Browse Source

simd: then reindent the code

no changes, only error checks (cuda safe call)
master
Tanguy Pruvot 10 years ago
parent
commit
93f4409dde
  1. 89
      x11/cuda_x11_simd512.cu
  2. 1
      x11/x11.cu

89
x11/cuda_x11_simd512.cu

@ -1,13 +1,14 @@ @@ -1,13 +1,14 @@
// Parallelisierung:
// Parallelization:
//
// FFT_8 wird 2 mal 8-fach parallel ausgeführt (in FFT_64)
// und 1 mal 16-fach parallel (in FFT_128_full)
// FFT_8 wird 2 times 8-fach parallel ausgeführt (in FFT_64)
// and 1 time 16-fach parallel (in FFT_128_full)
//
// STEP8_IF und STEP8_MAJ beinhalten je zwei 8-fach parallele Operationen
// STEP8_IF and STEP8_MAJ beinhalten je 2x 8-fach parallel Operations
#define TPB 64
#include "cuda_helper.h"
#include <stdio.h>
// aus heavy.cu
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id);
@ -76,6 +77,7 @@ static const int h_FFT256_2_128_Twiddle[128] = { @@ -76,6 +77,7 @@ static const int h_FFT256_2_128_Twiddle[128] = {
#define IF(x, y, z) ((((y) ^ (z)) & (x)) ^ (z))
#define MAJ(x, y, z) (((z) & (y)) | (((z) | (y)) & (x)))
#include "x11/simd_functions.cu"
/********************* Message expansion ************************/
@ -84,7 +86,8 @@ static const int h_FFT256_2_128_Twiddle[128] = { @@ -84,7 +86,8 @@ static const int h_FFT256_2_128_Twiddle[128] = {
* Reduce modulo 257; result is in [-127; 383]
* REDUCE(x) := (x&255) - (x>>8)
*/
#define REDUCE(x) (((x)&255) - ((x)>>8))
#define REDUCE(x) \
(((x)&255) - ((x)>>8))
/*
* Reduce from [-127; 383] to [-128; 128]
@ -99,7 +102,8 @@ static const int h_FFT256_2_128_Twiddle[128] = { @@ -99,7 +102,8 @@ static const int h_FFT256_2_128_Twiddle[128] = {
#define REDUCE_FULL_S(x) \
EXTRA_REDUCE_S(REDUCE(x))
__device__ __forceinline__ void FFT_8(int *y, int stripe) {
__device__ __forceinline__
void FFT_8(int *y, int stripe) {
/*
* FFT_8 using w=4 as 8th root of unity
@ -163,12 +167,11 @@ X(j) = (u-v) << (2*n); \ @@ -163,12 +167,11 @@ X(j) = (u-v) << (2*n); \
__device__ __forceinline__ void FFT_16(int *y) {
/*
/**
* FFT_16 using w=2 as 16th root of unity
* Unrolled decimation in frequency (DIF) radix-2 NTT.
* Output data is in revbin_permuted order.
*/
#define DO_REDUCE_FULL_S(i) \
do { \
y[i] = REDUCE(y[i]); \
@ -274,7 +277,9 @@ y[i] = EXTRA_REDUCE_S(y[i]); \ @@ -274,7 +277,9 @@ y[i] = EXTRA_REDUCE_S(y[i]); \
#undef DO_REDUCE_FULL_S
}
__device__ __forceinline__ void FFT_128_full(int y[128]) {
__device__ __forceinline__
void FFT_128_full(int y[128])
{
int i;
FFT_8(y+0,2); // eight parallel FFT8's
@ -289,11 +294,9 @@ __device__ __forceinline__ void FFT_128_full(int y[128]) { @@ -289,11 +294,9 @@ __device__ __forceinline__ void FFT_128_full(int y[128]) {
FFT_16(y+2*i); // eight sequential FFT16's, each one executed in parallel by 8 threads
}
__device__ __forceinline__ void FFT_256_halfzero(int y[256]) {
int i;
__device__ __forceinline__
void FFT_256_halfzero(int y[256])
{
/*
* FFT_256 using w=41 as 256th root of unity.
* Decimation in frequency (DIF) NTT.
@ -303,10 +306,10 @@ __device__ __forceinline__ void FFT_256_halfzero(int y[256]) { @@ -303,10 +306,10 @@ __device__ __forceinline__ void FFT_256_halfzero(int y[256]) {
const int tmp = y[15];
#pragma unroll 8
for (i=0; i<8; i++)
for (int i=0; i<8; i++)
y[16+i] = REDUCE(y[i] * c_FFT256_2_128_Twiddle[8*i+(threadIdx.x&7)]);
#pragma unroll 8
for (i=8; i<16; i++)
for (int i=8; i<16; i++)
y[16+i] = 0;
/* handle X^255 with an additional butterfly */
@ -323,19 +326,18 @@ __device__ __forceinline__ void FFT_256_halfzero(int y[256]) { @@ -323,19 +326,18 @@ __device__ __forceinline__ void FFT_256_halfzero(int y[256]) {
/***************************************************/
__device__ __forceinline__ void Expansion(const uint32_t *data, uint4 *g_temp4)
__device__ __forceinline__
void Expansion(const uint32_t *data, uint4 *g_temp4)
{
int i;
/* Message Expansion using Number Theoretical Transform similar to FFT */
int expanded[32];
#pragma unroll 4
for (i=0; i < 4; i++) {
for (int i=0; i < 4; i++) {
expanded[ i] = __byte_perm(__shfl((int)data[0], 2*i, 8), __shfl((int)data[0], (2*i)+1, 8), threadIdx.x&7)&0xff;
expanded[4+i] = __byte_perm(__shfl((int)data[1], 2*i, 8), __shfl((int)data[1], (2*i)+1, 8), threadIdx.x&7)&0xff;
}
#pragma unroll 8
for (i=8; i < 16; i++)
for (int i=8; i < 16; i++)
expanded[i] = 0;
FFT_256_halfzero(expanded);
@ -447,7 +449,6 @@ __device__ __forceinline__ void Expansion(const uint32_t *data, uint4 *g_temp4) @@ -447,7 +449,6 @@ __device__ __forceinline__ void Expansion(const uint32_t *data, uint4 *g_temp4)
//{ 14, 78, 46, 110, 30, 94, 62, 126 }, { 15, 79, 47, 111, 31, 95, 63, 127 },
//{ 2, 66, 34, 98, 18, 82, 50, 114 }, { 3, 67, 35, 99, 19, 83, 51, 115 },
bool sel = ((threadIdx.x+2)&7) >= 4; // 2,3,4,5
P1 = sel?expanded[0]:expanded[1]; Q1 = __shfl(P1, threadIdx.x^1, 8);
@ -474,7 +475,6 @@ __device__ __forceinline__ void Expansion(const uint32_t *data, uint4 *g_temp4) @@ -474,7 +475,6 @@ __device__ __forceinline__ void Expansion(const uint32_t *data, uint4 *g_temp4)
// 0 8 4 12 2 10 6 14 0 8 4 12 2 10 6 14 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
// 1 9 5 13 3 11 7 15 1 9 5 13 3 11 7 15 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5
P1 = sel?expanded[1]:expanded[0]; Q1 = __shfl(P1, threadIdx.x^1, 8);
Q2 = sel?expanded[3]:expanded[2]; P2 = __shfl(Q2, threadIdx.x^1, 8);
P = even? P1 : P2; Q = even? Q1 : Q2;
@ -552,7 +552,7 @@ __device__ __forceinline__ void Expansion(const uint32_t *data, uint4 *g_temp4) @@ -552,7 +552,7 @@ __device__ __forceinline__ void Expansion(const uint32_t *data, uint4 *g_temp4)
}
/***************************************************/
// Die Hash-Funktion
__global__ void __launch_bounds__(TPB,4)
x11_simd512_gpu_expand_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector, uint4 *g_temp4)
{
@ -567,6 +567,7 @@ x11_simd512_gpu_expand_64(int threads, uint32_t startNounce, uint64_t *g_hash, u @@ -567,6 +567,7 @@ x11_simd512_gpu_expand_64(int threads, uint32_t startNounce, uint64_t *g_hash, u
// Hash einlesen und auf 8 Threads und 2 Register verteilen
uint32_t Hash[2];
#pragma unroll 2
for (int i=0; i<2; i++)
Hash[i] = inpHash[8*i + (threadIdx.x & 7)];
@ -622,18 +623,11 @@ x11_simd512_gpu_final_64(int threads, uint32_t startNounce, uint64_t *g_hash, ui @@ -622,18 +623,11 @@ x11_simd512_gpu_final_64(int threads, uint32_t startNounce, uint64_t *g_hash, ui
}
}
// Setup-Funktionen
__host__ void x11_simd512_cpu_init(int thr_id, int threads)
__host__
void x11_simd512_cpu_init(int thr_id, int threads)
{
cudaMalloc( &d_state[thr_id], 32*sizeof(int)*threads );
cudaMalloc( &d_temp4[thr_id], 64*sizeof(uint4)*threads );
// Textur für 128 Bit Zugriffe
cudaChannelFormatDesc channelDesc128 = cudaCreateChannelDesc<uint4>();
texRef1D_128.normalized = 0;
texRef1D_128.filterMode = cudaFilterModePoint;
texRef1D_128.addressMode[0] = cudaAddressModeClamp;
cudaBindTexture(NULL, &texRef1D_128, d_temp4[thr_id], &channelDesc128, 64*sizeof(uint4)*threads);
CUDA_SAFE_CALL(cudaMalloc(&d_state[thr_id], 32*sizeof(int)*threads));
CUDA_SAFE_CALL(cudaMalloc(&d_temp4[thr_id], 64*sizeof(uint4)*threads));
cudaMemcpyToSymbol(c_perm, h_perm, sizeof(h_perm), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(c_IV_512, h_IV_512, sizeof(h_IV_512), 0, cudaMemcpyHostToDevice);
@ -644,28 +638,31 @@ __host__ void x11_simd512_cpu_init(int thr_id, int threads) @@ -644,28 +638,31 @@ __host__ void x11_simd512_cpu_init(int thr_id, int threads)
cudaMemcpyToSymbol(d_cw1, h_cw1, sizeof(h_cw1), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(d_cw2, h_cw2, sizeof(h_cw2), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(d_cw3, h_cw3, sizeof(h_cw3), 0, cudaMemcpyHostToDevice);
// Texture for 128-Bit Zugriffe
cudaChannelFormatDesc channelDesc128 = cudaCreateChannelDesc<uint4>();
texRef1D_128.normalized = 0;
texRef1D_128.filterMode = cudaFilterModePoint;
texRef1D_128.addressMode[0] = cudaAddressModeClamp;
CUDA_SAFE_CALL(cudaBindTexture(NULL, &texRef1D_128, d_temp4[thr_id], &channelDesc128, 64*sizeof(uint4)*threads));
}
__host__ void x11_simd512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
__host__
void x11_simd512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
{
const int threadsperblock = TPB;
// Größe des dynamischen Shared Memory Bereichs
size_t shared_size = 0;
// berechne wie viele Thread Blocks wir brauchen
dim3 block(threadsperblock);
dim3 grid8(((threads + threadsperblock-1)/threadsperblock)*8);
x11_simd512_gpu_expand_64<<<grid8, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector, d_temp4[thr_id]);
x11_simd512_gpu_expand_64 <<<grid8, block>>> (threads, startNounce, (uint64_t*)d_hash, d_nonceVector, d_temp4[thr_id]);
dim3 grid((threads + threadsperblock-1)/threadsperblock);
// künstlich die Occupancy limitieren, um das totale Erschöpfen des Texture Cache zu vermeiden
x11_simd512_gpu_compress1_64<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector, d_temp4[thr_id], d_state[thr_id]);
x11_simd512_gpu_compress2_64<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector, d_temp4[thr_id], d_state[thr_id]);
x11_simd512_gpu_compress1_64 <<<grid, block>>> (threads, startNounce, (uint64_t*)d_hash, d_nonceVector, d_temp4[thr_id], d_state[thr_id]);
x11_simd512_gpu_compress2_64 <<<grid, block>>> (threads, startNounce, (uint64_t*)d_hash, d_nonceVector, d_temp4[thr_id], d_state[thr_id]);
x11_simd512_gpu_final_64<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector, d_temp4[thr_id], d_state[thr_id]);
x11_simd512_gpu_final_64 <<<grid, block>>> (threads, startNounce, (uint64_t*)d_hash, d_nonceVector, d_temp4[thr_id], d_state[thr_id]);
MyStreamSynchronize(NULL, order, thr_id);
}

1
x11/x11.cu

@ -147,7 +147,6 @@ extern "C" int scanhash_x11(int thr_id, uint32_t *pdata, @@ -147,7 +147,6 @@ extern "C" int scanhash_x11(int thr_id, uint32_t *pdata,
if (!init[thr_id])
{
CUDA_SAFE_CALL(cudaSetDevice(device_map[thr_id]));
// Konstanten kopieren, Speicher belegen
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], 16 * sizeof(uint32_t) * throughput));
quark_blake512_cpu_init(thr_id, throughput);

Loading…
Cancel
Save