------------------------------------------------------------------------------------------
|
||||||
|
//row = (row + step) & (nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
|
||||||
|
row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
|
||||||
|
//------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
} while (row != 0);
|
||||||
|
}
|
||||||
|
//==========================================================================/
|
||||||
|
|
||||||
|
//============================ Wrap-up Phase ===============================//
|
||||||
|
//Absorbs the last block of the memory matrix
|
||||||
|
absorbBlock(state, memMatrix[rowa]);
|
||||||
|
|
||||||
|
//Squeezes the key
|
||||||
|
squeeze(state, K, (size_t) kLen);
|
||||||
|
//==========================================================================/
|
||||||
|
|
||||||
|
//========================= Freeing the memory =============================//
|
||||||
|
free(memMatrix);
|
||||||
|
free(wholeMatrix);
|
||||||
|
|
||||||
|
//Wiping out the sponge's internal state before freeing it
|
||||||
|
memset(state, 0, 16 * sizeof (uint64_t));
|
||||||
|
free(state);
|
||||||
|
//==========================================================================/
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
50
lyra2/Lyra2.h
Normal file
50
lyra2/Lyra2.h
Normal file
@ -0,0 +1,50 @@
|
|||||||
|
/**
|
||||||
|
* Header file for the Lyra2 Password Hashing Scheme (PHS).
|
||||||
|
*
|
||||||
|
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
|
||||||
|
*
|
||||||
|
* This software is hereby placed in the public domain.
|
||||||
|
*
|
||||||
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
|
||||||
|
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||||
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
|
||||||
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||||
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||||
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
||||||
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
||||||
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
||||||
|
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
||||||
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
*/
|
||||||
|
#ifndef LYRA2_H_
|
||||||
|
#define LYRA2_H_
|
||||||
|
|
||||||
|
#include <stdint.h>
|
||||||
|
|
||||||
|
typedef unsigned char byte;
|
||||||
|
|
||||||
|
//Block length required so Blake2's Initialization Vector (IV) is not overwritten (THIS SHOULD NOT BE MODIFIED)
|
||||||
|
#define BLOCK_LEN_BLAKE2_SAFE_INT64 8 //512 bits (=64 bytes, =8 uint64_t)
|
||||||
|
#define BLOCK_LEN_BLAKE2_SAFE_BYTES (BLOCK_LEN_BLAKE2_SAFE_INT64 * 8) //same as above, in bytes
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef BLOCK_LEN_BITS
|
||||||
|
#define BLOCK_LEN_INT64 (BLOCK_LEN_BITS/64) //Block length: 768 bits (=96 bytes, =12 uint64_t)
|
||||||
|
#define BLOCK_LEN_BYTES (BLOCK_LEN_BITS/8) //Block length, in bytes
|
||||||
|
#else //default block lenght: 768 bits
|
||||||
|
#define BLOCK_LEN_INT64 12 //Block length: 768 bits (=96 bytes, =12 uint64_t)
|
||||||
|
#define BLOCK_LEN_BYTES (BLOCK_LEN_INT64 * 8) //Block length, in bytes
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifndef N_COLS
|
||||||
|
#define N_COLS 8 //Number of columns in the memory matrix: fixed to 64 by default
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define ROW_LEN_INT64 (BLOCK_LEN_INT64 * N_COLS) //Total length of a row: N_COLS blocks
|
||||||
|
#define ROW_LEN_BYTES (ROW_LEN_INT64 * 8) //Number of bytes per row
|
||||||
|
|
||||||
|
|
||||||
|
int LYRA2(void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen, const void *salt, uint64_t saltlen, uint64_t timeCost, uint64_t nRows, uint64_t nCols);
|
||||||
|
|
||||||
|
#endif /* LYRA2_H_ */
|
755
lyra2/Sponge.c
Normal file
755
lyra2/Sponge.c
Normal file
@ -0,0 +1,755 @@
|
|||||||
|
/**
|
||||||
|
* A simple implementation of Blake2b's internal permutation
|
||||||
|
* in the form of a sponge.
|
||||||
|
*
|
||||||
|
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
|
||||||
|
*
|
||||||
|
* This software is hereby placed in the public domain.
|
||||||
|
*
|
||||||
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
|
||||||
|
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||||
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
|
||||||
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||||
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||||
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
||||||
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
||||||
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
||||||
|
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
||||||
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
*/
|
||||||
|
#include <string.h>
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <time.h>
|
||||||
|
#include "Sponge.h"
|
||||||
|
#include "Lyra2.h"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Initializes the Sponge State. The first 512 bits are set to zeros and the remainder
|
||||||
|
* receive Blake2b's IV as per Blake2b's specification. <b>Note:</b> Even though sponges
|
||||||
|
* typically have their internal state initialized with zeros, Blake2b's G function
|
||||||
|
* has a fixed point: if the internal state and message are both filled with zeros. the
|
||||||
|
* resulting permutation will always be a block filled with zeros; this happens because
|
||||||
|
* Blake2b does not use the constants originally employed in Blake2 inside its G function,
|
||||||
|
* relying on the IV for avoiding possible fixed points.
|
||||||
|
*
|
||||||
|
* @param state The 1024-bit array to be initialized
|
||||||
|
*/
|
||||||
|
void initState(uint64_t state[/*16*/]) {
|
||||||
|
//First 512 bis are zeros
|
||||||
|
memset(state, 0, 64);
|
||||||
|
//Remainder BLOCK_LEN_BLAKE2_SAFE_BYTES are reserved to the IV
|
||||||
|
|
||||||
|
state[8] = blake2b_IV[0];
|
||||||
|
state[9] = blake2b_IV[1];
|
||||||
|
state[10] = blake2b_IV[2];
|
||||||
|
state[11] = blake2b_IV[3];
|
||||||
|
state[12] = blake2b_IV[4];
|
||||||
|
state[13] = blake2b_IV[5];
|
||||||
|
state[14] = blake2b_IV[6];
|
||||||
|
state[15] = blake2b_IV[7];
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Execute Blake2b's G function, with all 12 rounds.
|
||||||
|
*
|
||||||
|
* @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function
|
||||||
|
*/
|
||||||
|
__inline static void blake2bLyra(uint64_t *v) {
|
||||||
|
ROUND_LYRA(0);
|
||||||
|
ROUND_LYRA(1);
|
||||||
|
ROUND_LYRA(2);
|
||||||
|
ROUND_LYRA(3);
|
||||||
|
ROUND_LYRA(4);
|
||||||
|
ROUND_LYRA(5);
|
||||||
|
ROUND_LYRA(6);
|
||||||
|
ROUND_LYRA(7);
|
||||||
|
ROUND_LYRA(8);
|
||||||
|
ROUND_LYRA(9);
|
||||||
|
ROUND_LYRA(10);
|
||||||
|
ROUND_LYRA(11);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Executes a reduced version of Blake2b's G function with only one round
|
||||||
|
* @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function
|
||||||
|
*/
|
||||||
|
__inline static void reducedBlake2bLyra(uint64_t *v) {
|
||||||
|
ROUND_LYRA(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Performs a squeeze operation, using Blake2b's G function as the
|
||||||
|
* internal permutation
|
||||||
|
*
|
||||||
|
* @param state The current state of the sponge
|
||||||
|
* @param out Array that will receive the data squeezed
|
||||||
|
* @param len The number of bytes to be squeezed into the "out" array
|
||||||
|
*/
|
||||||
|
void squeeze(uint64_t *state, byte *out, unsigned int len) {
|
||||||
|
int fullBlocks = len / BLOCK_LEN_BYTES;
|
||||||
|
byte *ptr = out;
|
||||||
|
int i;
|
||||||
|
//Squeezes full blocks
|
||||||
|
for (i = 0; i < fullBlocks; i++) {
|
||||||
|
memcpy(ptr, state, BLOCK_LEN_BYTES);
|
||||||
|
blake2bLyra(state);
|
||||||
|
ptr += BLOCK_LEN_BYTES;
|
||||||
|
}
|
||||||
|
|
||||||
|
//Squeezes remaining bytes
|
||||||
|
memcpy(ptr, state, (len % BLOCK_LEN_BYTES));
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Performs an absorb operation for a single block (BLOCK_LEN_INT64 words
|
||||||
|
* of type uint64_t), using Blake2b's G function as the internal permutation
|
||||||
|
*
|
||||||
|
* @param state The current state of the sponge
|
||||||
|
* @param in The block to be absorbed (BLOCK_LEN_INT64 words)
|
||||||
|
*/
|
||||||
|
void absorbBlock(uint64_t *state, const uint64_t *in) {
|
||||||
|
//XORs the first BLOCK_LEN_INT64 words of "in" with the current state
|
||||||
|
state[0] ^= in[0];
|
||||||
|
state[1] ^= in[1];
|
||||||
|
state[2] ^= in[2];
|
||||||
|
state[3] ^= in[3];
|
||||||
|
state[4] ^= in[4];
|
||||||
|
state[5] ^= in[5];
|
||||||
|
state[6] ^= in[6];
|
||||||
|
state[7] ^= in[7];
|
||||||
|
state[8] ^= in[8];
|
||||||
|
state[9] ^= in[9];
|
||||||
|
state[10] ^= in[10];
|
||||||
|
state[11] ^= in[11];
|
||||||
|
|
||||||
|
//Applies the transformation f to the sponge's state
|
||||||
|
blake2bLyra(state);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Performs an absorb operation for a single block (BLOCK_LEN_BLAKE2_SAFE_INT64
|
||||||
|
* words of type uint64_t), using Blake2b's G function as the internal permutation
|
||||||
|
*
|
||||||
|
* @param state The current state of the sponge
|
||||||
|
* @param in The block to be absorbed (BLOCK_LEN_BLAKE2_SAFE_INT64 words)
|
||||||
|
*/
|
||||||
|
void absorbBlockBlake2Safe(uint64_t *state, const uint64_t *in) {
|
||||||
|
//XORs the first BLOCK_LEN_BLAKE2_SAFE_INT64 words of "in" with the current state
|
||||||
|
state[0] ^= in[0];
|
||||||
|
state[1] ^= in[1];
|
||||||
|
state[2] ^= in[2];
|
||||||
|
state[3] ^= in[3];
|
||||||
|
state[4] ^= in[4];
|
||||||
|
state[5] ^= in[5];
|
||||||
|
state[6] ^= in[6];
|
||||||
|
state[7] ^= in[7];
|
||||||
|
|
||||||
|
//Applies the transformation f to the sponge's state
|
||||||
|
blake2bLyra(state);
|
||||||
|
/*
|
||||||
|
for(int i = 0; i<16; i++) {
|
||||||
|
printf(" final state %d %08x %08x in %08x %08x\n", i, (uint32_t)(state[i] & 0xFFFFFFFFULL), (uint32_t)(state[i] >> 32),
|
||||||
|
(uint32_t)(in[i] & 0xFFFFFFFFULL), (uint32_t)(in[i] >> 32));
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Performs a reduced squeeze operation for a single row, from the highest to
|
||||||
|
* the lowest index, using the reduced-round Blake2b's G function as the
|
||||||
|
* internal permutation
|
||||||
|
*
|
||||||
|
* @param state The current state of the sponge
|
||||||
|
* @param rowOut Row to receive the data squeezed
|
||||||
|
*/
|
||||||
|
void reducedSqueezeRow0(uint64_t* state, uint64_t* rowOut) {
|
||||||
|
uint64_t* ptrWord = rowOut + (N_COLS-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to M[0][C-1]
|
||||||
|
int i;
|
||||||
|
//M[row][C-1-col] = H.reduced_squeeze()
|
||||||
|
for (i = 0; i < N_COLS; i++) {
|
||||||
|
|
||||||
|
ptrWord[0] = state[0];
|
||||||
|
ptrWord[1] = state[1];
|
||||||
|
ptrWord[2] = state[2];
|
||||||
|
ptrWord[3] = state[3];
|
||||||
|
ptrWord[4] = state[4];
|
||||||
|
ptrWord[5] = state[5];
|
||||||
|
ptrWord[6] = state[6];
|
||||||
|
ptrWord[7] = state[7];
|
||||||
|
ptrWord[8] = state[8];
|
||||||
|
ptrWord[9] = state[9];
|
||||||
|
ptrWord[10] = state[10];
|
||||||
|
ptrWord[11] = state[11];
|
||||||
|
/*
|
||||||
|
for (int i = 0; i<12; i++) {
|
||||||
|
printf(" after reducedSqueezeRow0 %d %08x %08x in %08x %08x\n", i, (uint32_t)(ptrWord[i] & 0xFFFFFFFFULL), (uint32_t)(ptrWord[i] >> 32),
|
||||||
|
(uint32_t)(state[i] & 0xFFFFFFFFULL), (uint32_t)(state[i] >> 32));
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
//Goes to next block (column) that will receive the squeezed data
|
||||||
|
ptrWord -= BLOCK_LEN_INT64;
|
||||||
|
|
||||||
|
//Applies the reduced-round transformation f to the sponge's state
|
||||||
|
reducedBlake2bLyra(state);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Performs a reduced duplex operation for a single row, from the highest to
|
||||||
|
* the lowest index, using the reduced-round Blake2b's G function as the
|
||||||
|
* internal permutation
|
||||||
|
*
|
||||||
|
* @param state The current state of the sponge
|
||||||
|
* @param rowIn Row to feed the sponge
|
||||||
|
* @param rowOut Row to receive the sponge's output
|
||||||
|
*/
|
||||||
|
void reducedDuplexRow1(uint64_t *state, uint64_t *rowIn, uint64_t *rowOut) {
|
||||||
|
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
|
||||||
|
uint64_t* ptrWordOut = rowOut + (N_COLS-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
|
||||||
|
int i;
|
||||||
|
|
||||||
|
for (i = 0; i < N_COLS; i++) {
|
||||||
|
|
||||||
|
//Absorbing "M[prev][col]"
|
||||||
|
state[0] ^= (ptrWordIn[0]);
|
||||||
|
state[1] ^= (ptrWordIn[1]);
|
||||||
|
state[2] ^= (ptrWordIn[2]);
|
||||||
|
state[3] ^= (ptrWordIn[3]);
|
||||||
|
state[4] ^= (ptrWordIn[4]);
|
||||||
|
state[5] ^= (ptrWordIn[5]);
|
||||||
|
state[6] ^= (ptrWordIn[6]);
|
||||||
|
state[7] ^= (ptrWordIn[7]);
|
||||||
|
state[8] ^= (ptrWordIn[8]);
|
||||||
|
state[9] ^= (ptrWordIn[9]);
|
||||||
|
state[10] ^= (ptrWordIn[10]);
|
||||||
|
state[11] ^= (ptrWordIn[11]);
|
||||||
|
|
||||||
|
//Applies the reduced-round transformation f to the sponge's state
|
||||||
|
reducedBlake2bLyra(state);
|
||||||
|
|
||||||
|
//M[row][C-1-col] = M[prev][col] XOR rand
|
||||||
|
ptrWordOut[0] = ptrWordIn[0] ^ state[0];
|
||||||
|
ptrWordOut[1] = ptrWordIn[1] ^ state[1];
|
||||||
|
ptrWordOut[2] = ptrWordIn[2] ^ state[2];
|
||||||
|
ptrWordOut[3] = ptrWordIn[3] ^ state[3];
|
||||||
|
ptrWordOut[4] = ptrWordIn[4] ^ state[4];
|
||||||
|
ptrWordOut[5] = ptrWordIn[5] ^ state[5];
|
||||||
|
ptrWordOut[6] = ptrWordIn[6] ^ state[6];
|
||||||
|
ptrWordOut[7] = ptrWordIn[7] ^ state[7];
|
||||||
|
ptrWordOut[8] = ptrWordIn[8] ^ state[8];
|
||||||
|
ptrWordOut[9] = ptrWordIn[9] ^ state[9];
|
||||||
|
ptrWordOut[10] = ptrWordIn[10] ^ state[10];
|
||||||
|
ptrWordOut[11] = ptrWordIn[11] ^ state[11];
|
||||||
|
|
||||||
|
|
||||||
|
//Input: next column (i.e., next block in sequence)
|
||||||
|
ptrWordIn += BLOCK_LEN_INT64;
|
||||||
|
//Output: goes to previous column
|
||||||
|
ptrWordOut -= BLOCK_LEN_INT64;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Performs a duplexing operation over "M[rowInOut][col] [+] M[rowIn][col]" (i.e.,
|
||||||
|
* the wordwise addition of two columns, ignoring carries between words). The
|
||||||
|
* output of this operation, "rand", is then used to make
|
||||||
|
* "M[rowOut][(N_COLS-1)-col] = M[rowIn][col] XOR rand" and
|
||||||
|
* "M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)", where rotW is a 64-bit
|
||||||
|
* rotation to the left and N_COLS is a system parameter.
|
||||||
|
*
|
||||||
|
* @param state The current state of the sponge
|
||||||
|
* @param rowIn Row used only as input
|
||||||
|
* @param rowInOut Row used as input and to receive output after rotation
|
||||||
|
* @param rowOut Row receiving the output
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
void reducedDuplexRowSetup(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) {
|
||||||
|
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
|
||||||
|
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
|
||||||
|
uint64_t* ptrWordOut = rowOut + (N_COLS-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
|
||||||
|
int i;
|
||||||
|
for (i = 0; i < N_COLS; i++) {
|
||||||
|
//Absorbing "M[prev] [+] M[row*]"
|
||||||
|
state[0] ^= (ptrWordIn[0] + ptrWordInOut[0]);
|
||||||
|
state[1] ^= (ptrWordIn[1] + ptrWordInOut[1]);
|
||||||
|
state[2] ^= (ptrWordIn[2] + ptrWordInOut[2]);
|
||||||
|
state[3] ^= (ptrWordIn[3] + ptrWordInOut[3]);
|
||||||
|
state[4] ^= (ptrWordIn[4] + ptrWordInOut[4]);
|
||||||
|
state[5] ^= (ptrWordIn[5] + ptrWordInOut[5]);
|
||||||
|
state[6] ^= (ptrWordIn[6] + ptrWordInOut[6]);
|
||||||
|
state[7] ^= (ptrWordIn[7] + ptrWordInOut[7]);
|
||||||
|
state[8] ^= (ptrWordIn[8] + ptrWordInOut[8]);
|
||||||
|
state[9] ^= (ptrWordIn[9] + ptrWordInOut[9]);
|
||||||
|
state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]);
|
||||||
|
state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]);
|
||||||
|
|
||||||
|
//Applies the reduced-round transformation f to the sponge's state
|
||||||
|
reducedBlake2bLyra(state);
|
||||||
|
|
||||||
|
//M[row][col] = M[prev][col] XOR rand
|
||||||
|
ptrWordOut[0] = ptrWordIn[0] ^ state[0];
|
||||||
|
ptrWordOut[1] = ptrWordIn[1] ^ state[1];
|
||||||
|
ptrWordOut[2] = ptrWordIn[2] ^ state[2];
|
||||||
|
ptrWordOut[3] = ptrWordIn[3] ^ state[3];
|
||||||
|
ptrWordOut[4] = ptrWordIn[4] ^ state[4];
|
||||||
|
ptrWordOut[5] = ptrWordIn[5] ^ state[5];
|
||||||
|
ptrWordOut[6] = ptrWordIn[6] ^ state[6];
|
||||||
|
ptrWordOut[7] = ptrWordIn[7] ^ state[7];
|
||||||
|
ptrWordOut[8] = ptrWordIn[8] ^ state[8];
|
||||||
|
ptrWordOut[9] = ptrWordIn[9] ^ state[9];
|
||||||
|
ptrWordOut[10] = ptrWordIn[10] ^ state[10];
|
||||||
|
ptrWordOut[11] = ptrWordIn[11] ^ state[11];
|
||||||
|
|
||||||
|
//M[row*][col] = M[row*][col] XOR rotW(rand)
|
||||||
|
ptrWordInOut[0] ^= state[11];
|
||||||
|
ptrWordInOut[1] ^= state[0];
|
||||||
|
ptrWordInOut[2] ^= state[1];
|
||||||
|
ptrWordInOut[3] ^= state[2];
|
||||||
|
ptrWordInOut[4] ^= state[3];
|
||||||
|
ptrWordInOut[5] ^= state[4];
|
||||||
|
ptrWordInOut[6] ^= state[5];
|
||||||
|
ptrWordInOut[7] ^= state[6];
|
||||||
|
ptrWordInOut[8] ^= state[7];
|
||||||
|
ptrWordInOut[9] ^= state[8];
|
||||||
|
ptrWordInOut[10] ^= state[9];
|
||||||
|
ptrWordInOut[11] ^= state[10];
|
||||||
|
|
||||||
|
//Inputs: next column (i.e., next block in sequence)
|
||||||
|
ptrWordInOut += BLOCK_LEN_INT64;
|
||||||
|
ptrWordIn += BLOCK_LEN_INT64;
|
||||||
|
//Output: goes to previous column
|
||||||
|
ptrWordOut -= BLOCK_LEN_INT64;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Performs a duplexing operation over "M[rowInOut][col] [+] M[rowIn][col]" (i.e.,
|
||||||
|
* the wordwise addition of two columns, ignoring carries between words). The
|
||||||
|
* output of this operation, "rand", is then used to make
|
||||||
|
* "M[rowOut][col] = M[rowOut][col] XOR rand" and
|
||||||
|
* "M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)", where rotW is a 64-bit
|
||||||
|
* rotation to the left.
|
||||||
|
*
|
||||||
|
* @param state The current state of the sponge
|
||||||
|
* @param rowIn Row used only as input
|
||||||
|
* @param rowInOut Row used as input and to receive output after rotation
|
||||||
|
* @param rowOut Row receiving the output
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
void reducedDuplexRow(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) {
|
||||||
|
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
|
||||||
|
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
|
||||||
|
uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row
|
||||||
|
int i;
|
||||||
|
|
||||||
|
for (i = 0; i < N_COLS; i++) {
|
||||||
|
|
||||||
|
//Absorbing "M[prev] [+] M[row*]"
|
||||||
|
state[0] ^= (ptrWordIn[0] + ptrWordInOut[0]);
|
||||||
|
state[1] ^= (ptrWordIn[1] + ptrWordInOut[1]);
|
||||||
|
state[2] ^= (ptrWordIn[2] + ptrWordInOut[2]);
|
||||||
|
state[3] ^= (ptrWordIn[3] + ptrWordInOut[3]);
|
||||||
|
state[4] ^= (ptrWordIn[4] + ptrWordInOut[4]);
|
||||||
|
state[5] ^= (ptrWordIn[5] + ptrWordInOut[5]);
|
||||||
|
state[6] ^= (ptrWordIn[6] + ptrWordInOut[6]);
|
||||||
|
state[7] ^= (ptrWordIn[7] + ptrWordInOut[7]);
|
||||||
|
state[8] ^= (ptrWordIn[8] + ptrWordInOut[8]);
|
||||||
|
state[9] ^= (ptrWordIn[9] + ptrWordInOut[9]);
|
||||||
|
state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]);
|
||||||
|
state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]);
|
||||||
|
|
||||||
|
//Applies the reduced-round transformation f to the sponge's state
|
||||||
|
reducedBlake2bLyra(state);
|
||||||
|
|
||||||
|
//M[rowOut][col] = M[rowOut][col] XOR rand
|
||||||
|
ptrWordOut[0] ^= state[0];
|
||||||
|
ptrWordOut[1] ^= state[1];
|
||||||
|
ptrWordOut[2] ^= state[2];
|
||||||
|
ptrWordOut[3] ^= state[3];
|
||||||
|
ptrWordOut[4] ^= state[4];
|
||||||
|
ptrWordOut[5] ^= state[5];
|
||||||
|
ptrWordOut[6] ^= state[6];
|
||||||
|
ptrWordOut[7] ^= state[7];
|
||||||
|
ptrWordOut[8] ^= state[8];
|
||||||
|
ptrWordOut[9] ^= state[9];
|
||||||
|
ptrWordOut[10] ^= state[10];
|
||||||
|
ptrWordOut[11] ^= state[11];
|
||||||
|
|
||||||
|
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
|
||||||
|
ptrWordInOut[0] ^= state[11];
|
||||||
|
ptrWordInOut[1] ^= state[0];
|
||||||
|
ptrWordInOut[2] ^= state[1];
|
||||||
|
ptrWordInOut[3] ^= state[2];
|
||||||
|
ptrWordInOut[4] ^= state[3];
|
||||||
|
ptrWordInOut[5] ^= state[4];
|
||||||
|
ptrWordInOut[6] ^= state[5];
|
||||||
|
ptrWordInOut[7] ^= state[6];
|
||||||
|
ptrWordInOut[8] ^= state[7];
|
||||||
|
ptrWordInOut[9] ^= state[8];
|
||||||
|
ptrWordInOut[10] ^= state[9];
|
||||||
|
ptrWordInOut[11] ^= state[10];
|
||||||
|
|
||||||
|
//Goes to next block
|
||||||
|
ptrWordOut += BLOCK_LEN_INT64;
|
||||||
|
ptrWordInOut += BLOCK_LEN_INT64;
|
||||||
|
ptrWordIn += BLOCK_LEN_INT64;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Performs a duplex operation over "M[rowInOut] [+] M[rowIn]", writing the output "rand"
|
||||||
|
* on M[rowOut] and making "M[rowInOut] = M[rowInOut] XOR rotW(rand)", where rotW is a 64-bit
|
||||||
|
* rotation to the left.
|
||||||
|
*
|
||||||
|
* @param state The current state of the sponge
|
||||||
|
* @param rowIn Row used only as input
|
||||||
|
* @param rowInOut Row used as input and to receive output after rotation
|
||||||
|
* @param rowOut Row receiving the output
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
/*
|
||||||
|
inline void reducedDuplexRowSetupOLD(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) {
|
||||||
|
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
|
||||||
|
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
|
||||||
|
uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row
|
||||||
|
int i;
|
||||||
|
for (i = 0; i < N_COLS; i++) {
|
||||||
|
|
||||||
|
//Absorbing "M[rowInOut] XOR M[rowIn]"
|
||||||
|
state[0] ^= ptrWordInOut[0] ^ ptrWordIn[0];
|
||||||
|
state[1] ^= ptrWordInOut[1] ^ ptrWordIn[1];
|
||||||
|
state[2] ^= ptrWordInOut[2] ^ ptrWordIn[2];
|
||||||
|
state[3] ^= ptrWordInOut[3] ^ ptrWordIn[3];
|
||||||
|
state[4] ^= ptrWordInOut[4] ^ ptrWordIn[4];
|
||||||
|
state[5] ^= ptrWordInOut[5] ^ ptrWordIn[5];
|
||||||
|
state[6] ^= ptrWordInOut[6] ^ ptrWordIn[6];
|
||||||
|
state[7] ^= ptrWordInOut[7] ^ ptrWordIn[7];
|
||||||
|
state[8] ^= ptrWordInOut[8] ^ ptrWordIn[8];
|
||||||
|
state[9] ^= ptrWordInOut[9] ^ ptrWordIn[9];
|
||||||
|
state[10] ^= ptrWordInOut[10] ^ ptrWordIn[10];
|
||||||
|
state[11] ^= ptrWordInOut[11] ^ ptrWordIn[11];
|
||||||
|
|
||||||
|
//Applies the reduced-round transformation f to the sponge's state
|
||||||
|
reducedBlake2bLyra(state);
|
||||||
|
|
||||||
|
//M[row][col] = rand
|
||||||
|
ptrWordOut[0] = state[0];
|
||||||
|
ptrWordOut[1] = state[1];
|
||||||
|
ptrWordOut[2] = state[2];
|
||||||
|
ptrWordOut[3] = state[3];
|
||||||
|
ptrWordOut[4] = state[4];
|
||||||
|
ptrWordOut[5] = state[5];
|
||||||
|
ptrWordOut[6] = state[6];
|
||||||
|
ptrWordOut[7] = state[7];
|
||||||
|
ptrWordOut[8] = state[8];
|
||||||
|
ptrWordOut[9] = state[9];
|
||||||
|
ptrWordOut[10] = state[10];
|
||||||
|
ptrWordOut[11] = state[11];
|
||||||
|
|
||||||
|
|
||||||
|
//M[row*][col] = M[row*][col] XOR rotW(rand)
|
||||||
|
ptrWordInOut[0] ^= state[10];
|
||||||
|
ptrWordInOut[1] ^= state[11];
|
||||||
|
ptrWordInOut[2] ^= state[0];
|
||||||
|
ptrWordInOut[3] ^= state[1];
|
||||||
|
ptrWordInOut[4] ^= state[2];
|
||||||
|
ptrWordInOut[5] ^= state[3];
|
||||||
|
ptrWordInOut[6] ^= state[4];
|
||||||
|
ptrWordInOut[7] ^= state[5];
|
||||||
|
ptrWordInOut[8] ^= state[6];
|
||||||
|
ptrWordInOut[9] ^= state[7];
|
||||||
|
ptrWordInOut[10] ^= state[8];
|
||||||
|
ptrWordInOut[11] ^= state[9];
|
||||||
|
|
||||||
|
//Goes to next column (i.e., next block in sequence)
|
||||||
|
ptrWordInOut += BLOCK_LEN_INT64;
|
||||||
|
ptrWordIn += BLOCK_LEN_INT64;
|
||||||
|
ptrWordOut += BLOCK_LEN_INT64;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Performs a duplex operation over "M[rowInOut] XOR M[rowIn]", writing the output "rand"
|
||||||
|
* on M[rowOut] and making "M[rowInOut] = M[rowInOut] XOR rotW(rand)", where rotW is a 64-bit
|
||||||
|
* rotation to the left.
|
||||||
|
*
|
||||||
|
* @param state The current state of the sponge
|
||||||
|
* @param rowIn Row used only as input
|
||||||
|
* @param rowInOut Row used as input and to receive output after rotation
|
||||||
|
* @param rowOut Row receiving the output
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
/*
|
||||||
|
inline void reducedDuplexRowSetupv5(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) {
|
||||||
|
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
|
||||||
|
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
|
||||||
|
uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row
|
||||||
|
int i;
|
||||||
|
for (i = 0; i < N_COLS; i++) {
|
||||||
|
|
||||||
|
//Absorbing "M[rowInOut] XOR M[rowIn]"
|
||||||
|
state[0] ^= ptrWordInOut[0] + ptrWordIn[0];
|
||||||
|
state[1] ^= ptrWordInOut[1] + ptrWordIn[1];
|
||||||
|
state[2] ^= ptrWordInOut[2] + ptrWordIn[2];
|
||||||
|
state[3] ^= ptrWordInOut[3] + ptrWordIn[3];
|
||||||
|
state[4] ^= ptrWordInOut[4] + ptrWordIn[4];
|
||||||
|
state[5] ^= ptrWordInOut[5] + ptrWordIn[5];
|
||||||
|
state[6] ^= ptrWordInOut[6] + ptrWordIn[6];
|
||||||
|
state[7] ^= ptrWordInOut[7] + ptrWordIn[7];
|
||||||
|
state[8] ^= ptrWordInOut[8] + ptrWordIn[8];
|
||||||
|
state[9] ^= ptrWordInOut[9] + ptrWordIn[9];
|
||||||
|
state[10] ^= ptrWordInOut[10] + ptrWordIn[10];
|
||||||
|
state[11] ^= ptrWordInOut[11] + ptrWordIn[11];
|
||||||
|
|
||||||
|
//Applies the reduced-round transformation f to the sponge's state
|
||||||
|
reducedBlake2bLyra(state);
|
||||||
|
|
||||||
|
|
||||||
|
//M[row*][col] = M[row*][col] XOR rotW(rand)
|
||||||
|
ptrWordInOut[0] ^= state[10];
|
||||||
|
ptrWordInOut[1] ^= state[11];
|
||||||
|
ptrWordInOut[2] ^= state[0];
|
||||||
|
ptrWordInOut[3] ^= state[1];
|
||||||
|
ptrWordInOut[4] ^= state[2];
|
||||||
|
ptrWordInOut[5] ^= state[3];
|
||||||
|
ptrWordInOut[6] ^= state[4];
|
||||||
|
ptrWordInOut[7] ^= state[5];
|
||||||
|
ptrWordInOut[8] ^= state[6];
|
||||||
|
ptrWordInOut[9] ^= state[7];
|
||||||
|
ptrWordInOut[10] ^= state[8];
|
||||||
|
ptrWordInOut[11] ^= state[9];
|
||||||
|
|
||||||
|
|
||||||
|
//M[row][col] = rand
|
||||||
|
ptrWordOut[0] = state[0] ^ ptrWordIn[0];
|
||||||
|
ptrWordOut[1] = state[1] ^ ptrWordIn[1];
|
||||||
|
ptrWordOut[2] = state[2] ^ ptrWordIn[2];
|
||||||
|
ptrWordOut[3] = state[3] ^ ptrWordIn[3];
|
||||||
|
ptrWordOut[4] = state[4] ^ ptrWordIn[4];
|
||||||
|
ptrWordOut[5] = state[5] ^ ptrWordIn[5];
|
||||||
|
ptrWordOut[6] = state[6] ^ ptrWordIn[6];
|
||||||
|
ptrWordOut[7] = state[7] ^ ptrWordIn[7];
|
||||||
|
ptrWordOut[8] = state[8] ^ ptrWordIn[8];
|
||||||
|
ptrWordOut[9] = state[9] ^ ptrWordIn[9];
|
||||||
|
ptrWordOut[10] = state[10] ^ ptrWordIn[10];
|
||||||
|
ptrWordOut[11] = state[11] ^ ptrWordIn[11];
|
||||||
|
|
||||||
|
//Goes to next column (i.e., next block in sequence)
|
||||||
|
ptrWordInOut += BLOCK_LEN_INT64;
|
||||||
|
ptrWordIn += BLOCK_LEN_INT64;
|
||||||
|
ptrWordOut += BLOCK_LEN_INT64;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Performs a duplex operation over "M[rowInOut] XOR M[rowIn]", writing the output "rand"
|
||||||
|
* on M[rowOut] and making "M[rowInOut] = M[rowInOut] XOR rotW(rand)", where rotW is a 64-bit
|
||||||
|
* rotation to the left.
|
||||||
|
*
|
||||||
|
* @param state The current state of the sponge
|
||||||
|
* @param rowIn Row used only as input
|
||||||
|
* @param rowInOut Row used as input and to receive output after rotation
|
||||||
|
* @param rowOut Row receiving the output
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
/*
|
||||||
|
inline void reducedDuplexRowSetupv5c(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) {
|
||||||
|
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
|
||||||
|
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
|
||||||
|
uint64_t* ptrWordOut = rowOut;
|
||||||
|
int i;
|
||||||
|
|
||||||
|
for (i = 0; i < N_COLS / 2; i++) {
|
||||||
|
//Absorbing "M[rowInOut] XOR M[rowIn]"
|
||||||
|
state[0] ^= ptrWordInOut[0] + ptrWordIn[0];
|
||||||
|
state[1] ^= ptrWordInOut[1] + ptrWordIn[1];
|
||||||
|
state[2] ^= ptrWordInOut[2] + ptrWordIn[2];
|
||||||
|
state[3] ^= ptrWordInOut[3] + ptrWordIn[3];
|
||||||
|
state[4] ^= ptrWordInOut[4] + ptrWordIn[4];
|
||||||
|
state[5] ^= ptrWordInOut[5] + ptrWordIn[5];
|
||||||
|
state[6] ^= ptrWordInOut[6] + ptrWordIn[6];
|
||||||
|
state[7] ^= ptrWordInOut[7] + ptrWordIn[7];
|
||||||
|
state[8] ^= ptrWordInOut[8] + ptrWordIn[8];
|
||||||
|
state[9] ^= ptrWordInOut[9] + ptrWordIn[9];
|
||||||
|
state[10] ^= ptrWordInOut[10] + ptrWordIn[10];
|
||||||
|
state[11] ^= ptrWordInOut[11] + ptrWordIn[11];
|
||||||
|
|
||||||
|
//Applies the reduced-round transformation f to the sponge's state
|
||||||
|
reducedBlake2bLyra(state);
|
||||||
|
|
||||||
|
|
||||||
|
//M[row*][col] = M[row*][col] XOR rotW(rand)
|
||||||
|
ptrWordInOut[0] ^= state[10];
|
||||||
|
ptrWordInOut[1] ^= state[11];
|
||||||
|
ptrWordInOut[2] ^= state[0];
|
||||||
|
ptrWordInOut[3] ^= state[1];
|
||||||
|
ptrWordInOut[4] ^= state[2];
|
||||||
|
ptrWordInOut[5] ^= state[3];
|
||||||
|
ptrWordInOut[6] ^= state[4];
|
||||||
|
ptrWordInOut[7] ^= state[5];
|
||||||
|
ptrWordInOut[8] ^= state[6];
|
||||||
|
ptrWordInOut[9] ^= state[7];
|
||||||
|
ptrWordInOut[10] ^= state[8];
|
||||||
|
ptrWordInOut[11] ^= state[9];
|
||||||
|
|
||||||
|
|
||||||
|
//M[row][col] = rand
|
||||||
|
ptrWordOut[0] = state[0] ^ ptrWordIn[0];
|
||||||
|
ptrWordOut[1] = state[1] ^ ptrWordIn[1];
|
||||||
|
ptrWordOut[2] = state[2] ^ ptrWordIn[2];
|
||||||
|
ptrWordOut[3] = state[3] ^ ptrWordIn[3];
|
||||||
|
ptrWordOut[4] = state[4] ^ ptrWordIn[4];
|
||||||
|
ptrWordOut[5] = state[5] ^ ptrWordIn[5];
|
||||||
|
ptrWordOut[6] = state[6] ^ ptrWordIn[6];
|
||||||
|
ptrWordOut[7] = state[7] ^ ptrWordIn[7];
|
||||||
|
ptrWordOut[8] = state[8] ^ ptrWordIn[8];
|
||||||
|
ptrWordOut[9] = state[9] ^ ptrWordIn[9];
|
||||||
|
ptrWordOut[10] = state[10] ^ ptrWordIn[10];
|
||||||
|
ptrWordOut[11] = state[11] ^ ptrWordIn[11];
|
||||||
|
|
||||||
|
//Goes to next column (i.e., next block in sequence)
|
||||||
|
ptrWordInOut += BLOCK_LEN_INT64;
|
||||||
|
ptrWordIn += BLOCK_LEN_INT64;
|
||||||
|
ptrWordOut += 2 * BLOCK_LEN_INT64;
|
||||||
|
}
|
||||||
|
|
||||||
|
ptrWordOut = rowOut + BLOCK_LEN_INT64;
|
||||||
|
for (i = 0; i < N_COLS / 2; i++) {
|
||||||
|
//Absorbing "M[rowInOut] XOR M[rowIn]"
|
||||||
|
state[0] ^= ptrWordInOut[0] + ptrWordIn[0];
|
||||||
|
state[1] ^= ptrWordInOut[1] + ptrWordIn[1];
|
||||||
|
state[2] ^= ptrWordInOut[2] + ptrWordIn[2];
|
||||||
|
state[3] ^= ptrWordInOut[3] + ptrWordIn[3];
|
||||||
|
state[4] ^= ptrWordInOut[4] + ptrWordIn[4];
|
||||||
|
state[5] ^= ptrWordInOut[5] + ptrWordIn[5];
|
||||||
|
state[6] ^= ptrWordInOut[6] + ptrWordIn[6];
|
||||||
|
state[7] ^= ptrWordInOut[7] + ptrWordIn[7];
|
||||||
|
state[8] ^= ptrWordInOut[8] + ptrWordIn[8];
|
||||||
|
state[9] ^= ptrWordInOut[9] + ptrWordIn[9];
|
||||||
|
state[10] ^= ptrWordInOut[10] + ptrWordIn[10];
|
||||||
|
state[11] ^= ptrWordInOut[11] + ptrWordIn[11];
|
||||||
|
|
||||||
|
//Applies the reduced-round transformation f to the sponge's state
|
||||||
|
reducedBlake2bLyra(state);
|
||||||
|
|
||||||
|
|
||||||
|
//M[row*][col] = M[row*][col] XOR rotW(rand)
|
||||||
|
ptrWordInOut[0] ^= state[10];
|
||||||
|
ptrWordInOut[1] ^= state[11];
|
||||||
|
ptrWordInOut[2] ^= state[0];
|
||||||
|
ptrWordInOut[3] ^= state[1];
|
||||||
|
ptrWordInOut[4] ^= state[2];
|
||||||
|
ptrWordInOut[5] ^= state[3];
|
||||||
|
ptrWordInOut[6] ^= state[4];
|
||||||
|
ptrWordInOut[7] ^= state[5];
|
||||||
|
ptrWordInOut[8] ^= state[6];
|
||||||
|
ptrWordInOut[9] ^= state[7];
|
||||||
|
ptrWordInOut[10] ^= state[8];
|
||||||
|
ptrWordInOut[11] ^= state[9];
|
||||||
|
|
||||||
|
|
||||||
|
//M[row][col] = rand
|
||||||
|
ptrWordOut[0] = state[0] ^ ptrWordIn[0];
|
||||||
|
ptrWordOut[1] = state[1] ^ ptrWordIn[1];
|
||||||
|
ptrWordOut[2] = state[2] ^ ptrWordIn[2];
|
||||||
|
ptrWordOut[3] = state[3] ^ ptrWordIn[3];
|
||||||
|
ptrWordOut[4] = state[4] ^ ptrWordIn[4];
|
||||||
|
ptrWordOut[5] = state[5] ^ ptrWordIn[5];
|
||||||
|
ptrWordOut[6] = state[6] ^ ptrWordIn[6];
|
||||||
|
ptrWordOut[7] = state[7] ^ ptrWordIn[7];
|
||||||
|
ptrWordOut[8] = state[8] ^ ptrWordIn[8];
|
||||||
|
ptrWordOut[9] = state[9] ^ ptrWordIn[9];
|
||||||
|
ptrWordOut[10] = state[10] ^ ptrWordIn[10];
|
||||||
|
ptrWordOut[11] = state[11] ^ ptrWordIn[11];
|
||||||
|
|
||||||
|
//Goes to next column (i.e., next block in sequence)
|
||||||
|
ptrWordInOut += BLOCK_LEN_INT64;
|
||||||
|
ptrWordIn += BLOCK_LEN_INT64;
|
||||||
|
ptrWordOut += 2 * BLOCK_LEN_INT64;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Performs a duplex operation over "M[rowInOut] XOR M[rowIn]", using the output "rand"
|
||||||
|
* to make "M[rowOut][col] = M[rowOut][col] XOR rand" and "M[rowInOut] = M[rowInOut] XOR rotW(rand)",
|
||||||
|
* where rotW is a 64-bit rotation to the left.
|
||||||
|
*
|
||||||
|
* @param state The current state of the sponge
|
||||||
|
* @param rowIn Row used only as input
|
||||||
|
* @param rowInOut Row used as input and to receive output after rotation
|
||||||
|
* @param rowOut Row receiving the output
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
/*
|
||||||
|
inline void reducedDuplexRowd(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) {
|
||||||
|
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
|
||||||
|
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
|
||||||
|
uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row
|
||||||
|
int i;
|
||||||
|
for (i = 0; i < N_COLS; i++) {
|
||||||
|
|
||||||
|
//Absorbing "M[rowInOut] XOR M[rowIn]"
|
||||||
|
state[0] ^= ptrWordInOut[0] + ptrWordIn[0];
|
||||||
|
state[1] ^= ptrWordInOut[1] + ptrWordIn[1];
|
||||||
|
state[2] ^= ptrWordInOut[2] + ptrWordIn[2];
|
||||||
|
state[3] ^= ptrWordInOut[3] + ptrWordIn[3];
|
||||||
|
state[4] ^= ptrWordInOut[4] + ptrWordIn[4];
|
||||||
|
state[5] ^= ptrWordInOut[5] + ptrWordIn[5];
|
||||||
|
state[6] ^= ptrWordInOut[6] + ptrWordIn[6];
|
||||||
|
state[7] ^= ptrWordInOut[7] + ptrWordIn[7];
|
||||||
|
state[8] ^= ptrWordInOut[8] + ptrWordIn[8];
|
||||||
|
state[9] ^= ptrWordInOut[9] + ptrWordIn[9];
|
||||||
|
state[10] ^= ptrWordInOut[10] + ptrWordIn[10];
|
||||||
|
state[11] ^= ptrWordInOut[11] + ptrWordIn[11];
|
||||||
|
|
||||||
|
//Applies the reduced-round transformation f to the sponge's state
|
||||||
|
reducedBlake2bLyra(state);
|
||||||
|
|
||||||
|
//M[rowOut][col] = M[rowOut][col] XOR rand
|
||||||
|
ptrWordOut[0] ^= state[0];
|
||||||
|
ptrWordOut[1] ^= state[1];
|
||||||
|
ptrWordOut[2] ^= state[2];
|
||||||
|
ptrWordOut[3] ^= state[3];
|
||||||
|
ptrWordOut[4] ^= state[4];
|
||||||
|
ptrWordOut[5] ^= state[5];
|
||||||
|
ptrWordOut[6] ^= state[6];
|
||||||
|
ptrWordOut[7] ^= state[7];
|
||||||
|
ptrWordOut[8] ^= state[8];
|
||||||
|
ptrWordOut[9] ^= state[9];
|
||||||
|
ptrWordOut[10] ^= state[10];
|
||||||
|
ptrWordOut[11] ^= state[11];
|
||||||
|
|
||||||
|
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
|
||||||
|
|
||||||
|
|
||||||
|
//Goes to next block
|
||||||
|
ptrWordOut += BLOCK_LEN_INT64;
|
||||||
|
ptrWordInOut += BLOCK_LEN_INT64;
|
||||||
|
ptrWordIn += BLOCK_LEN_INT64;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
|
/**
|
||||||
|
Prints an array of unsigned chars
|
||||||
|
*/
|
||||||
|
void printArray(unsigned char *array, unsigned int size, char *name) {
|
||||||
|
int i;
|
||||||
|
printf("%s: ", name);
|
||||||
|
for (i = 0; i < size; i++) {
|
||||||
|
printf("%2x|", array[i]);
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////////////////////////////
|
108
lyra2/Sponge.h
Normal file
108
lyra2/Sponge.h
Normal file
@ -0,0 +1,108 @@
|
|||||||
|
/**
|
||||||
|
* Header file for Blake2b's internal permutation in the form of a sponge.
|
||||||
|
* This code is based on the original Blake2b's implementation provided by
|
||||||
|
* Samuel Neves (https://blake2.net/)
|
||||||
|
*
|
||||||
|
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
|
||||||
|
*
|
||||||
|
* This software is hereby placed in the public domain.
|
||||||
|
*
|
||||||
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
|
||||||
|
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||||
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
|
||||||
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||||
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||||
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
||||||
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
||||||
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
||||||
|
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
||||||
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
*/
|
||||||
|
#ifndef SPONGE_H_
|
||||||
|
#define SPONGE_H_
|
||||||
|
|
||||||
|
#include <stdint.h>
|
||||||
|
|
||||||
|
#if defined(__GNUC__)
|
||||||
|
#define ALIGN __attribute__ ((aligned(32)))
|
||||||
|
#elif defined(_MSC_VER)
|
||||||
|
#define ALIGN __declspec(align(32))
|
||||||
|
#else
|
||||||
|
#define ALIGN
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/*Blake2b IV Array*/
|
||||||
|
static const uint64_t blake2b_IV[8] =
|
||||||
|
{
|
||||||
|
0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL,
|
||||||
|
0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL,
|
||||||
|
0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL,
|
||||||
|
0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL
|
||||||
|
};
|
||||||
|
|
||||||
|
/*Blake2b's rotation*/
|
||||||
|
static __inline uint64_t rotr64( const uint64_t w, const unsigned c ){
|
||||||
|
return ( w >> c ) | ( w << ( 64 - c ) );
|
||||||
|
}
|
||||||
|
|
||||||
|
/*Blake2b's G function*/
|
||||||
|
#define G(r,i,a,b,c,d) \
|
||||||
|
do { \
|
||||||
|
a = a + b; \
|
||||||
|
d = rotr64(d ^ a, 32); \
|
||||||
|
c = c + d; \
|
||||||
|
b = rotr64(b ^ c, 24); \
|
||||||
|
a = a + b; \
|
||||||
|
d = rotr64(d ^ a, 16); \
|
||||||
|
c = c + d; \
|
||||||
|
b = rotr64(b ^ c, 63); \
|
||||||
|
} while(0)
|
||||||
|
|
||||||
|
|
||||||
|
/*One Round of the Blake2b's compression function*/
|
||||||
|
#define ROUND_LYRA(r) \
|
||||||
|
G(r,0,v[ 0],v[ 4],v[ 8],v[12]); \
|
||||||
|
G(r,1,v[ 1],v[ 5],v[ 9],v[13]); \
|
||||||
|
G(r,2,v[ 2],v[ 6],v[10],v[14]); \
|
||||||
|
G(r,3,v[ 3],v[ 7],v[11],v[15]); \
|
||||||
|
G(r,4,v[ 0],v[ 5],v[10],v[15]); \
|
||||||
|
G(r,5,v[ 1],v[ 6],v[11],v[12]); \
|
||||||
|
G(r,6,v[ 2],v[ 7],v[ 8],v[13]); \
|
||||||
|
G(r,7,v[ 3],v[ 4],v[ 9],v[14]);
|
||||||
|
|
||||||
|
|
||||||
|
//---- Housekeeping
|
||||||
|
void initState(uint64_t state[/*16*/]);
|
||||||
|
|
||||||
|
//---- Squeezes
|
||||||
|
void squeeze(uint64_t *state, unsigned char *out, unsigned int len);
|
||||||
|
void reducedSqueezeRow0(uint64_t* state, uint64_t* row);
|
||||||
|
|
||||||
|
//---- Absorbs
|
||||||
|
void absorbBlock(uint64_t *state, const uint64_t *in);
|
||||||
|
void absorbBlockBlake2Safe(uint64_t *state, const uint64_t *in);
|
||||||
|
|
||||||
|
//---- Duplexes
|
||||||
|
void reducedDuplexRow1(uint64_t *state, uint64_t *rowIn, uint64_t *rowOut);
|
||||||
|
void reducedDuplexRowSetup(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut);
|
||||||
|
void reducedDuplexRow(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut);
|
||||||
|
|
||||||
|
//---- Misc
|
||||||
|
void printArray(unsigned char *array, unsigned int size, char *name);
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
|
||||||
|
////TESTS////
|
||||||
|
//void reducedDuplexRowc(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut);
|
||||||
|
//void reducedDuplexRowd(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut);
|
||||||
|
//void reducedDuplexRowSetupv4(uint64_t *state, uint64_t *rowIn1, uint64_t *rowIn2, uint64_t *rowOut1, uint64_t *rowOut2);
|
||||||
|
//void reducedDuplexRowSetupv5(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut);
|
||||||
|
//void reducedDuplexRowSetupv5c(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut);
|
||||||
|
//void reducedDuplexRowSetupv5d(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut);
|
||||||
|
/////////////
|
||||||
|
|
||||||
|
|
||||||
|
#endif /* SPONGE_H_ */
|
536
lyra2/cuda_lyra2.cu
Normal file
536
lyra2/cuda_lyra2.cu
Normal file
@ -0,0 +1,536 @@
|
|||||||
|
#include <memory.h>
|
||||||
|
|
||||||
|
#include "cuda_helper.h"
|
||||||
|
|
||||||
|
static __constant__ uint2 blake2b_IV[8] = {
|
||||||
|
{ 0xf3bcc908, 0x6a09e667 },
|
||||||
|
{ 0x84caa73b, 0xbb67ae85 },
|
||||||
|
{ 0xfe94f82b, 0x3c6ef372 },
|
||||||
|
{ 0x5f1d36f1, 0xa54ff53a },
|
||||||
|
{ 0xade682d1, 0x510e527f },
|
||||||
|
{ 0x2b3e6c1f, 0x9b05688c },
|
||||||
|
{ 0xfb41bd6b, 0x1f83d9ab },
|
||||||
|
{ 0x137e2179, 0x5be0cd19 }
|
||||||
|
};
|
||||||
|
// data: 0-4 outputhash 4-8 outputhash 8-16 basil
|
||||||
|
|
||||||
|
#define reduceDuplexRowSetup(rowIn, rowInOut, rowOut) { \
|
||||||
|
for (int i = 0; i < 8; i++) { \
|
||||||
|
for (int j = 0; j < 12; j++) \
|
||||||
|
state[j] ^= Matrix[12 * i + j][rowIn] + Matrix[12 * i + j][rowInOut]; \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
for (int j = 0; j < 12; j++) \
|
||||||
|
Matrix[j + 84 - 12 * i][rowOut] = Matrix[12 * i + j][rowIn] ^ state[j]; \
|
||||||
|
Matrix[0 + 12 * i][rowInOut] ^= state[11]; \
|
||||||
|
Matrix[1 + 12 * i][rowInOut] ^= state[0]; \
|
||||||
|
Matrix[2 + 12 * i][rowInOut] ^= state[1]; \
|
||||||
|
Matrix[3 + 12 * i][rowInOut] ^= state[2]; \
|
||||||
|
Matrix[4 + 12 * i][rowInOut] ^= state[3]; \
|
||||||
|
Matrix[5 + 12 * i][rowInOut] ^= state[4]; \
|
||||||
|
Matrix[6 + 12 * i][rowInOut] ^= state[5]; \
|
||||||
|
Matrix[7 + 12 * i][rowInOut] ^= state[6]; \
|
||||||
|
Matrix[8 + 12 * i][rowInOut] ^= state[7]; \
|
||||||
|
Matrix[9 + 12 * i][rowInOut] ^= state[8]; \
|
||||||
|
Matrix[10+ 12 * i][rowInOut] ^= state[9]; \
|
||||||
|
Matrix[11+ 12 * i][rowInOut] ^= state[10]; \
|
||||||
|
} \
|
||||||
|
}
|
||||||
|
|
||||||
|
#define reduceDuplexRow(rowIn, rowInOut, rowOut) { \
|
||||||
|
for (int i = 0; i < 8; i++) { \
|
||||||
|
for (int j = 0; j < 12; j++) \
|
||||||
|
state[j] ^= Matrix[12 * i + j][rowIn] + Matrix[12 * i + j][rowInOut]; \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
for (int j = 0; j < 12; j++) \
|
||||||
|
Matrix[j + 12 * i][rowOut] ^= state[j]; \
|
||||||
|
Matrix[0 + 12 * i][rowInOut] ^= state[11]; \
|
||||||
|
Matrix[1 + 12 * i][rowInOut] ^= state[0]; \
|
||||||
|
Matrix[2 + 12 * i][rowInOut] ^= state[1]; \
|
||||||
|
Matrix[3 + 12 * i][rowInOut] ^= state[2]; \
|
||||||
|
Matrix[4 + 12 * i][rowInOut] ^= state[3]; \
|
||||||
|
Matrix[5 + 12 * i][rowInOut] ^= state[4]; \
|
||||||
|
Matrix[6 + 12 * i][rowInOut] ^= state[5]; \
|
||||||
|
Matrix[7 + 12 * i][rowInOut] ^= state[6]; \
|
||||||
|
Matrix[8 + 12 * i][rowInOut] ^= state[7]; \
|
||||||
|
Matrix[9 + 12 * i][rowInOut] ^= state[8]; \
|
||||||
|
Matrix[10+ 12 * i][rowInOut] ^= state[9]; \
|
||||||
|
Matrix[11+ 12 * i][rowInOut] ^= state[10]; \
|
||||||
|
} \
|
||||||
|
}
|
||||||
|
|
||||||
|
#define absorbblock(in) { \
|
||||||
|
state[0] ^= Matrix[0][in]; \
|
||||||
|
state[1] ^= Matrix[1][in]; \
|
||||||
|
state[2] ^= Matrix[2][in]; \
|
||||||
|
state[3] ^= Matrix[3][in]; \
|
||||||
|
state[4] ^= Matrix[4][in]; \
|
||||||
|
state[5] ^= Matrix[5][in]; \
|
||||||
|
state[6] ^= Matrix[6][in]; \
|
||||||
|
state[7] ^= Matrix[7][in]; \
|
||||||
|
state[8] ^= Matrix[8][in]; \
|
||||||
|
state[9] ^= Matrix[9][in]; \
|
||||||
|
state[10] ^= Matrix[10][in]; \
|
||||||
|
state[11] ^= Matrix[11][in]; \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
}
|
||||||
|
|
||||||
|
//// test version
|
||||||
|
#define reduceDuplexRowSetup_test(rowIn, rowInOut, rowOut) { \
|
||||||
|
for (int i = 0; i < 8; i++) { \
|
||||||
|
for (int j = 0; j < 12; j++) \
|
||||||
|
state[j] ^= Matrix[j][i][rowIn] + Matrix[j][i][rowInOut]; \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
for (int j = 0; j < 12; j++) \
|
||||||
|
Matrix[j][7-i][rowOut] = Matrix[j][i][rowIn] ^ state[j]; \
|
||||||
|
Matrix[0][i][rowInOut] ^= state[11]; \
|
||||||
|
Matrix[1][i][rowInOut] ^= state[0]; \
|
||||||
|
Matrix[2][i][rowInOut] ^= state[1]; \
|
||||||
|
Matrix[3][i][rowInOut] ^= state[2]; \
|
||||||
|
Matrix[4][i][rowInOut] ^= state[3]; \
|
||||||
|
Matrix[5][i][rowInOut] ^= state[4]; \
|
||||||
|
Matrix[6][i][rowInOut] ^= state[5]; \
|
||||||
|
Matrix[7][i][rowInOut] ^= state[6]; \
|
||||||
|
Matrix[8][i][rowInOut] ^= state[7]; \
|
||||||
|
Matrix[9][i][rowInOut] ^= state[8]; \
|
||||||
|
Matrix[10][i][rowInOut] ^= state[9]; \
|
||||||
|
Matrix[11][i][rowInOut] ^= state[10]; \
|
||||||
|
} \
|
||||||
|
}
|
||||||
|
|
||||||
|
#define reduceDuplexRow_test(rowIn, rowInOut, rowOut) { \
|
||||||
|
for (int i = 0; i < 8; i++) { \
|
||||||
|
for (int j = 0; j < 12; j++) \
|
||||||
|
state[j] ^= Matrix[j][i][rowIn] + Matrix[j][i][rowInOut]; \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
for (int j = 0; j < 12; j++) \
|
||||||
|
Matrix[j][i][rowOut] ^= state[j]; \
|
||||||
|
Matrix[0][i][rowInOut] ^= state[11]; \
|
||||||
|
Matrix[1][i][rowInOut] ^= state[0]; \
|
||||||
|
Matrix[2][i][rowInOut] ^= state[1]; \
|
||||||
|
Matrix[3][i][rowInOut] ^= state[2]; \
|
||||||
|
Matrix[4][i][rowInOut] ^= state[3]; \
|
||||||
|
Matrix[5][i][rowInOut] ^= state[4]; \
|
||||||
|
Matrix[6][i][rowInOut] ^= state[5]; \
|
||||||
|
Matrix[7][i][rowInOut] ^= state[6]; \
|
||||||
|
Matrix[8][i][rowInOut] ^= state[7]; \
|
||||||
|
Matrix[9][i][rowInOut] ^= state[8]; \
|
||||||
|
Matrix[10][i][rowInOut] ^= state[9]; \
|
||||||
|
Matrix[11][i][rowInOut] ^= state[10]; \
|
||||||
|
} \
|
||||||
|
}
|
||||||
|
|
||||||
|
#define absorbblock_test(in) { \
|
||||||
|
state[0] ^= Matrix[0][0][ in]; \
|
||||||
|
state[1] ^= Matrix[1][0][in]; \
|
||||||
|
state[2] ^= Matrix[2][0][in]; \
|
||||||
|
state[3] ^= Matrix[3][0][in]; \
|
||||||
|
state[4] ^= Matrix[4][0][in]; \
|
||||||
|
state[5] ^= Matrix[5][0][in]; \
|
||||||
|
state[6] ^= Matrix[6][0][in]; \
|
||||||
|
state[7] ^= Matrix[7][0][in]; \
|
||||||
|
state[8] ^= Matrix[8][0][in]; \
|
||||||
|
state[9] ^= Matrix[9][0][in]; \
|
||||||
|
state[10] ^= Matrix[10][0][in]; \
|
||||||
|
state[11] ^= Matrix[11][0][in]; \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
round_lyra_v35(state); \
|
||||||
|
}
|
||||||
|
|
||||||
|
//// compute 30 version
|
||||||
|
#define reduceDuplexRowSetup_v30(rowIn, rowInOut, rowOut) { \
|
||||||
|
for (int i = 0; i < 8; i++) { \
|
||||||
|
for (int j = 0; j < 12; j++) \
|
||||||
|
state[j] ^= Matrix[12 * i + j][rowIn] + Matrix[12 * i + j][rowInOut]; \
|
||||||
|
round_lyra_v30(state); \
|
||||||
|
for (int j = 0; j < 12; j++) \
|
||||||
|
Matrix[j + 84 - 12 * i][rowOut] = Matrix[12 * i + j][rowIn] ^ state[j]; \
|
||||||
|
Matrix[0 + 12 * i][rowInOut] ^= state[11]; \
|
||||||
|
Matrix[1 + 12 * i][rowInOut] ^= state[0]; \
|
||||||
|
Matrix[2 + 12 * i][rowInOut] ^= state[1]; \
|
||||||
|
Matrix[3 + 12 * i][rowInOut] ^= state[2]; \
|
||||||
|
Matrix[4 + 12 * i][rowInOut] ^= state[3]; \
|
||||||
|
Matrix[5 + 12 * i][rowInOut] ^= state[4]; \
|
||||||
|
Matrix[6 + 12 * i][rowInOut] ^= state[5]; \
|
||||||
|
Matrix[7 + 12 * i][rowInOut] ^= state[6]; \
|
||||||
|
Matrix[8 + 12 * i][rowInOut] ^= state[7]; \
|
||||||
|
Matrix[9 + 12 * i][rowInOut] ^= state[8]; \
|
||||||
|
Matrix[10 + 12 * i][rowInOut] ^= state[9]; \
|
||||||
|
Matrix[11 + 12 * i][rowInOut] ^= state[10]; \
|
||||||
|
} \
|
||||||
|
}
|
||||||
|
|
||||||
|
#define reduceDuplexRow_v30(rowIn, rowInOut, rowOut) { \
|
||||||
|
for (int i = 0; i < 8; i++) { \
|
||||||
|
for (int j = 0; j < 12; j++) \
|
||||||
|
state[j] ^= Matrix[12 * i + j][rowIn] + Matrix[12 * i + j][rowInOut]; \
|
||||||
|
round_lyra_v30(state); \
|
||||||
|
for (int j = 0; j < 12; j++) \
|
||||||
|
Matrix[j + 12 * i][rowOut] ^= state[j]; \
|
||||||
|
Matrix[0 + 12 * i][rowInOut] ^= state[11]; \
|
||||||
|
Matrix[1 + 12 * i][rowInOut] ^= state[0]; \
|
||||||
|
Matrix[2 + 12 * i][rowInOut] ^= state[1]; \
|
||||||
|
Matrix[3 + 12 * i][rowInOut] ^= state[2]; \
|
||||||
|
Matrix[4 + 12 * i][rowInOut] ^= state[3]; \
|
||||||
|
Matrix[5 + 12 * i][rowInOut] ^= state[4]; \
|
||||||
|
Matrix[6 + 12 * i][rowInOut] ^= state[5]; \
|
||||||
|
Matrix[7 + 12 * i][rowInOut] ^= state[6]; \
|
||||||
|
Matrix[8 + 12 * i][rowInOut] ^= state[7]; \
|
||||||
|
Matrix[9 + 12 * i][rowInOut] ^= state[8]; \
|
||||||
|
Matrix[10 + 12 * i][rowInOut] ^= state[9]; \
|
||||||
|
Matrix[11 + 12 * i][rowInOut] ^= state[10]; \
|
||||||
|
} \
|
||||||
|
}
|
||||||
|
|
||||||
|
#define absorbblock_v30(in) { \
|
||||||
|
state[0] ^= Matrix[0][in]; \
|
||||||
|
state[1] ^= Matrix[1][in]; \
|
||||||
|
state[2] ^= Matrix[2][in]; \
|
||||||
|
state[3] ^= Matrix[3][in]; \
|
||||||
|
state[4] ^= Matrix[4][in]; \
|
||||||
|
state[5] ^= Matrix[5][in]; \
|
||||||
|
state[6] ^= Matrix[6][in]; \
|
||||||
|
state[7] ^= Matrix[7][in]; \
|
||||||
|
state[8] ^= Matrix[8][in]; \
|
||||||
|
state[9] ^= Matrix[9][in]; \
|
||||||
|
state[10] ^= Matrix[10][in]; \
|
||||||
|
state[11] ^= Matrix[11][in]; \
|
||||||
|
round_lyra_v30(state); \
|
||||||
|
round_lyra_v30(state); \
|
||||||
|
round_lyra_v30(state); \
|
||||||
|
round_lyra_v30(state); \
|
||||||
|
round_lyra_v30(state); \
|
||||||
|
round_lyra_v30(state); \
|
||||||
|
round_lyra_v30(state); \
|
||||||
|
round_lyra_v30(state); \
|
||||||
|
round_lyra_v30(state); \
|
||||||
|
round_lyra_v30(state); \
|
||||||
|
round_lyra_v30(state); \
|
||||||
|
round_lyra_v30(state); \
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__
|
||||||
|
void Gfunc_v35(uint2 & a, uint2 &b, uint2 &c, uint2 &d)
|
||||||
|
{
|
||||||
|
a += b; d ^= a; d = ROR2(d, 32);
|
||||||
|
c += d; b ^= c; b = ROR2(b, 24);
|
||||||
|
a += b; d ^= a; d = ROR2(d, 16);
|
||||||
|
c += d; b ^= c; b = ROR2(b, 63);
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__
|
||||||
|
void Gfunc_v30(uint64_t & a, uint64_t &b, uint64_t &c, uint64_t &d)
|
||||||
|
{
|
||||||
|
a += b; d ^= a; d = ROTR64(d, 32);
|
||||||
|
c += d; b ^= c; b = ROTR64(b, 24);
|
||||||
|
a += b; d ^= a; d = ROTR64(d, 16);
|
||||||
|
c += d; b ^= c; b = ROTR64(b, 63);
|
||||||
|
}
|
||||||
|
|
||||||
|
#define round_lyra_v35_new(state) { \
|
||||||
|
Gfunc_v35(state[0], state[4], state[8], state[12]); \
|
||||||
|
Gfunc_v35(state[1], state[5], state[9], state[13]); \
|
||||||
|
Gfunc_v35(state[2], state[6], state[10], state[14]); \
|
||||||
|
Gfunc_v35(state[3], state[7], state[11], state[15]); \
|
||||||
|
Gfunc_v35(state[0], state[5], state[10], state[15]); \
|
||||||
|
Gfunc_v35(state[1], state[6], state[11], state[12]); \
|
||||||
|
Gfunc_v35(state[2], state[7], state[8], state[13]); \
|
||||||
|
Gfunc_v35(state[3], state[4], state[9], state[14]); \
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ void round_lyra_v35(uint2 *s)
|
||||||
|
{
|
||||||
|
Gfunc_v35(s[0], s[4], s[8], s[12]);
|
||||||
|
Gfunc_v35(s[1], s[5], s[9], s[13]);
|
||||||
|
Gfunc_v35(s[2], s[6], s[10], s[14]);
|
||||||
|
Gfunc_v35(s[3], s[7], s[11], s[15]);
|
||||||
|
Gfunc_v35(s[0], s[5], s[10], s[15]);
|
||||||
|
Gfunc_v35(s[1], s[6], s[11], s[12]);
|
||||||
|
Gfunc_v35(s[2], s[7], s[8], s[13]);
|
||||||
|
Gfunc_v35(s[3], s[4], s[9], s[14]);
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ void round_lyra_v30(uint64_t *s)
|
||||||
|
{
|
||||||
|
Gfunc_v30(s[0], s[4], s[8], s[12]);
|
||||||
|
Gfunc_v30(s[1], s[5], s[9], s[13]);
|
||||||
|
Gfunc_v30(s[2], s[6], s[10], s[14]);
|
||||||
|
Gfunc_v30(s[3], s[7], s[11], s[15]);
|
||||||
|
Gfunc_v30(s[0], s[5], s[10], s[15]);
|
||||||
|
Gfunc_v30(s[1], s[6], s[11], s[12]);
|
||||||
|
Gfunc_v30(s[2], s[7], s[8], s[13]);
|
||||||
|
Gfunc_v30(s[3], s[4], s[9], s[14]);
|
||||||
|
}
|
||||||
|
|
||||||
|
__global__ __launch_bounds__(256, 1)
|
||||||
|
void lyra2_gpu_hash_32_v30(int threads, uint32_t startNounce, uint64_t *outputHash)
|
||||||
|
{
|
||||||
|
|
||||||
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
||||||
|
if (thread < threads)
|
||||||
|
{
|
||||||
|
uint64_t state[16];
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i<4; i++) { state[i] = outputHash[threads*i + thread]; } //password
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i<4; i++) { state[i + 4] = state[i]; } //salt
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i<8; i++) { state[i + 8] = devectorize(blake2b_IV[i]); }
|
||||||
|
|
||||||
|
// blake2blyra x2
|
||||||
|
#pragma unroll 24
|
||||||
|
for (int i = 0; i<24; i++) { round_lyra_v30(state); } //because 12 is not enough
|
||||||
|
|
||||||
|
uint64_t Matrix[96][8]; // not cool
|
||||||
|
// reducedSqueezeRow0
|
||||||
|
#pragma unroll 8
|
||||||
|
for (int i = 0; i < 8; i++) {
|
||||||
|
int idx = 84-12*i;
|
||||||
|
#pragma unroll 12
|
||||||
|
for (int j = 0; j<12; j++) { Matrix[j + idx][0] = state[j]; }
|
||||||
|
round_lyra_v30(state);
|
||||||
|
}
|
||||||
|
|
||||||
|
// reducedSqueezeRow1
|
||||||
|
#pragma unroll 8
|
||||||
|
for (int i = 0; i < 8; i++)
|
||||||
|
{
|
||||||
|
int idx0= 12*i;
|
||||||
|
int idx1= 84-idx0;
|
||||||
|
#pragma unroll 12
|
||||||
|
for (int j = 0; j<12; j++) { state[j] ^= Matrix[j + idx0][0]; }
|
||||||
|
round_lyra_v30(state);
|
||||||
|
#pragma unroll 12
|
||||||
|
for (int j = 0; j<12; j++) { Matrix[j + idx1][1] = Matrix[j + idx0][0] ^ state[j]; }
|
||||||
|
}
|
||||||
|
|
||||||
|
reduceDuplexRowSetup_v30(1, 0, 2);
|
||||||
|
reduceDuplexRowSetup_v30(2, 1, 3);
|
||||||
|
reduceDuplexRowSetup_v30(3, 0, 4);
|
||||||
|
reduceDuplexRowSetup_v30(4, 3, 5);
|
||||||
|
reduceDuplexRowSetup_v30(5, 2, 6);
|
||||||
|
reduceDuplexRowSetup_v30(6, 1, 7);
|
||||||
|
|
||||||
|
uint64_t rowa;
|
||||||
|
rowa = state[0] & 7;
|
||||||
|
reduceDuplexRow_v30(7, rowa, 0);
|
||||||
|
rowa = state[0] & 7;
|
||||||
|
reduceDuplexRow_v30(0, rowa, 3);
|
||||||
|
rowa = state[0] & 7;
|
||||||
|
reduceDuplexRow_v30(3, rowa, 6);
|
||||||
|
rowa = state[0] & 7;
|
||||||
|
reduceDuplexRow_v30(6, rowa, 1);
|
||||||
|
rowa = state[0] & 7;
|
||||||
|
reduceDuplexRow_v30(1, rowa, 4);
|
||||||
|
rowa = state[0] & 7;
|
||||||
|
reduceDuplexRow_v30(4, rowa, 7);
|
||||||
|
rowa = state[0] & 7;
|
||||||
|
reduceDuplexRow_v30(7, rowa, 2);
|
||||||
|
rowa = state[0] & 7;
|
||||||
|
reduceDuplexRow_v30(2, rowa, 5);
|
||||||
|
|
||||||
|
absorbblock_v30(rowa);
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i<4; i++) {
|
||||||
|
outputHash[threads*i + thread] = state[i];
|
||||||
|
} //password
|
||||||
|
|
||||||
|
} //thread
|
||||||
|
}
|
||||||
|
|
||||||
|
__global__ __launch_bounds__(256, 1)
|
||||||
|
void lyra2_gpu_hash_32(int threads, uint32_t startNounce, uint64_t *outputHash)
|
||||||
|
{
|
||||||
|
|
||||||
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
||||||
|
if (thread < threads)
|
||||||
|
{
|
||||||
|
uint2 state[16];
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i<4; i++) { LOHI(state[i].x, state[i].y, outputHash[threads*i + thread]); } //password
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i<4; i++) { state[i + 4] = state[i]; } //salt
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i<8; i++) { state[i + 8] = blake2b_IV[i]; }
|
||||||
|
|
||||||
|
// blake2blyra x2
|
||||||
|
#pragma unroll 24
|
||||||
|
for (int i = 0; i<24; i++) { round_lyra_v35(state); } //because 12 is not enough
|
||||||
|
|
||||||
|
uint2 Matrix[96][8]; // not cool
|
||||||
|
|
||||||
|
// reducedSqueezeRow0
|
||||||
|
#pragma unroll 8
|
||||||
|
for (int i = 0; i < 8; i++)
|
||||||
|
{
|
||||||
|
#pragma unroll 12
|
||||||
|
for (int j = 0; j<12; j++) { Matrix[j + 84 - 12 * i][0] = state[j]; }
|
||||||
|
round_lyra_v35(state);
|
||||||
|
}
|
||||||
|
|
||||||
|
// reducedSqueezeRow1
|
||||||
|
#pragma unroll 8
|
||||||
|
for (int i = 0; i < 8; i++)
|
||||||
|
{
|
||||||
|
#pragma unroll 12
|
||||||
|
for (int j = 0; j<12; j++) { state[j] ^= Matrix[j + 12 * i][0]; }
|
||||||
|
round_lyra_v35(state);
|
||||||
|
#pragma unroll 12
|
||||||
|
for (int j = 0; j<12; j++) { Matrix[j + 84 - 12 * i][1] = Matrix[j + 12 * i][0] ^ state[j]; }
|
||||||
|
}
|
||||||
|
|
||||||
|
reduceDuplexRowSetup(1, 0, 2);
|
||||||
|
reduceDuplexRowSetup(2, 1, 3);
|
||||||
|
reduceDuplexRowSetup(3, 0, 4);
|
||||||
|
reduceDuplexRowSetup(4, 3, 5);
|
||||||
|
reduceDuplexRowSetup(5, 2, 6);
|
||||||
|
reduceDuplexRowSetup(6, 1, 7);
|
||||||
|
|
||||||
|
uint32_t rowa;
|
||||||
|
rowa = state[0].x & 7;
|
||||||
|
reduceDuplexRow(7, rowa, 0);
|
||||||
|
rowa = state[0].x & 7;
|
||||||
|
reduceDuplexRow(0, rowa, 3);
|
||||||
|
rowa = state[0].x & 7;
|
||||||
|
reduceDuplexRow(3, rowa, 6);
|
||||||
|
rowa = state[0].x & 7;
|
||||||
|
reduceDuplexRow(6, rowa, 1);
|
||||||
|
rowa = state[0].x & 7;
|
||||||
|
reduceDuplexRow(1, rowa, 4);
|
||||||
|
rowa = state[0].x & 7;
|
||||||
|
reduceDuplexRow(4, rowa, 7);
|
||||||
|
rowa = state[0].x & 7;
|
||||||
|
reduceDuplexRow(7, rowa, 2);
|
||||||
|
rowa = state[0].x & 7;
|
||||||
|
reduceDuplexRow(2, rowa, 5);
|
||||||
|
|
||||||
|
absorbblock(rowa);
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i<4; i++) {
|
||||||
|
outputHash[threads*i + thread] = devectorize(state[i]);
|
||||||
|
} //password
|
||||||
|
|
||||||
|
} //thread
|
||||||
|
}
|
||||||
|
|
||||||
|
__global__
|
||||||
|
void __launch_bounds__(256, 1) lyra2_gpu_hash_32_test(int threads, uint32_t startNounce, uint64_t *outputHash)
|
||||||
|
{
|
||||||
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
||||||
|
if (thread < threads)
|
||||||
|
{
|
||||||
|
uint2 state[16];
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i<4; i++) { LOHI(state[i].x, state[i].y, outputHash[threads*i + thread]); } //password
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i<4; i++) { state[i + 4] = state[i]; } //salt
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i<8; i++) { state[i + 8] = blake2b_IV[i]; }
|
||||||
|
|
||||||
|
// blake2blyra x2
|
||||||
|
#pragma unroll 24
|
||||||
|
for (int i = 0; i<24; i++) { round_lyra_v35(state); } //because 12 is not enough
|
||||||
|
|
||||||
|
uint2 Matrix[12][8][8]; // not cool
|
||||||
|
|
||||||
|
// reducedSqueezeRow0
|
||||||
|
#pragma unroll 8
|
||||||
|
for (int i = 0; i < 8; i++) {
|
||||||
|
#pragma unroll 12
|
||||||
|
for (int j = 0; j<12; j++) { Matrix[j][7-i][0] = state[j]; }
|
||||||
|
round_lyra_v35(state);
|
||||||
|
}
|
||||||
|
|
||||||
|
// reducedSqueezeRow1
|
||||||
|
#pragma unroll 8
|
||||||
|
for (int i = 0; i < 8; i++)
|
||||||
|
{
|
||||||
|
#pragma unroll 12
|
||||||
|
for (int j = 0; j<12; j++) { state[j] ^= Matrix[j][i][0]; }
|
||||||
|
round_lyra_v35(state);
|
||||||
|
#pragma unroll 12
|
||||||
|
for (int j = 0; j<12; j++) { Matrix[j][7-i][1] = Matrix[j][i][0] ^ state[j]; }
|
||||||
|
}
|
||||||
|
|
||||||
|
reduceDuplexRowSetup_test(1, 0, 2);
|
||||||
|
reduceDuplexRowSetup_test(2, 1, 3);
|
||||||
|
reduceDuplexRowSetup_test(3, 0, 4);
|
||||||
|
reduceDuplexRowSetup_test(4, 3, 5);
|
||||||
|
reduceDuplexRowSetup_test(5, 2, 6);
|
||||||
|
reduceDuplexRowSetup_test(6, 1, 7);
|
||||||
|
|
||||||
|
uint64_t rowa;
|
||||||
|
rowa = devectorize(state[0]) & 7;
|
||||||
|
reduceDuplexRow_test(7, rowa, 0);
|
||||||
|
rowa = devectorize(state[0]) & 7;
|
||||||
|
reduceDuplexRow_test(0, rowa, 3);
|
||||||
|
rowa = devectorize(state[0]) & 7;
|
||||||
|
reduceDuplexRow_test(3, rowa, 6);
|
||||||
|
rowa = devectorize(state[0]) & 7;
|
||||||
|
reduceDuplexRow_test(6, rowa, 1);
|
||||||
|
rowa = devectorize(state[0]) & 7;
|
||||||
|
reduceDuplexRow_test(1, rowa, 4);
|
||||||
|
rowa = devectorize(state[0]) & 7;
|
||||||
|
reduceDuplexRow_test(4, rowa, 7);
|
||||||
|
rowa = devectorize(state[0]) & 7;
|
||||||
|
reduceDuplexRow_test(7, rowa, 2);
|
||||||
|
rowa = devectorize(state[0]) & 7;
|
||||||
|
reduceDuplexRow_test(2, rowa, 5);
|
||||||
|
|
||||||
|
absorbblock_test(rowa);
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i<4; i++) {
|
||||||
|
outputHash[threads*i + thread] = devectorize(state[i]);
|
||||||
|
} //password
|
||||||
|
|
||||||
|
} //thread
|
||||||
|
}
|
||||||
|
|
||||||
|
__host__
|
||||||
|
void lyra2_cpu_init(int thr_id, int threads)
|
||||||
|
{
|
||||||
|
//not used
|
||||||
|
}
|
||||||
|
|
||||||
|
__host__
|
||||||
|
void lyra2_cpu_hash_32(int thr_id, int threads, uint32_t startNounce, uint64_t *d_outputHash, int order)
|
||||||
|
{
|
||||||
|
const int threadsperblock = 256;
|
||||||
|
|
||||||
|
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
|
||||||
|
dim3 block(threadsperblock);
|
||||||
|
|
||||||
|
if (device_sm[device_map[thr_id]] >= 350) {
|
||||||
|
lyra2_gpu_hash_32 <<<grid, block>>> (threads, startNounce, d_outputHash);
|
||||||
|
} else {
|
||||||
|
// kernel for compute30 card
|
||||||
|
lyra2_gpu_hash_32_v30 <<<grid, block >>> (threads, startNounce, d_outputHash);
|
||||||
|
}
|
||||||
|
|
||||||
|
cudaDeviceSynchronize();
|
||||||
|
//MyStreamSynchronize(NULL, order, thr_id);
|
||||||
|
}
|
||||||
|
|
133
lyra2/lyra2RE.cu
Normal file
133
lyra2/lyra2RE.cu
Normal file
@ -0,0 +1,133 @@
|
|||||||
|
extern "C" {
|
||||||
|
#include "sph/sph_blake.h"
|
||||||
|
#include "sph/sph_groestl.h"
|
||||||
|
#include "sph/sph_skein.h"
|
||||||
|
#include "sph/sph_keccak.h"
|
||||||
|
#include "lyra2/Lyra2.h"
|
||||||
|
}
|
||||||
|
|
||||||
|
#include "miner.h"
|
||||||
|
#include "cuda_helper.h"
|
||||||
|
|
||||||
|
static _ALIGN(64) uint64_t *d_hash[8];
|
||||||
|
|
||||||
|
extern void quark_check_cpu_init(int thr_id, int threads);
|
||||||
|
extern void quark_check_cpu_setTarget(const void *ptarget);
|
||||||
|
extern uint32_t quark_check_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_inputHash, int order);
|
||||||
|
extern uint32_t quark_check_cpu_hash_64_2(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint64_t *d_inputHash, int order);
|
||||||
|
|
||||||
|
extern void blake256_cpu_init(int thr_id, int threads);
|
||||||
|
extern void blake256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, uint64_t *Hash, int order);
|
||||||
|
extern void blake256_cpu_setBlock_80(uint32_t *pdata);
|
||||||
|
extern void keccak256_cpu_hash_32(int thr_id, int threads, uint32_t startNonce, uint64_t *d_outputHash, int order);
|
||||||
|
extern void keccak256_cpu_init(int thr_id, int threads);
|
||||||
|
extern void skein256_cpu_hash_32(int thr_id, int threads, uint32_t startNonce, uint64_t *d_outputHash, int order);
|
||||||
|
extern void skein256_cpu_init(int thr_id, int threads);
|
||||||
|
|
||||||
|
extern void lyra2_cpu_hash_32(int thr_id, int threads, uint32_t startNonce, uint64_t *d_outputHash, int order);
|
||||||
|
extern void lyra2_cpu_init(int thr_id, int threads);
|
||||||
|
|
||||||
|
extern void groestl256_setTarget(const void *ptarget);
|
||||||
|
extern uint32_t groestl256_cpu_hash_32(int thr_id, int threads, uint32_t startNounce, uint64_t *d_outputHash, int order);
|
||||||
|
extern void groestl256_cpu_init(int thr_id, int threads);
|
||||||
|
|
||||||
|
extern "C" void lyra_hash(void *state, const void *input)
|
||||||
|
{
|
||||||
|
sph_blake256_context ctx_blake;
|
||||||
|
sph_keccak256_context ctx_keccak;
|
||||||
|
sph_skein256_context ctx_skein;
|
||||||
|
sph_groestl256_context ctx_groestl;
|
||||||
|
|
||||||
|
uint32_t hashA[8], hashB[8], hash[8];
|
||||||
|
|
||||||
|
sph_blake256_init(&ctx_blake);
|
||||||
|
sph_blake256(&ctx_blake, input, 80);
|
||||||
|
sph_blake256_close(&ctx_blake, hashA);
|
||||||
|
|
||||||
|
sph_keccak256_init(&ctx_keccak);
|
||||||
|
sph_keccak256(&ctx_keccak, hashA, 32);
|
||||||
|
sph_keccak256_close(&ctx_keccak, hashB);
|
||||||
|
|
||||||
|
LYRA2(hashA, 32, hashB, 32, hashB, 32, 1, 8, 8);
|
||||||
|
|
||||||
|
sph_skein256_init(&ctx_skein);
|
||||||
|
sph_skein256(&ctx_skein, hashA, 32);
|
||||||
|
sph_skein256_close(&ctx_skein, hashB);
|
||||||
|
|
||||||
|
sph_groestl256_init(&ctx_groestl);
|
||||||
|
sph_groestl256(&ctx_groestl, hashB, 32);
|
||||||
|
sph_groestl256_close(&ctx_groestl, hash);
|
||||||
|
|
||||||
|
// seems wrong : hash or hashB ?
|
||||||
|
memcpy(state, hashB, 32);
|
||||||
|
}
|
||||||
|
|
||||||
|
static bool init[8] = { 0 };
|
||||||
|
|
||||||
|
extern "C" int scanhash_lyra(int thr_id, uint32_t *pdata,
|
||||||
|
const uint32_t *ptarget, uint32_t max_nonce,
|
||||||
|
unsigned long *hashes_done)
|
||||||
|
{
|
||||||
|
const uint32_t first_nonce = pdata[19];
|
||||||
|
int intensity = (device_sm[device_map[thr_id]] >= 500) ? 19 : 18;
|
||||||
|
int throughput = opt_work_size ? opt_work_size : (1 << intensity); // 18=256*256*4;
|
||||||
|
throughput = min(throughput, (int)(max_nonce - first_nonce));
|
||||||
|
|
||||||
|
if (opt_benchmark)
|
||||||
|
((uint32_t*)ptarget)[7] = 0x0000ff;
|
||||||
|
|
||||||
|
if (!init[thr_id])
|
||||||
|
{
|
||||||
|
cudaSetDevice(device_map[thr_id]);
|
||||||
|
|
||||||
|
blake256_cpu_init(thr_id, throughput);
|
||||||
|
keccak256_cpu_init(thr_id,throughput);
|
||||||
|
skein256_cpu_init(thr_id, throughput);
|
||||||
|
groestl256_cpu_init(thr_id, throughput);
|
||||||
|
lyra2_cpu_init(thr_id, throughput);
|
||||||
|
|
||||||
|
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], 16 * sizeof(uint32_t) * throughput));
|
||||||
|
|
||||||
|
init[thr_id] = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
uint32_t endiandata[20];
|
||||||
|
for (int k=0; k < 20; k++)
|
||||||
|
be32enc(&endiandata[k], ((uint32_t*)pdata)[k]);
|
||||||
|
|
||||||
|
blake256_cpu_setBlock_80(pdata);
|
||||||
|
groestl256_setTarget(ptarget);
|
||||||
|
|
||||||
|
do {
|
||||||
|
int order = 0;
|
||||||
|
uint32_t foundNonce;
|
||||||
|
|
||||||
|
blake256_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
|
||||||
|
keccak256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
|
||||||
|
lyra2_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
|
||||||
|
skein256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
|
||||||
|
|
||||||
|
foundNonce = groestl256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
|
||||||
|
if (foundNonce != 0xffffffff)
|
||||||
|
{
|
||||||
|
// const uint32_t Htarg = ptarget[6];
|
||||||
|
uint32_t vhash64[8];
|
||||||
|
be32enc(&endiandata[19], foundNonce);
|
||||||
|
lyra_hash(vhash64, endiandata);
|
||||||
|
|
||||||
|
// if (vhash64[7]<=Htarg) { // && fulltest(vhash64, ptarget)) {
|
||||||
|
*hashes_done = pdata[19] - first_nonce + throughput;
|
||||||
|
pdata[19] = foundNonce;
|
||||||
|
return 1;
|
||||||
|
// } else {
|
||||||
|
// applog(LOG_INFO, "GPU #%d: result for nonce $%08X does not validate on CPU!", thr_id, foundNonce);
|
||||||
|
// }
|
||||||
|
}
|
||||||
|
|
||||||
|
pdata[19] += throughput;
|
||||||
|
|
||||||
|
} while (pdata[19] < max_nonce && !work_restart[thr_id].restart);
|
||||||
|
|
||||||
|
*hashes_done = pdata[19] - first_nonce + 1;
|
||||||
|
return 0;
|
||||||
|
}
|
5
miner.h
5
miner.h
@ -328,6 +328,10 @@ extern int scanhash_fresh(int thr_id, uint32_t *pdata,
|
|||||||
const uint32_t *ptarget, uint32_t max_nonce,
|
const uint32_t *ptarget, uint32_t max_nonce,
|
||||||
unsigned long *hashes_done);
|
unsigned long *hashes_done);
|
||||||
|
|
||||||
|
extern int scanhash_lyra(int thr_id, uint32_t *pdata,
|
||||||
|
const uint32_t *ptarget, uint32_t max_nonce,
|
||||||
|
unsigned long *hashes_done);
|
||||||
|
|
||||||
extern int scanhash_nist5(int thr_id, uint32_t *pdata,
|
extern int scanhash_nist5(int thr_id, uint32_t *pdata,
|
||||||
const uint32_t *ptarget, uint32_t max_nonce,
|
const uint32_t *ptarget, uint32_t max_nonce,
|
||||||
unsigned long *hashes_done);
|
unsigned long *hashes_done);
|
||||||
@ -645,6 +649,7 @@ void heavycoin_hash(unsigned char* output, const unsigned char* input, int len);
|
|||||||
void keccak256_hash(void *state, const void *input);
|
void keccak256_hash(void *state, const void *input);
|
||||||
unsigned int jackpothash(void *state, const void *input);
|
unsigned int jackpothash(void *state, const void *input);
|
||||||
void groestlhash(void *state, const void *input);
|
void groestlhash(void *state, const void *input);
|
||||||
|
void lyra_hash(void *state, const void *input);
|
||||||
void myriadhash(void *state, const void *input);
|
void myriadhash(void *state, const void *input);
|
||||||
void nist5hash(void *state, const void *input);
|
void nist5hash(void *state, const void *input);
|
||||||
void pentablakehash(void *output, const void *input);
|
void pentablakehash(void *output, const void *input);
|
||||||
|
14
util.cpp
14
util.cpp
@ -1633,18 +1633,22 @@ void print_hash_tests(void)
|
|||||||
heavycoin_hash(&hash[0], &buf[0], 32);
|
heavycoin_hash(&hash[0], &buf[0], 32);
|
||||||
printpfx("heavy", hash);
|
printpfx("heavy", hash);
|
||||||
|
|
||||||
memset(hash, 0, sizeof hash);
|
|
||||||
keccak256_hash(&hash[0], &buf[0]);
|
|
||||||
printpfx("keccak", hash);
|
|
||||||
|
|
||||||
memset(hash, 0, sizeof hash);
|
memset(hash, 0, sizeof hash);
|
||||||
jackpothash(&hash[0], &buf[0]);
|
jackpothash(&hash[0], &buf[0]);
|
||||||
printpfx("jackpot", hash);
|
printpfx("jackpot", hash);
|
||||||
|
|
||||||
|
memset(hash, 0, sizeof hash);
|
||||||
|
keccak256_hash(&hash[0], &buf[0]);
|
||||||
|
printpfx("keccak", hash);
|
||||||
|
|
||||||
memset(hash, 0, sizeof hash);
|
memset(hash, 0, sizeof hash);
|
||||||
doomhash(&hash[0], &buf[0]);
|
doomhash(&hash[0], &buf[0]);
|
||||||
printpfx("luffa", hash);
|
printpfx("luffa", hash);
|
||||||
|
/* to double check with a lyra2 cpu miner
|
||||||
|
memset(hash, 0, sizeof hash);
|
||||||
|
lyra_hash(&hash[0], &buf[0]);
|
||||||
|
printpfx("lyra2", hash);
|
||||||
|
*/
|
||||||
memset(hash, 0, sizeof hash);
|
memset(hash, 0, sizeof hash);
|
||||||
myriadhash(&hash[0], &buf[0]);
|
myriadhash(&hash[0], &buf[0]);
|
||||||
printpfx("myriad", hash);
|
printpfx("myriad", hash);
|
||||||
|
Loading…
Reference in New Issue
Block a user