GOSTCoin CUDA miner project, compatible with most nvidia cards, containing only gostd algo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

536 lines
16 KiB

#include <memory.h>
#include "cuda_helper.h"
static __constant__ uint2 blake2b_IV[8] = {
{ 0xf3bcc908, 0x6a09e667 },
{ 0x84caa73b, 0xbb67ae85 },
{ 0xfe94f82b, 0x3c6ef372 },
{ 0x5f1d36f1, 0xa54ff53a },
{ 0xade682d1, 0x510e527f },
{ 0x2b3e6c1f, 0x9b05688c },
{ 0xfb41bd6b, 0x1f83d9ab },
{ 0x137e2179, 0x5be0cd19 }
};
// data: 0-4 outputhash 4-8 outputhash 8-16 basil
#define reduceDuplexRowSetup(rowIn, rowInOut, rowOut) { \
for (int i = 0; i < 8; i++) { \
for (int j = 0; j < 12; j++) \
state[j] ^= Matrix[12 * i + j][rowIn] + Matrix[12 * i + j][rowInOut]; \
round_lyra_v35(state); \
for (int j = 0; j < 12; j++) \
Matrix[j + 84 - 12 * i][rowOut] = Matrix[12 * i + j][rowIn] ^ state[j]; \
Matrix[0 + 12 * i][rowInOut] ^= state[11]; \
Matrix[1 + 12 * i][rowInOut] ^= state[0]; \
Matrix[2 + 12 * i][rowInOut] ^= state[1]; \
Matrix[3 + 12 * i][rowInOut] ^= state[2]; \
Matrix[4 + 12 * i][rowInOut] ^= state[3]; \
Matrix[5 + 12 * i][rowInOut] ^= state[4]; \
Matrix[6 + 12 * i][rowInOut] ^= state[5]; \
Matrix[7 + 12 * i][rowInOut] ^= state[6]; \
Matrix[8 + 12 * i][rowInOut] ^= state[7]; \
Matrix[9 + 12 * i][rowInOut] ^= state[8]; \
Matrix[10+ 12 * i][rowInOut] ^= state[9]; \
Matrix[11+ 12 * i][rowInOut] ^= state[10]; \
} \
}
#define reduceDuplexRow(rowIn, rowInOut, rowOut) { \
for (int i = 0; i < 8; i++) { \
for (int j = 0; j < 12; j++) \
state[j] ^= Matrix[12 * i + j][rowIn] + Matrix[12 * i + j][rowInOut]; \
round_lyra_v35(state); \
for (int j = 0; j < 12; j++) \
Matrix[j + 12 * i][rowOut] ^= state[j]; \
Matrix[0 + 12 * i][rowInOut] ^= state[11]; \
Matrix[1 + 12 * i][rowInOut] ^= state[0]; \
Matrix[2 + 12 * i][rowInOut] ^= state[1]; \
Matrix[3 + 12 * i][rowInOut] ^= state[2]; \
Matrix[4 + 12 * i][rowInOut] ^= state[3]; \
Matrix[5 + 12 * i][rowInOut] ^= state[4]; \
Matrix[6 + 12 * i][rowInOut] ^= state[5]; \
Matrix[7 + 12 * i][rowInOut] ^= state[6]; \
Matrix[8 + 12 * i][rowInOut] ^= state[7]; \
Matrix[9 + 12 * i][rowInOut] ^= state[8]; \
Matrix[10+ 12 * i][rowInOut] ^= state[9]; \
Matrix[11+ 12 * i][rowInOut] ^= state[10]; \
} \
}
#define absorbblock(in) { \
state[0] ^= Matrix[0][in]; \
state[1] ^= Matrix[1][in]; \
state[2] ^= Matrix[2][in]; \
state[3] ^= Matrix[3][in]; \
state[4] ^= Matrix[4][in]; \
state[5] ^= Matrix[5][in]; \
state[6] ^= Matrix[6][in]; \
state[7] ^= Matrix[7][in]; \
state[8] ^= Matrix[8][in]; \
state[9] ^= Matrix[9][in]; \
state[10] ^= Matrix[10][in]; \
state[11] ^= Matrix[11][in]; \
round_lyra_v35(state); \
round_lyra_v35(state); \
round_lyra_v35(state); \
round_lyra_v35(state); \
round_lyra_v35(state); \
round_lyra_v35(state); \
round_lyra_v35(state); \
round_lyra_v35(state); \
round_lyra_v35(state); \
round_lyra_v35(state); \
round_lyra_v35(state); \
round_lyra_v35(state); \
}
//// test version
#define reduceDuplexRowSetup_test(rowIn, rowInOut, rowOut) { \
for (int i = 0; i < 8; i++) { \
for (int j = 0; j < 12; j++) \
state[j] ^= Matrix[j][i][rowIn] + Matrix[j][i][rowInOut]; \
round_lyra_v35(state); \
for (int j = 0; j < 12; j++) \
Matrix[j][7-i][rowOut] = Matrix[j][i][rowIn] ^ state[j]; \
Matrix[0][i][rowInOut] ^= state[11]; \
Matrix[1][i][rowInOut] ^= state[0]; \
Matrix[2][i][rowInOut] ^= state[1]; \
Matrix[3][i][rowInOut] ^= state[2]; \
Matrix[4][i][rowInOut] ^= state[3]; \
Matrix[5][i][rowInOut] ^= state[4]; \
Matrix[6][i][rowInOut] ^= state[5]; \
Matrix[7][i][rowInOut] ^= state[6]; \
Matrix[8][i][rowInOut] ^= state[7]; \
Matrix[9][i][rowInOut] ^= state[8]; \
Matrix[10][i][rowInOut] ^= state[9]; \
Matrix[11][i][rowInOut] ^= state[10]; \
} \
}
#define reduceDuplexRow_test(rowIn, rowInOut, rowOut) { \
for (int i = 0; i < 8; i++) { \
for (int j = 0; j < 12; j++) \
state[j] ^= Matrix[j][i][rowIn] + Matrix[j][i][rowInOut]; \
round_lyra_v35(state); \
for (int j = 0; j < 12; j++) \
Matrix[j][i][rowOut] ^= state[j]; \
Matrix[0][i][rowInOut] ^= state[11]; \
Matrix[1][i][rowInOut] ^= state[0]; \
Matrix[2][i][rowInOut] ^= state[1]; \
Matrix[3][i][rowInOut] ^= state[2]; \
Matrix[4][i][rowInOut] ^= state[3]; \
Matrix[5][i][rowInOut] ^= state[4]; \
Matrix[6][i][rowInOut] ^= state[5]; \
Matrix[7][i][rowInOut] ^= state[6]; \
Matrix[8][i][rowInOut] ^= state[7]; \
Matrix[9][i][rowInOut] ^= state[8]; \
Matrix[10][i][rowInOut] ^= state[9]; \
Matrix[11][i][rowInOut] ^= state[10]; \
} \
}
#define absorbblock_test(in) { \
state[0] ^= Matrix[0][0][ in]; \
state[1] ^= Matrix[1][0][in]; \
state[2] ^= Matrix[2][0][in]; \
state[3] ^= Matrix[3][0][in]; \
state[4] ^= Matrix[4][0][in]; \
state[5] ^= Matrix[5][0][in]; \
state[6] ^= Matrix[6][0][in]; \
state[7] ^= Matrix[7][0][in]; \
state[8] ^= Matrix[8][0][in]; \
state[9] ^= Matrix[9][0][in]; \
state[10] ^= Matrix[10][0][in]; \
state[11] ^= Matrix[11][0][in]; \
round_lyra_v35(state); \
round_lyra_v35(state); \
round_lyra_v35(state); \
round_lyra_v35(state); \
round_lyra_v35(state); \
round_lyra_v35(state); \
round_lyra_v35(state); \
round_lyra_v35(state); \
round_lyra_v35(state); \
round_lyra_v35(state); \
round_lyra_v35(state); \
round_lyra_v35(state); \
}
//// compute 30 version
#define reduceDuplexRowSetup_v30(rowIn, rowInOut, rowOut) { \
for (int i = 0; i < 8; i++) { \
for (int j = 0; j < 12; j++) \
state[j] ^= Matrix[12 * i + j][rowIn] + Matrix[12 * i + j][rowInOut]; \
round_lyra_v30(state); \
for (int j = 0; j < 12; j++) \
Matrix[j + 84 - 12 * i][rowOut] = Matrix[12 * i + j][rowIn] ^ state[j]; \
Matrix[0 + 12 * i][rowInOut] ^= state[11]; \
Matrix[1 + 12 * i][rowInOut] ^= state[0]; \
Matrix[2 + 12 * i][rowInOut] ^= state[1]; \
Matrix[3 + 12 * i][rowInOut] ^= state[2]; \
Matrix[4 + 12 * i][rowInOut] ^= state[3]; \
Matrix[5 + 12 * i][rowInOut] ^= state[4]; \
Matrix[6 + 12 * i][rowInOut] ^= state[5]; \
Matrix[7 + 12 * i][rowInOut] ^= state[6]; \
Matrix[8 + 12 * i][rowInOut] ^= state[7]; \
Matrix[9 + 12 * i][rowInOut] ^= state[8]; \
Matrix[10 + 12 * i][rowInOut] ^= state[9]; \
Matrix[11 + 12 * i][rowInOut] ^= state[10]; \
} \
}
#define reduceDuplexRow_v30(rowIn, rowInOut, rowOut) { \
for (int i = 0; i < 8; i++) { \
for (int j = 0; j < 12; j++) \
state[j] ^= Matrix[12 * i + j][rowIn] + Matrix[12 * i + j][rowInOut]; \
round_lyra_v30(state); \
for (int j = 0; j < 12; j++) \
Matrix[j + 12 * i][rowOut] ^= state[j]; \
Matrix[0 + 12 * i][rowInOut] ^= state[11]; \
Matrix[1 + 12 * i][rowInOut] ^= state[0]; \
Matrix[2 + 12 * i][rowInOut] ^= state[1]; \
Matrix[3 + 12 * i][rowInOut] ^= state[2]; \
Matrix[4 + 12 * i][rowInOut] ^= state[3]; \
Matrix[5 + 12 * i][rowInOut] ^= state[4]; \
Matrix[6 + 12 * i][rowInOut] ^= state[5]; \
Matrix[7 + 12 * i][rowInOut] ^= state[6]; \
Matrix[8 + 12 * i][rowInOut] ^= state[7]; \
Matrix[9 + 12 * i][rowInOut] ^= state[8]; \
Matrix[10 + 12 * i][rowInOut] ^= state[9]; \
Matrix[11 + 12 * i][rowInOut] ^= state[10]; \
} \
}
#define absorbblock_v30(in) { \
state[0] ^= Matrix[0][in]; \
state[1] ^= Matrix[1][in]; \
state[2] ^= Matrix[2][in]; \
state[3] ^= Matrix[3][in]; \
state[4] ^= Matrix[4][in]; \
state[5] ^= Matrix[5][in]; \
state[6] ^= Matrix[6][in]; \
state[7] ^= Matrix[7][in]; \
state[8] ^= Matrix[8][in]; \
state[9] ^= Matrix[9][in]; \
state[10] ^= Matrix[10][in]; \
state[11] ^= Matrix[11][in]; \
round_lyra_v30(state); \
round_lyra_v30(state); \
round_lyra_v30(state); \
round_lyra_v30(state); \
round_lyra_v30(state); \
round_lyra_v30(state); \
round_lyra_v30(state); \
round_lyra_v30(state); \
round_lyra_v30(state); \
round_lyra_v30(state); \
round_lyra_v30(state); \
round_lyra_v30(state); \
}
static __device__ __forceinline__
void Gfunc_v35(uint2 & a, uint2 &b, uint2 &c, uint2 &d)
{
a += b; d ^= a; d = ROR2(d, 32);
c += d; b ^= c; b = ROR2(b, 24);
a += b; d ^= a; d = ROR2(d, 16);
c += d; b ^= c; b = ROR2(b, 63);
}
static __device__ __forceinline__
void Gfunc_v30(uint64_t & a, uint64_t &b, uint64_t &c, uint64_t &d)
{
a += b; d ^= a; d = ROTR64(d, 32);
c += d; b ^= c; b = ROTR64(b, 24);
a += b; d ^= a; d = ROTR64(d, 16);
c += d; b ^= c; b = ROTR64(b, 63);
}
#define round_lyra_v35_new(state) { \
Gfunc_v35(state[0], state[4], state[8], state[12]); \
Gfunc_v35(state[1], state[5], state[9], state[13]); \
Gfunc_v35(state[2], state[6], state[10], state[14]); \
Gfunc_v35(state[3], state[7], state[11], state[15]); \
Gfunc_v35(state[0], state[5], state[10], state[15]); \
Gfunc_v35(state[1], state[6], state[11], state[12]); \
Gfunc_v35(state[2], state[7], state[8], state[13]); \
Gfunc_v35(state[3], state[4], state[9], state[14]); \
}
static __device__ __forceinline__ void round_lyra_v35(uint2 *s)
{
Gfunc_v35(s[0], s[4], s[8], s[12]);
Gfunc_v35(s[1], s[5], s[9], s[13]);
Gfunc_v35(s[2], s[6], s[10], s[14]);
Gfunc_v35(s[3], s[7], s[11], s[15]);
Gfunc_v35(s[0], s[5], s[10], s[15]);
Gfunc_v35(s[1], s[6], s[11], s[12]);
Gfunc_v35(s[2], s[7], s[8], s[13]);
Gfunc_v35(s[3], s[4], s[9], s[14]);
}
static __device__ __forceinline__ void round_lyra_v30(uint64_t *s)
{
Gfunc_v30(s[0], s[4], s[8], s[12]);
Gfunc_v30(s[1], s[5], s[9], s[13]);
Gfunc_v30(s[2], s[6], s[10], s[14]);
Gfunc_v30(s[3], s[7], s[11], s[15]);
Gfunc_v30(s[0], s[5], s[10], s[15]);
Gfunc_v30(s[1], s[6], s[11], s[12]);
Gfunc_v30(s[2], s[7], s[8], s[13]);
Gfunc_v30(s[3], s[4], s[9], s[14]);
}
__global__ __launch_bounds__(256, 1)
void lyra2_gpu_hash_32_v30(int threads, uint32_t startNounce, uint64_t *outputHash)
{
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint64_t state[16];
#pragma unroll
for (int i = 0; i<4; i++) { state[i] = outputHash[threads*i + thread]; } //password
#pragma unroll
for (int i = 0; i<4; i++) { state[i + 4] = state[i]; } //salt
#pragma unroll
for (int i = 0; i<8; i++) { state[i + 8] = devectorize(blake2b_IV[i]); }
// blake2blyra x2
#pragma unroll 24
for (int i = 0; i<24; i++) { round_lyra_v30(state); } //because 12 is not enough
uint64_t Matrix[96][8]; // not cool
// reducedSqueezeRow0
#pragma unroll 8
for (int i = 0; i < 8; i++) {
int idx = 84-12*i;
#pragma unroll 12
for (int j = 0; j<12; j++) { Matrix[j + idx][0] = state[j]; }
round_lyra_v30(state);
}
// reducedSqueezeRow1
#pragma unroll 8
for (int i = 0; i < 8; i++)
{
int idx0= 12*i;
int idx1= 84-idx0;
#pragma unroll 12
for (int j = 0; j<12; j++) { state[j] ^= Matrix[j + idx0][0]; }
round_lyra_v30(state);
#pragma unroll 12
for (int j = 0; j<12; j++) { Matrix[j + idx1][1] = Matrix[j + idx0][0] ^ state[j]; }
}
reduceDuplexRowSetup_v30(1, 0, 2);
reduceDuplexRowSetup_v30(2, 1, 3);
reduceDuplexRowSetup_v30(3, 0, 4);
reduceDuplexRowSetup_v30(4, 3, 5);
reduceDuplexRowSetup_v30(5, 2, 6);
reduceDuplexRowSetup_v30(6, 1, 7);
uint64_t rowa;
rowa = state[0] & 7;
reduceDuplexRow_v30(7, rowa, 0);
rowa = state[0] & 7;
reduceDuplexRow_v30(0, rowa, 3);
rowa = state[0] & 7;
reduceDuplexRow_v30(3, rowa, 6);
rowa = state[0] & 7;
reduceDuplexRow_v30(6, rowa, 1);
rowa = state[0] & 7;
reduceDuplexRow_v30(1, rowa, 4);
rowa = state[0] & 7;
reduceDuplexRow_v30(4, rowa, 7);
rowa = state[0] & 7;
reduceDuplexRow_v30(7, rowa, 2);
rowa = state[0] & 7;
reduceDuplexRow_v30(2, rowa, 5);
absorbblock_v30(rowa);
#pragma unroll
for (int i = 0; i<4; i++) {
outputHash[threads*i + thread] = state[i];
} //password
} //thread
}
__global__ __launch_bounds__(256, 1)
void lyra2_gpu_hash_32(int threads, uint32_t startNounce, uint64_t *outputHash)
{
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint2 state[16];
#pragma unroll
for (int i = 0; i<4; i++) { LOHI(state[i].x, state[i].y, outputHash[threads*i + thread]); } //password
#pragma unroll
for (int i = 0; i<4; i++) { state[i + 4] = state[i]; } //salt
#pragma unroll
for (int i = 0; i<8; i++) { state[i + 8] = blake2b_IV[i]; }
// blake2blyra x2
#pragma unroll 24
for (int i = 0; i<24; i++) { round_lyra_v35(state); } //because 12 is not enough
uint2 Matrix[96][8]; // not cool
// reducedSqueezeRow0
#pragma unroll 8
for (int i = 0; i < 8; i++)
{
#pragma unroll 12
for (int j = 0; j<12; j++) { Matrix[j + 84 - 12 * i][0] = state[j]; }
round_lyra_v35(state);
}
// reducedSqueezeRow1
#pragma unroll 8
for (int i = 0; i < 8; i++)
{
#pragma unroll 12
for (int j = 0; j<12; j++) { state[j] ^= Matrix[j + 12 * i][0]; }
round_lyra_v35(state);
#pragma unroll 12
for (int j = 0; j<12; j++) { Matrix[j + 84 - 12 * i][1] = Matrix[j + 12 * i][0] ^ state[j]; }
}
reduceDuplexRowSetup(1, 0, 2);
reduceDuplexRowSetup(2, 1, 3);
reduceDuplexRowSetup(3, 0, 4);
reduceDuplexRowSetup(4, 3, 5);
reduceDuplexRowSetup(5, 2, 6);
reduceDuplexRowSetup(6, 1, 7);
uint32_t rowa;
rowa = state[0].x & 7;
reduceDuplexRow(7, rowa, 0);
rowa = state[0].x & 7;
reduceDuplexRow(0, rowa, 3);
rowa = state[0].x & 7;
reduceDuplexRow(3, rowa, 6);
rowa = state[0].x & 7;
reduceDuplexRow(6, rowa, 1);
rowa = state[0].x & 7;
reduceDuplexRow(1, rowa, 4);
rowa = state[0].x & 7;
reduceDuplexRow(4, rowa, 7);
rowa = state[0].x & 7;
reduceDuplexRow(7, rowa, 2);
rowa = state[0].x & 7;
reduceDuplexRow(2, rowa, 5);
absorbblock(rowa);
#pragma unroll
for (int i = 0; i<4; i++) {
outputHash[threads*i + thread] = devectorize(state[i]);
} //password
} //thread
}
__global__
void __launch_bounds__(256, 1) lyra2_gpu_hash_32_test(int threads, uint32_t startNounce, uint64_t *outputHash)
{
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint2 state[16];
#pragma unroll
for (int i = 0; i<4; i++) { LOHI(state[i].x, state[i].y, outputHash[threads*i + thread]); } //password
#pragma unroll
for (int i = 0; i<4; i++) { state[i + 4] = state[i]; } //salt
#pragma unroll
for (int i = 0; i<8; i++) { state[i + 8] = blake2b_IV[i]; }
// blake2blyra x2
#pragma unroll 24
for (int i = 0; i<24; i++) { round_lyra_v35(state); } //because 12 is not enough
uint2 Matrix[12][8][8]; // not cool
// reducedSqueezeRow0
#pragma unroll 8
for (int i = 0; i < 8; i++) {
#pragma unroll 12
for (int j = 0; j<12; j++) { Matrix[j][7-i][0] = state[j]; }
round_lyra_v35(state);
}
// reducedSqueezeRow1
#pragma unroll 8
for (int i = 0; i < 8; i++)
{
#pragma unroll 12
for (int j = 0; j<12; j++) { state[j] ^= Matrix[j][i][0]; }
round_lyra_v35(state);
#pragma unroll 12
for (int j = 0; j<12; j++) { Matrix[j][7-i][1] = Matrix[j][i][0] ^ state[j]; }
}
reduceDuplexRowSetup_test(1, 0, 2);
reduceDuplexRowSetup_test(2, 1, 3);
reduceDuplexRowSetup_test(3, 0, 4);
reduceDuplexRowSetup_test(4, 3, 5);
reduceDuplexRowSetup_test(5, 2, 6);
reduceDuplexRowSetup_test(6, 1, 7);
uint64_t rowa;
rowa = devectorize(state[0]) & 7;
reduceDuplexRow_test(7, rowa, 0);
rowa = devectorize(state[0]) & 7;
reduceDuplexRow_test(0, rowa, 3);
rowa = devectorize(state[0]) & 7;
reduceDuplexRow_test(3, rowa, 6);
rowa = devectorize(state[0]) & 7;
reduceDuplexRow_test(6, rowa, 1);
rowa = devectorize(state[0]) & 7;
reduceDuplexRow_test(1, rowa, 4);
rowa = devectorize(state[0]) & 7;
reduceDuplexRow_test(4, rowa, 7);
rowa = devectorize(state[0]) & 7;
reduceDuplexRow_test(7, rowa, 2);
rowa = devectorize(state[0]) & 7;
reduceDuplexRow_test(2, rowa, 5);
absorbblock_test(rowa);
#pragma unroll
for (int i = 0; i<4; i++) {
outputHash[threads*i + thread] = devectorize(state[i]);
} //password
} //thread
}
__host__
void lyra2_cpu_init(int thr_id, int threads)
{
//not used
}
__host__
void lyra2_cpu_hash_32(int thr_id, int threads, uint32_t startNounce, uint64_t *d_outputHash, int order)
{
const int threadsperblock = 256;
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
if (device_sm[device_map[thr_id]] >= 350) {
lyra2_gpu_hash_32 <<<grid, block>>> (threads, startNounce, d_outputHash);
} else {
// kernel for compute30 card
lyra2_gpu_hash_32_v30 <<<grid, block >>> (threads, startNounce, d_outputHash);
}
cudaDeviceSynchronize();
//MyStreamSynchronize(NULL, order, thr_id);
}