Browse Source

lbry: some changes from alexis, remove shared mem

105 LBC tipped ;)
master
Tanguy Pruvot 8 years ago
parent
commit
883fb19908
  1. 415
      lbry/cuda_sha256_lbry.cu
  2. 158
      lbry/cuda_sha512_lbry.cu
  3. 45
      lbry/lbry.cu

415
lbry/cuda_sha256_lbry.cu

@ -1,6 +1,6 @@ @@ -1,6 +1,6 @@
/*
* sha256 + ripemd CUDA implementation.
* tpruvot and alexis78
* tpruvot and Provos Alexis - JUL 2016
*/
#include <stdio.h>
@ -31,12 +31,13 @@ __constant__ static uint32_t _ALIGN(16) c_K[64] = { @@ -31,12 +31,13 @@ __constant__ static uint32_t _ALIGN(16) c_K[64] = {
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2
};
static __thread uint32_t* d_resNonces;
__constant__ static uint32_t _ALIGN(8) c_target[2];
__device__ uint64_t d_target[1];
#ifdef __INTELLISENSE__
#define atomicExch(p,y) y
#define __byte_perm(x,y,c) x
#define __CUDA_ARCH__ 520
#endif
// ------------------------------------------------------------------------------------------------
@ -181,19 +182,6 @@ __device__ __forceinline__ uint32_t ssg2_1(const uint32_t x) @@ -181,19 +182,6 @@ __device__ __forceinline__ uint32_t ssg2_1(const uint32_t x)
return xor3b(ROTR32(x,17),ROTR32(x,19),(x>>10));
}
__device__ __forceinline__ uint32_t andor32(const uint32_t a, const uint32_t b, const uint32_t c)
{
uint32_t result;
asm("{ .reg .u32 m,n,o; // andor32 \n\t"
"and.b32 m, %1, %2;\n\t"
" or.b32 n, %1, %2;\n\t"
"and.b32 o, n, %3;\n\t"
" or.b32 %0, m, o ;\n\t"
"}\n\t" : "=r"(result) : "r"(a), "r"(b), "r"(c)
);
return result;
}
__device__ __forceinline__ uint2 vectorizeswap(uint64_t v)
{
uint2 result;
@ -202,59 +190,42 @@ __device__ __forceinline__ uint2 vectorizeswap(uint64_t v) @@ -202,59 +190,42 @@ __device__ __forceinline__ uint2 vectorizeswap(uint64_t v)
return result;
}
__device__
__forceinline__
static void sha2_step1(uint32_t a, uint32_t b, uint32_t c, uint32_t &d, uint32_t e, uint32_t f, uint32_t g, uint32_t &h, uint32_t in, const uint32_t Kshared)
{
uint32_t t1 = bsg2_1(e) + ((((f) ^ (g)) & (e)) ^ (g)) + Kshared + in;
d = d + h + t1;
h += t1 + bsg2_0(a) + (((b) & (c)) | (((b) | (c)) & (a)));
__device__ __forceinline__
uint32_t Maj(const uint32_t a, const uint32_t b, const uint32_t c) { //Sha256 - Maj - andor
uint32_t result;
#if __CUDA_ARCH__ >= 500 && CUDA_VERSION >= 7050
asm ("lop3.b32 %0, %1, %2, %3, 0xE8;" : "=r"(result) : "r"(a), "r"(b),"r"(c)); // 0xE8 = ((0xF0 & (0xCC | 0xAA)) | (0xCC & 0xAA))
#else
result = ((a & (b | c)) | (b & c));
#endif
return result;
}
__device__
static void sha2_step2(uint32_t a, uint32_t b, uint32_t c, uint32_t &d, uint32_t e, uint32_t f, uint32_t g, uint32_t &h,
uint32_t* in, uint32_t pc, const uint32_t Kshared)
__device__ __forceinline__
static void sha2_step1(uint32_t a, uint32_t b, uint32_t c, uint32_t &d,
uint32_t e, uint32_t f, uint32_t g, uint32_t &h, uint32_t in, const uint32_t Kshared)
{
uint32_t t1,t2;
int pcidx1 = (pc-2) & 0xF;
int pcidx2 = (pc-7) & 0xF;
int pcidx3 = (pc-15) & 0xF;
uint32_t inx0 = in[pc];
uint32_t inx1 = in[pcidx1];
uint32_t inx2 = in[pcidx2];
uint32_t inx3 = in[pcidx3];
uint32_t ssg21 = ssg2_1(inx1);
uint32_t ssg20 = ssg2_0(inx3);
uint32_t vxandx = xandx(e, f, g);
uint32_t bsg21 = bsg2_1(e);
uint32_t bsg20 = bsg2_0(a);
uint32_t andorv = andor32(a,b,c);
const uint32_t t1 = h + bsg2_1(e) + xandx(e, f, g) + Kshared + in;
h = t1 + bsg2_0(a) + Maj(a, b, c);
d+= t1;
}
in[pc] = ssg21 + inx2 + ssg20 + inx0;
#define sha2_step2 sha2_step1
t1 = h + bsg21 + vxandx + Kshared + in[pc];
t2 = bsg20 + andorv;
d = d + t1;
h = t1 + t2;
}
__device__ __forceinline__
static void sha256_round_first(uint32_t* in,uint32_t *buf, uint32_t* state, uint32_t* const Kshared)
static void sha256_round_first(uint32_t* in, uint32_t *buf, uint32_t* state, uint32_t* const Kshared)
{
uint32_t a = buf[0];
uint32_t a = buf[0] + in[11];
uint32_t b = buf[1];
uint32_t c = buf[2];
uint32_t d = buf[3];
uint32_t e = buf[4];
uint32_t e = buf[4] + in[11];
uint32_t f = buf[5];
uint32_t g = buf[6];
uint32_t h = buf[7];
// 10 first steps made on host
sha2_step1(f,g,h,a,b,c,d,e,in[11],Kshared[11]);
// 12 first steps made on host
sha2_step1(e,f,g,h,a,b,c,d,in[12],Kshared[12]);
sha2_step1(d,e,f,g,h,a,b,c,in[13],Kshared[13]);
sha2_step1(c,d,e,f,g,h,a,b,in[14],Kshared[14]);
@ -263,35 +234,39 @@ static void sha256_round_first(uint32_t* in,uint32_t *buf, uint32_t* state, uint @@ -263,35 +234,39 @@ static void sha256_round_first(uint32_t* in,uint32_t *buf, uint32_t* state, uint
#pragma unroll
for (int i=0; i<3; i++)
{
sha2_step2(a,b,c,d,e,f,g,h,in,0, Kshared[16+16*i]);
sha2_step2(h,a,b,c,d,e,f,g,in,1, Kshared[17+16*i]);
sha2_step2(g,h,a,b,c,d,e,f,in,2, Kshared[18+16*i]);
sha2_step2(f,g,h,a,b,c,d,e,in,3, Kshared[19+16*i]);
sha2_step2(e,f,g,h,a,b,c,d,in,4, Kshared[20+16*i]);
sha2_step2(d,e,f,g,h,a,b,c,in,5, Kshared[21+16*i]);
sha2_step2(c,d,e,f,g,h,a,b,in,6, Kshared[22+16*i]);
sha2_step2(b,c,d,e,f,g,h,a,in,7, Kshared[23+16*i]);
sha2_step2(a,b,c,d,e,f,g,h,in,8, Kshared[24+16*i]);
sha2_step2(h,a,b,c,d,e,f,g,in,9, Kshared[25+16*i]);
sha2_step2(g,h,a,b,c,d,e,f,in,10,Kshared[26+16*i]);
sha2_step2(f,g,h,a,b,c,d,e,in,11,Kshared[27+16*i]);
sha2_step2(e,f,g,h,a,b,c,d,in,12,Kshared[28+16*i]);
sha2_step2(d,e,f,g,h,a,b,c,in,13,Kshared[29+16*i]);
sha2_step2(c,d,e,f,g,h,a,b,in,14,Kshared[30+16*i]);
sha2_step2(b,c,d,e,f,g,h,a,in,15,Kshared[31+16*i]);
#pragma unroll 16
for (int j = 0; j < 16; j++){
in[j] = in[j] + in[(j + 9) & 15] + ssg2_0(in[(j + 1) & 15]) + ssg2_1(in[(j + 14) & 15]);
}
sha2_step2(a,b,c,d,e,f,g,h,in[0], Kshared[16+16*i]);
sha2_step2(h,a,b,c,d,e,f,g,in[1], Kshared[17+16*i]);
sha2_step2(g,h,a,b,c,d,e,f,in[2], Kshared[18+16*i]);
sha2_step2(f,g,h,a,b,c,d,e,in[3], Kshared[19+16*i]);
sha2_step2(e,f,g,h,a,b,c,d,in[4], Kshared[20+16*i]);
sha2_step2(d,e,f,g,h,a,b,c,in[5], Kshared[21+16*i]);
sha2_step2(c,d,e,f,g,h,a,b,in[6], Kshared[22+16*i]);
sha2_step2(b,c,d,e,f,g,h,a,in[7], Kshared[23+16*i]);
sha2_step2(a,b,c,d,e,f,g,h,in[8], Kshared[24+16*i]);
sha2_step2(h,a,b,c,d,e,f,g,in[9], Kshared[25+16*i]);
sha2_step2(g,h,a,b,c,d,e,f,in[10],Kshared[26+16*i]);
sha2_step2(f,g,h,a,b,c,d,e,in[11],Kshared[27+16*i]);
sha2_step2(e,f,g,h,a,b,c,d,in[12],Kshared[28+16*i]);
sha2_step2(d,e,f,g,h,a,b,c,in[13],Kshared[29+16*i]);
sha2_step2(c,d,e,f,g,h,a,b,in[14],Kshared[30+16*i]);
sha2_step2(b,c,d,e,f,g,h,a,in[15],Kshared[31+16*i]);
}
buf[ 0] = state[0] + a;
buf[ 1] = state[1] + b;
buf[ 2] = state[2] + c;
buf[ 3] = state[3] + d;
buf[ 4] = state[4] + e;
buf[ 5] = state[5] + f;
buf[ 6] = state[6] + g;
buf[ 7] = state[7] + h;
buf[0] = state[0] + a;
buf[1] = state[1] + b;
buf[2] = state[2] + c;
buf[3] = state[3] + d;
buf[4] = state[4] + e;
buf[5] = state[5] + f;
buf[6] = state[6] + g;
buf[7] = state[7] + h;
}
__device__
__device__ __forceinline__
static void sha256_round_body(uint32_t* in, uint32_t* state, uint32_t* const Kshared)
{
uint32_t a = state[0];
@ -323,22 +298,26 @@ static void sha256_round_body(uint32_t* in, uint32_t* state, uint32_t* const Ksh @@ -323,22 +298,26 @@ static void sha256_round_body(uint32_t* in, uint32_t* state, uint32_t* const Ksh
#pragma unroll
for (int i=0; i<3; i++)
{
sha2_step2(a,b,c,d,e,f,g,h,in,0, Kshared[16+16*i]);
sha2_step2(h,a,b,c,d,e,f,g,in,1, Kshared[17+16*i]);
sha2_step2(g,h,a,b,c,d,e,f,in,2, Kshared[18+16*i]);
sha2_step2(f,g,h,a,b,c,d,e,in,3, Kshared[19+16*i]);
sha2_step2(e,f,g,h,a,b,c,d,in,4, Kshared[20+16*i]);
sha2_step2(d,e,f,g,h,a,b,c,in,5, Kshared[21+16*i]);
sha2_step2(c,d,e,f,g,h,a,b,in,6, Kshared[22+16*i]);
sha2_step2(b,c,d,e,f,g,h,a,in,7, Kshared[23+16*i]);
sha2_step2(a,b,c,d,e,f,g,h,in,8, Kshared[24+16*i]);
sha2_step2(h,a,b,c,d,e,f,g,in,9, Kshared[25+16*i]);
sha2_step2(g,h,a,b,c,d,e,f,in,10,Kshared[26+16*i]);
sha2_step2(f,g,h,a,b,c,d,e,in,11,Kshared[27+16*i]);
sha2_step2(e,f,g,h,a,b,c,d,in,12,Kshared[28+16*i]);
sha2_step2(d,e,f,g,h,a,b,c,in,13,Kshared[29+16*i]);
sha2_step2(c,d,e,f,g,h,a,b,in,14,Kshared[30+16*i]);
sha2_step2(b,c,d,e,f,g,h,a,in,15,Kshared[31+16*i]);
#pragma unroll 16
for (int j = 0; j < 16; j++) {
in[j] = in[j] + in[(j + 9) & 15] + ssg2_0(in[(j + 1) & 15]) + ssg2_1(in[(j + 14) & 15]);
}
sha2_step2(a, b, c, d, e, f, g, h, in[0], Kshared[16 + 16 * i]);
sha2_step2(h, a, b, c, d, e, f, g, in[1], Kshared[17 + 16 * i]);
sha2_step2(g, h, a, b, c, d, e, f, in[2], Kshared[18 + 16 * i]);
sha2_step2(f, g, h, a, b, c, d, e, in[3], Kshared[19 + 16 * i]);
sha2_step2(e, f, g, h, a, b, c, d, in[4], Kshared[20 + 16 * i]);
sha2_step2(d, e, f, g, h, a, b, c, in[5], Kshared[21 + 16 * i]);
sha2_step2(c, d, e, f, g, h, a, b, in[6], Kshared[22 + 16 * i]);
sha2_step2(b, c, d, e, f, g, h, a, in[7], Kshared[23 + 16 * i]);
sha2_step2(a, b, c, d, e, f, g, h, in[8], Kshared[24 + 16 * i]);
sha2_step2(h, a, b, c, d, e, f, g, in[9], Kshared[25 + 16 * i]);
sha2_step2(g, h, a, b, c, d, e, f, in[10], Kshared[26 + 16 * i]);
sha2_step2(f, g, h, a, b, c, d, e, in[11], Kshared[27 + 16 * i]);
sha2_step2(e, f, g, h, a, b, c, d, in[12], Kshared[28 + 16 * i]);
sha2_step2(d, e, f, g, h, a, b, c, in[13], Kshared[29 + 16 * i]);
sha2_step2(c, d, e, f, g, h, a, b, in[14], Kshared[30 + 16 * i]);
sha2_step2(b, c, d, e, f, g, h, a, in[15], Kshared[31 + 16 * i]);
}
state[0] += a;
@ -351,19 +330,92 @@ static void sha256_round_body(uint32_t* in, uint32_t* state, uint32_t* const Ksh @@ -351,19 +330,92 @@ static void sha256_round_body(uint32_t* in, uint32_t* state, uint32_t* const Ksh
state[7] += h;
}
__device__
uint64_t cuda_swab32ll(uint64_t x) {
return MAKE_ULONGLONG(cuda_swab32(_LODWORD(x)), cuda_swab32(_HIDWORD(x)));
__device__ __forceinline__
static void sha256_round_body_final(uint32_t* in, uint32_t* state, uint32_t* const Kshared)
{
uint32_t a = state[0];
uint32_t b = state[1];
uint32_t c = state[2];
uint32_t d = state[3];
uint32_t e = state[4];
uint32_t f = state[5];
uint32_t g = state[6];
uint32_t h = state[7];
sha2_step1(a,b,c,d,e,f,g,h,in[0], Kshared[0]);
sha2_step1(h,a,b,c,d,e,f,g,in[1], Kshared[1]);
sha2_step1(g,h,a,b,c,d,e,f,in[2], Kshared[2]);
sha2_step1(f,g,h,a,b,c,d,e,in[3], Kshared[3]);
sha2_step1(e,f,g,h,a,b,c,d,in[4], Kshared[4]);
sha2_step1(d,e,f,g,h,a,b,c,in[5], Kshared[5]);
sha2_step1(c,d,e,f,g,h,a,b,in[6], Kshared[6]);
sha2_step1(b,c,d,e,f,g,h,a,in[7], Kshared[7]);
sha2_step1(a,b,c,d,e,f,g,h,in[8], Kshared[8]);
sha2_step1(h,a,b,c,d,e,f,g,in[9], Kshared[9]);
sha2_step1(g,h,a,b,c,d,e,f,in[10], Kshared[10]);
sha2_step1(f,g,h,a,b,c,d,e,in[11], Kshared[11]);
sha2_step1(e,f,g,h,a,b,c,d,in[12], Kshared[12]);
sha2_step1(d,e,f,g,h,a,b,c,in[13], Kshared[13]);
sha2_step1(c,d,e,f,g,h,a,b,in[14], Kshared[14]);
sha2_step1(b,c,d,e,f,g,h,a,in[15], Kshared[15]);
#pragma unroll
for (int i=0; i<2; i++)
{
#pragma unroll 16
for (int j = 0; j < 16; j++) {
in[j] = in[j] + in[(j + 9) & 15] + ssg2_0(in[(j + 1) & 15]) + ssg2_1(in[(j + 14) & 15]);
}
sha2_step2(a, b, c, d, e, f, g, h, in[0], Kshared[16 + 16 * i]);
sha2_step2(h, a, b, c, d, e, f, g, in[1], Kshared[17 + 16 * i]);
sha2_step2(g, h, a, b, c, d, e, f, in[2], Kshared[18 + 16 * i]);
sha2_step2(f, g, h, a, b, c, d, e, in[3], Kshared[19 + 16 * i]);
sha2_step2(e, f, g, h, a, b, c, d, in[4], Kshared[20 + 16 * i]);
sha2_step2(d, e, f, g, h, a, b, c, in[5], Kshared[21 + 16 * i]);
sha2_step2(c, d, e, f, g, h, a, b, in[6], Kshared[22 + 16 * i]);
sha2_step2(b, c, d, e, f, g, h, a, in[7], Kshared[23 + 16 * i]);
sha2_step2(a, b, c, d, e, f, g, h, in[8], Kshared[24 + 16 * i]);
sha2_step2(h, a, b, c, d, e, f, g, in[9], Kshared[25 + 16 * i]);
sha2_step2(g, h, a, b, c, d, e, f, in[10], Kshared[26 + 16 * i]);
sha2_step2(f, g, h, a, b, c, d, e, in[11], Kshared[27 + 16 * i]);
sha2_step2(e, f, g, h, a, b, c, d, in[12], Kshared[28 + 16 * i]);
sha2_step2(d, e, f, g, h, a, b, c, in[13], Kshared[29 + 16 * i]);
sha2_step2(c, d, e, f, g, h, a, b, in[14], Kshared[30 + 16 * i]);
sha2_step2(b, c, d, e, f, g, h, a, in[15], Kshared[31 + 16 * i]);
}
#pragma unroll 16
for (int j = 0; j < 16; j++) {
in[j] = in[j] + in[(j + 9) & 15] + ssg2_0(in[(j + 1) & 15]) + ssg2_1(in[(j + 14) & 15]);
}
sha2_step2(a, b, c, d, e, f, g, h, in[0], Kshared[16 + 16 * 2]);
sha2_step2(h, a, b, c, d, e, f, g, in[1], Kshared[17 + 16 * 2]);
sha2_step2(g, h, a, b, c, d, e, f, in[2], Kshared[18 + 16 * 2]);
sha2_step2(f, g, h, a, b, c, d, e, in[3], Kshared[19 + 16 * 2]);
sha2_step2(e, f, g, h, a, b, c, d, in[4], Kshared[20 + 16 * 2]);
sha2_step2(d, e, f, g, h, a, b, c, in[5], Kshared[21 + 16 * 2]);
sha2_step2(c, d, e, f, g, h, a, b, in[6], Kshared[22 + 16 * 2]);
sha2_step2(b, c, d, e, f, g, h, a, in[7], Kshared[23 + 16 * 2]);
sha2_step2(a, b, c, d, e, f, g, h, in[8], Kshared[24 + 16 * 2]);
sha2_step2(h, a, b, c, d, e, f, g, in[9], Kshared[25 + 16 * 2]);
sha2_step2(g, h, a, b, c, d, e, f, in[10], Kshared[26 + 16 * 2]);
sha2_step2(f, g, h, a, b, c, d, e, in[11], Kshared[27 + 16 * 2]);
sha2_step2(e, f, g, h, a, b, c, d, in[12], Kshared[28 + 16 * 2]);
sha2_step2(d, e, f, g, h, a, b, c, in[13], Kshared[29 + 16 * 2]);
state[6] += g;
state[7] += h;
}
__global__
__launch_bounds__(512,2) /* to force 64 regs */
#if __CUDA_ARCH__ > 500
__launch_bounds__(1024,2) /* to force 32 regs */
#else
__launch_bounds__(768,2) /* to force 32 regs */
#endif
void lbry_sha256d_gpu_hash_112(const uint32_t threads, const uint32_t startNonce, uint64_t *outputHash)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
extern __shared__ uint32_t s_K[];
if (threadIdx.x < 64U) s_K[threadIdx.x] = c_K[threadIdx.x];
//__threadfence_block();
uint32_t buf[8], state[8];
if (thread < threads)
{
uint32_t dat[16];
@ -375,8 +427,6 @@ void lbry_sha256d_gpu_hash_112(const uint32_t threads, const uint32_t startNonce @@ -375,8 +427,6 @@ void lbry_sha256d_gpu_hash_112(const uint32_t threads, const uint32_t startNonce
dat[14] = 0;
dat[15] = 0x380;
uint32_t __align__(8) buf[8], state[8];
*(uint2x4*)&state[0] = *(uint2x4*)&c_midstate112[0];
*(uint2x4*)&buf[0] = *(uint2x4*)&c_midbuffer112[0];
@ -394,7 +444,7 @@ void lbry_sha256d_gpu_hash_112(const uint32_t threads, const uint32_t startNonce @@ -394,7 +444,7 @@ void lbry_sha256d_gpu_hash_112(const uint32_t threads, const uint32_t startNonce
*(uint2x4*)&buf[0] = *(uint2x4*)&c_H256[0];
sha256_round_body(dat, buf, s_K);
sha256_round_body(dat, buf, c_K); //no shared mem at all
// output
*(uint2*)&buf[0] = vectorizeswap(((uint64_t*)buf)[0]);
@ -402,32 +452,33 @@ void lbry_sha256d_gpu_hash_112(const uint32_t threads, const uint32_t startNonce @@ -402,32 +452,33 @@ void lbry_sha256d_gpu_hash_112(const uint32_t threads, const uint32_t startNonce
*(uint2*)&buf[4] = vectorizeswap(((uint64_t*)buf)[2]);
*(uint2*)&buf[6] = vectorizeswap(((uint64_t*)buf)[3]);
*(uint2x4*)&outputHash[thread*8U] = *(uint2x4*)&buf[0];
*(uint2x4*)&outputHash[thread<<3] = *(uint2x4*)&buf[0];
}
}
__host__
void lbry_sha256d_hash_112(int thr_id, uint32_t threads, uint32_t startNonce, uint32_t *d_outputHash)
{
const int threadsperblock = 512;
int dev_id = device_map[thr_id];
const uint32_t threadsperblock = (device_sm[dev_id] <= 500) ? 768 : 1024;
dim3 grid(threads/threadsperblock);
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
lbry_sha256d_gpu_hash_112 <<<grid, block, 64*4>>> (threads, startNonce, (uint64_t*) d_outputHash);
lbry_sha256d_gpu_hash_112 <<<grid, block>>> (threads, startNonce, (uint64_t*) d_outputHash);
}
__host__
void lbry_sha256_init(int thr_id)
{
cudaMemcpyToSymbol(c_K, cpu_K, sizeof(cpu_K), 0, cudaMemcpyHostToDevice);
CUDA_SAFE_CALL(cudaMalloc(&d_resNonces, 4*sizeof(uint32_t)));
}
__host__
void lbry_sha256_free(int thr_id)
{
cudaFree(d_resNonces);
}
__host__
@ -462,6 +513,7 @@ void lbry_sha256_setBlock_112(uint32_t *pdata, uint32_t *ptarget) @@ -462,6 +513,7 @@ void lbry_sha256_setBlock_112(uint32_t *pdata, uint32_t *ptarget)
sha256_step1_host(a,b,c,d,e,f,g,h,end[8], cpu_K[8]);
sha256_step1_host(h,a,b,c,d,e,f,g,end[9], cpu_K[9]);
sha256_step1_host(g,h,a,b,c,d,e,f,end[10],cpu_K[10]);
sha256_step1_host(f, g, h, a, b, c, d, e, 0, cpu_K[11]);
buf[0] = a;
buf[1] = b;
@ -484,59 +536,58 @@ static __constant__ uint32_t c_IV[5] = { @@ -484,59 +536,58 @@ static __constant__ uint32_t c_IV[5] = {
0x67452301u, 0xEFCDAB89u, 0x98BADCFEu, 0x10325476u, 0xC3D2E1F0u
};
__device__ __forceinline__
static uint32_t ROTATE(const uint32_t x,const int r){
if(r==8)
return __byte_perm(x, 0, 0x2103);
else
return ROTL32(x,r);
}
/*
* Round functions for RIPEMD-160.
*/
#if 1
#define F1(x, y, z) ((x) ^ (y) ^ (z))
#define F2(x, y, z) ((((y) ^ (z)) & (x)) ^ (z))
#define F3(x, y, z) (((x) | ~(y)) ^ (z))
#define F4(x, y, z) ((((x) ^ (y)) & (z)) ^ (y))
#define F5(x, y, z) ((x) ^ ((y) | ~(z)))
#else
#define F1(x, y, z) xor3b(x,y,z)
#define F2(x, y, z) xandx(x,y,z)
#define F3(x, y, z) xornot64(x,y,z)
#define F4(x, y, z) xandx(z,x,y)
#define F5(x, y, z) xornt64(x,y,z)
#endif
#define F2(x, y, z) ((x & (y ^ z)) ^ z)
#define F3(x, y, z) ((x | ~y) ^ z)
#define F4(x, y, z) (y ^ ((x ^ y) & z))
#define F5(x, y, z) (x ^ (y | ~z))
/*
* Round constants for RIPEMD-160.
*/
#define K11 0x00000000u
#define K12 0x5A827999u
#define K13 0x6ED9EBA1u
#define K14 0x8F1BBCDCu
#define K15 0xA953FD4Eu
#define K21 0x50A28BE6u
#define K22 0x5C4DD124u
#define K23 0x6D703EF3u
#define K24 0x7A6D76E9u
#define K25 0x00000000u
#define K11 0
#define K12 0x5A827999
#define K13 0x6ED9EBA1
#define K14 0x8F1BBCDC
#define K15 0xA953FD4E
#define K21 0x50A28BE6
#define K22 0x5C4DD124
#define K23 0x6D703EF3
#define K24 0x7A6D76E9
#define K25 0
#define RR(a, b, c, d, e, f, s, r, k) { \
a = SPH_T32(ROTL32(SPH_T32(a + f(b, c, d) + r + k), s) + e); \
a = e + ROTATE((a + r + k + f(b, c, d)), s); \
c = ROTL32(c, 10); \
}
#define ROUND1(a, b, c, d, e, f, s, r, k) \
RR(a ## 1, b ## 1, c ## 1, d ## 1, e ## 1, f, s, r, K1 ## k)
RR(a[0], b[0], c[0], d[0], e[0], f, s, r, K1 ## k)
#define ROUND2(a, b, c, d, e, f, s, r, k) \
RR(a ## 2, b ## 2, c ## 2, d ## 2, e ## 2, f, s, r, K2 ## k)
RR(a[1], b[1], c[1], d[1], e[1], f, s, r, K2 ## k)
#define RIPEMD160_ROUND_BODY(in, h) { \
uint32_t A1, B1, C1, D1, E1; \
uint32_t A2, B2, C2, D2, E2; \
uint32_t A[2], B[2], C[2], D[2], E[2]; \
uint32_t tmp; \
\
A1 = A2 = h[0]; \
B1 = B2 = h[1]; \
C1 = C2 = h[2]; \
D1 = D2 = h[3]; \
E1 = E2 = h[4]; \
A[0] = A[1] = h[0]; \
B[0] = B[1] = h[1]; \
C[0] = C[1] = h[2]; \
D[0] = D[1] = h[3]; \
E[0] = E[1] = h[4]; \
\
ROUND1(A, B, C, D, E, F1, 11, in[ 0], 1); \
ROUND1(E, A, B, C, D, F1, 14, in[ 1], 1); \
@ -708,29 +759,40 @@ static __constant__ uint32_t c_IV[5] = { @@ -708,29 +759,40 @@ static __constant__ uint32_t c_IV[5] = {
ROUND2(C, D, E, A, B, F1, 11, in[ 9], 5); \
ROUND2(B, C, D, E, A, F1, 11, in[11], 5); \
\
tmp = (h[1] + C1 + D2); \
h[1] = (h[2] + D1 + E2); \
h[2] = (h[3] + E1 + A2); \
h[3] = (h[4] + A1 + B2); \
h[4] = (h[0] + B1 + C2); \
tmp = h[1] + C[0] + D[1]; \
h[1] = h[2] + D[0] + E[1]; \
h[2] = h[3] + E[0] + A[1]; \
h[3] = h[4] + A[0] + B[1]; \
h[4] = h[0] + B[0] + C[1]; \
h[0] = tmp; \
}
__device__ __forceinline__
uint64_t swab64ll(const uint32_t x, const uint32_t y) {
uint64_t r;
asm("prmt.b32 %1, %1, 0, 0x0123; // swab64ll\n\t"
"prmt.b32 %2, %2, 0, 0x0123;\n\t"
"mov.b64 %0, {%1,%2};\n\t"
: "=l"(r): "r"(x), "r"(y) );
return r;
}
__global__
__launch_bounds__(640,2) /* 640,2 <= 48 regs, 512,2 <= 64 */
#if __CUDA_ARCH__ > 500
__launch_bounds__(1024,2) /* to force 32 regs */
#else
__launch_bounds__(768,2) /* to force 32 regs */
#endif
void lbry_sha256d_gpu_hash_final(const uint32_t threads, uint64_t *Hash512, uint32_t *resNonces)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
extern __shared__ uint32_t s_K[];
if (threadIdx.x < 64U) s_K[threadIdx.x] = c_K[threadIdx.x];
//__threadfence_block();
if (thread < threads)
uint32_t dat[16];
uint32_t h[5];
// if (thread < threads)
{
uint32_t* input = (uint32_t*) (&Hash512[thread * 8U]);
uint32_t __align__(8) dat[16];
*(uint2x4*)&dat[0] = *(uint2x4*)&input[0];
*(uint2x4*)&dat[0] = __ldg4((uint2x4*)&input[0]);
dat[8] = 0x80;
@ -739,7 +801,6 @@ void lbry_sha256d_gpu_hash_final(const uint32_t threads, uint64_t *Hash512, uint @@ -739,7 +801,6 @@ void lbry_sha256d_gpu_hash_final(const uint32_t threads, uint64_t *Hash512, uint
dat[14] = 0x100; // size in bits
uint32_t h[5];
#pragma unroll
for (int i=0; i<5; i++)
h[i] = c_IV[i];
@ -753,12 +814,12 @@ void lbry_sha256d_gpu_hash_final(const uint32_t threads, uint64_t *Hash512, uint @@ -753,12 +814,12 @@ void lbry_sha256d_gpu_hash_final(const uint32_t threads, uint64_t *Hash512, uint
// second 32 bytes block hash
*(uint2x4*)&dat[0] = *(uint2x4*)&input[8];
*(uint2x4*)&dat[0] = __ldg4((uint2x4*)&input[8]);
dat[8] = 0x80;
#pragma unroll
for (int i=9;i<16;i++) dat[i] = 0;
for (int i=9; i<16; i++) dat[i] = 0;
dat[14] = 0x100; // size in bits
@ -771,9 +832,9 @@ void lbry_sha256d_gpu_hash_final(const uint32_t threads, uint64_t *Hash512, uint @@ -771,9 +832,9 @@ void lbry_sha256d_gpu_hash_final(const uint32_t threads, uint64_t *Hash512, uint
// first final sha256
#pragma unroll
for (int i=0;i<5;i++) dat[i] = cuda_swab32(buf[i]);
for (int i=0; i<5; i++) dat[i] = cuda_swab32(buf[i]);
#pragma unroll
for (int i=0;i<5;i++) dat[i+5] = cuda_swab32(h[i]);
for (int i=0; i<5; i++) dat[i+5] = cuda_swab32(h[i]);
dat[10] = 0x80000000;
#pragma unroll
for (int i=11; i<15; i++) dat[i] = 0;
@ -781,45 +842,39 @@ void lbry_sha256d_gpu_hash_final(const uint32_t threads, uint64_t *Hash512, uint @@ -781,45 +842,39 @@ void lbry_sha256d_gpu_hash_final(const uint32_t threads, uint64_t *Hash512, uint
*(uint2x4*)&buf[0] = *(uint2x4*)&c_H256[0];
sha256_round_body(dat, buf, c_K); // s_K uses too much regs
sha256_round_body(dat, buf, c_K); // s_K uses too many regs
// second sha256
*(uint2x4*)&dat[0] = *(uint2x4*)&buf[0];
*(uint2x4*)&buf[0] = *(uint2x4*)&c_H256[0];
dat[8] = 0x80000000;
#pragma unroll
for (int i=9; i<15; i++) dat[i] = 0;
dat[15] = 0x100;
*(uint2x4*)&buf[0] = *(uint2x4*)&c_H256[0];
sha256_round_body(dat, buf, s_K);
sha256_round_body_final(dat, buf, c_K);
// valid nonces
const uint64_t high = cuda_swab32ll(((uint64_t*)buf)[3]);
const uint64_t high = swab64ll(buf[6], buf[7]);
if (high <= d_target[0]) {
resNonces[1] = atomicExch(resNonces, thread);
//resNonces[1] = atomicExch(resNonces, thread);
resNonces[1] = resNonces[0];
resNonces[0] = thread;
d_target[0] = high;
}
}
}
__host__
void lbry_sha256d_hash_final(int thr_id, uint32_t threads, uint32_t startNonce, uint32_t *d_inputHash, uint32_t *resNonces)
void lbry_sha256d_hash_final(int thr_id, uint32_t threads, uint32_t *d_inputHash, uint32_t *d_resNonce)
{
const int threadsperblock = 512;
int dev_id = device_map[thr_id];
const uint32_t threadsperblock = (device_sm[dev_id] > 500) ? 1024 : 768;
dim3 grid(threads/threadsperblock);
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
cudaMemset(d_resNonces, 0xFF, 2 * sizeof(uint32_t));
lbry_sha256d_gpu_hash_final <<<grid, block, 64*4>>> (threads, (uint64_t*) d_inputHash, d_resNonces);
cudaMemcpy(resNonces, d_resNonces, 2 * sizeof(uint32_t), cudaMemcpyDeviceToHost);
if (resNonces[0] == resNonces[1]) {
resNonces[1] = UINT32_MAX;
}
if (resNonces[0] != UINT32_MAX) resNonces[0] += startNonce;
if (resNonces[1] != UINT32_MAX) resNonces[1] += startNonce;
lbry_sha256d_gpu_hash_final <<<grid, block>>> (threads, (uint64_t*) d_inputHash, d_resNonce);
}

158
lbry/cuda_sha512_lbry.cu

@ -1,17 +1,20 @@ @@ -1,17 +1,20 @@
/**
* sha-512 CUDA implementation.
* Tanguy Pruvot and Provos Alexis - JUL 2016
*/
#include <stdio.h>
#include <stdint.h>
#include <memory.h>
//#define USE_ROT_ASM_OPT 0
#include <cuda_helper.h>
static __constant__ uint64_t K_512[80];
static const uint64_t K512[80] = {
#include <cuda_vector_uint2x4.h>
#include "miner.h"
static __constant__
#if __CUDA_ARCH__ > 500
_ALIGN(16)
#else
_ALIGN(8)
#endif
uint64_t K_512[80] = {
0x428A2F98D728AE22, 0x7137449123EF65CD, 0xB5C0FBCFEC4D3B2F, 0xE9B5DBA58189DBBC,
0x3956C25BF348B538, 0x59F111F1B605D019, 0x923F82A4AF194F9B, 0xAB1C5ED5DA6D8118,
0xD807AA98A3030242, 0x12835B0145706FBE, 0x243185BE4EE4B28C, 0x550C7DC3D5FFB4E2,
@ -34,94 +37,46 @@ static const uint64_t K512[80] = { @@ -34,94 +37,46 @@ static const uint64_t K512[80] = {
0x4CC5D4BECB3E42B6, 0x597F299CFC657E2A, 0x5FCB6FAB3AD6FAEC, 0x6C44198C4A475817
};
//#undef xor3
//#define xor3(a,b,c) (a^b^c)
#undef xor3
#define xor3(a,b,c) (a^b^c)
static __device__ __forceinline__
uint64_t bsg5_0(const uint64_t x)
{
uint64_t r1 = ROTR64(x,28);
uint64_t r2 = ROTR64(x,34);
uint64_t r3 = ROTR64(x,39);
return xor3(r1,r2,r3);
}
#define bsg5_0(x) xor3(ROTR64(x,28),ROTR64(x,34),ROTR64(x,39))
#define bsg5_1(x) xor3(ROTR64(x,14),ROTR64(x,18),ROTR64(x,41))
#define ssg5_0(x) xor3(ROTR64(x,1),ROTR64(x,8),x>>7)
#define ssg5_1(x) xor3(ROTR64(x,19),ROTR64(x,61),x>>6)
static __device__ __forceinline__
uint64_t bsg5_1(const uint64_t x)
{
uint64_t r1 = ROTR64(x,14);
uint64_t r2 = ROTR64(x,18);
uint64_t r3 = ROTR64(x,41);
return xor3(r1,r2,r3);
}
static __device__ __forceinline__
uint64_t ssg5_0(const uint64_t x)
{
uint64_t r1 = ROTR64(x,1);
uint64_t r2 = ROTR64(x,8);
uint64_t r3 = shr_t64(x,7);
return xor3(r1,r2,r3);
}
static __device__ __forceinline__
uint64_t ssg5_1(const uint64_t x)
{
uint64_t r1 = ROTR64(x,19);
uint64_t r2 = ROTR64(x,61);
uint64_t r3 = shr_t64(x,6);
return xor3(r1,r2,r3);
}
#define andor64(a,b,c) ((a & (b | c)) | (b & c))
#define xandx64(e,f,g) (g ^ (e & (g ^ f)))
static __device__ __forceinline__
uint64_t xandx64(const uint64_t a, const uint64_t b, const uint64_t c)
void sha512_step2(uint64_t* r,const uint64_t W,const uint64_t K, const int ord)
{
uint64_t result;
asm("{ .reg .u64 m,n; // xandx64\n\t"
"xor.b64 m, %2,%3;\n\t"
"and.b64 n, m,%1;\n\t"
"xor.b64 %0, n,%3;\n\t"
"}" : "=l"(result) : "l"(a), "l"(b), "l"(c));
return result;
}
static __device__ __forceinline__
void sha512_step2(uint64_t* r, uint64_t* W, uint64_t* K, const int ord, int i)
{
int u = 8-ord;
uint64_t a = r[(0+u) & 7];
uint64_t b = r[(1+u) & 7];
uint64_t c = r[(2+u) & 7];
uint64_t d = r[(3+u) & 7];
uint64_t e = r[(4+u) & 7];
uint64_t f = r[(5+u) & 7];
uint64_t g = r[(6+u) & 7];
uint64_t h = r[(7+u) & 7];
uint64_t T1 = h + bsg5_1(e) + xandx64(e,f,g) + W[i] + K[i];
uint64_t T2 = bsg5_0(a) + andor(a,b,c);
r[(3+u)& 7] = d + T1;
r[(7+u)& 7] = T1 + T2;
const uint64_t T1 = r[(15-ord) & 7] + K + W + bsg5_1(r[(12-ord) & 7]) + xandx64(r[(12-ord) & 7],r[(13-ord) & 7],r[(14-ord) & 7]);
r[(15-ord)& 7] = andor64(r[( 8-ord) & 7],r[( 9-ord) & 7],r[(10-ord) & 7]) + bsg5_0(r[( 8-ord) & 7]) + T1;
r[(11-ord)& 7]+= T1;
}
/**************************************************************************************************/
__global__
__global__ __launch_bounds__(512,2)
void lbry_sha512_gpu_hash_32(const uint32_t threads, uint64_t *g_hash)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
//if (thread < threads)
const uint64_t IV512[8] = {
0x6A09E667F3BCC908, 0xBB67AE8584CAA73B, 0x3C6EF372FE94F82B, 0xA54FF53A5F1D36F1,
0x510E527FADE682D1, 0x9B05688C2B3E6C1F, 0x1F83D9ABFB41BD6B, 0x5BE0CD19137E2179
};
uint64_t r[8];
uint64_t W[16];
if (thread < threads)
{
uint64_t *pHash = &g_hash[thread * 8U];
uint64_t *pHash = &g_hash[thread<<3];
uint64_t W[80];
*(uint2x4*)&r[ 0] = *(uint2x4*)&IV512[ 0];
*(uint2x4*)&r[ 4] = *(uint2x4*)&IV512[ 4];
#pragma unroll
for (int i = 0; i < 4; i++) {
// 32 bytes input
W[i] = pHash[i];
//W[i] = cuda_swab64(pHash[i]); // made in sha256
}
*(uint2x4*)&W[ 0] = __ldg4((uint2x4*)&pHash[ 0]);
W[4] = 0x8000000000000000; // end tag
@ -130,46 +85,41 @@ void lbry_sha512_gpu_hash_32(const uint32_t threads, uint64_t *g_hash) @@ -130,46 +85,41 @@ void lbry_sha512_gpu_hash_32(const uint32_t threads, uint64_t *g_hash)
W[15] = 0x100; // 256 bits
//#pragma unroll
//for (int i = 16; i < 78; i++) W[i] = 0;
#pragma unroll 16
for (int i = 0; i < 16; i ++){
sha512_step2(r, W[i], K_512[i], i&7);
}
#pragma unroll
for (int i = 16; i < 80; i++)
W[i] = ssg5_1(W[i - 2]) + W[i - 7] + ssg5_0(W[i - 15]) + W[i - 16];
const uint64_t IV512[8] = {
0x6A09E667F3BCC908, 0xBB67AE8584CAA73B, 0x3C6EF372FE94F82B, 0xA54FF53A5F1D36F1,
0x510E527FADE682D1, 0x9B05688C2B3E6C1F, 0x1F83D9ABFB41BD6B, 0x5BE0CD19137E2179
};
uint64_t r[8];
for (int i = 16; i < 80; i+=16){
#pragma unroll
for (int i = 0; i < 8; i++)
r[i] = IV512[i];
#pragma unroll 10
for (int i = 0; i < 10; i++) {
#pragma unroll 8
for (int ord=0; ord<8; ord++)
sha512_step2(r, W, K_512, ord, 8*i + ord);
for (int j = 0; j<16; j++) {
W[(i + j) & 15] += W[((i + j) - 7) & 15] + ssg5_0(W[((i + j) - 15) & 15]) + ssg5_1(W[((i + j) - 2) & 15]);
}
#pragma unroll
for (int j = 0; j<16; j++) {
sha512_step2(r, W[j], K_512[i+j], (i+j)&7);
}
}
#pragma unroll 8
for (int i = 0; i < 8; i++)
pHash[i] = cuda_swab64(r[i] + IV512[i]);
r[i] = cuda_swab64(r[i] + IV512[i]);
*(uint2x4*)&pHash[0] = *(uint2x4*)&r[0];
*(uint2x4*)&pHash[4] = *(uint2x4*)&r[4];
}
}
__host__
void lbry_sha512_hash_32(int thr_id, uint32_t threads, uint32_t *d_hash)
{
const int threadsperblock = 256;
const uint32_t threadsperblock = 512;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
size_t shared_size = 0;
lbry_sha512_gpu_hash_32 <<<grid, block, shared_size>>> (threads, (uint64_t*)d_hash);
lbry_sha512_gpu_hash_32 <<<grid, block>>> (threads, (uint64_t*)d_hash);
}
/**************************************************************************************************/
@ -177,5 +127,5 @@ void lbry_sha512_hash_32(int thr_id, uint32_t threads, uint32_t *d_hash) @@ -177,5 +127,5 @@ void lbry_sha512_hash_32(int thr_id, uint32_t threads, uint32_t *d_hash)
__host__
void lbry_sha512_init(int thr_id)
{
cudaMemcpyToSymbol(K_512, K512, 80*sizeof(uint64_t), 0, cudaMemcpyHostToDevice);
// cudaMemcpyToSymbol(K_512, K512, 80*sizeof(uint64_t), 0, cudaMemcpyHostToDevice);
}

45
lbry/lbry.cu

@ -68,7 +68,7 @@ extern void lbry_sha256_setBlock_112(uint32_t *pdata, uint32_t *ptarget); @@ -68,7 +68,7 @@ extern void lbry_sha256_setBlock_112(uint32_t *pdata, uint32_t *ptarget);
extern void lbry_sha256d_hash_112(int thr_id, uint32_t threads, uint32_t startNonce, uint32_t *d_outputHash);
extern void lbry_sha512_init(int thr_id);
extern void lbry_sha512_hash_32(int thr_id, uint32_t threads, uint32_t *d_hash);
extern void lbry_sha256d_hash_final(int thr_id, uint32_t threads, uint32_t startNonce, uint32_t *d_inputHash, uint32_t *resNonces);
extern void lbry_sha256d_hash_final(int thr_id, uint32_t threads, uint32_t *d_inputHash, uint32_t *d_resNonce);
static __inline uint32_t swab32_if(uint32_t val, bool iftrue) {
return iftrue ? swab32(val) : val;
@ -77,7 +77,7 @@ static __inline uint32_t swab32_if(uint32_t val, bool iftrue) { @@ -77,7 +77,7 @@ static __inline uint32_t swab32_if(uint32_t val, bool iftrue) {
static bool init[MAX_GPUS] = { 0 };
static uint32_t *d_hash[MAX_GPUS];
static uint32_t *d_resNonce[MAX_GPUS];
// nonce position is different
#define LBC_NONCE_OFT32 27
@ -109,10 +109,12 @@ extern "C" int scanhash_lbry(int thr_id, struct work *work, uint32_t max_nonce, @@ -109,10 +109,12 @@ extern "C" int scanhash_lbry(int thr_id, struct work *work, uint32_t max_nonce,
cudaDeviceReset();
// reduce cpu usage (linux)
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
cudaDeviceSetCacheConfig(cudaFuncCachePreferL1);
CUDA_LOG_ERROR();
}
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t) 64 * throughput));
CUDA_SAFE_CALL(cudaMalloc(&d_resNonce[thr_id], 2 * sizeof(uint32_t)));
lbry_sha256_init(thr_id);
lbry_sha512_init(thr_id);
@ -126,38 +128,39 @@ extern "C" int scanhash_lbry(int thr_id, struct work *work, uint32_t max_nonce, @@ -126,38 +128,39 @@ extern "C" int scanhash_lbry(int thr_id, struct work *work, uint32_t max_nonce,
}
lbry_sha256_setBlock_112(endiandata, ptarget);
cudaMemset(d_resNonce[thr_id], 0xFF, 2 * sizeof(uint32_t));
do {
// Hash with CUDA
lbry_sha256d_hash_112(thr_id, throughput, pdata[LBC_NONCE_OFT32], d_hash[thr_id]);
CUDA_LOG_ERROR();
lbry_sha512_hash_32(thr_id, throughput, d_hash[thr_id]);
CUDA_LOG_ERROR();
uint32_t resNonces[2] = { UINT32_MAX, UINT32_MAX };
lbry_sha256d_hash_final(thr_id, throughput, pdata[LBC_NONCE_OFT32], d_hash[thr_id], resNonces);
CUDA_LOG_ERROR();
lbry_sha256d_hash_final(thr_id, throughput, d_hash[thr_id], d_resNonce[thr_id]);
cudaMemcpy(resNonces, d_resNonce[thr_id], 2 * sizeof(uint32_t), cudaMemcpyDeviceToHost);
uint32_t foundNonce = resNonces[0];
*hashes_done = pdata[LBC_NONCE_OFT32] - first_nonce + throughput;
if (foundNonce != UINT32_MAX)
if (resNonces[0] != UINT32_MAX)
{
endiandata[LBC_NONCE_OFT32] = swab32_if(foundNonce, !swap);
const uint32_t startNonce = pdata[LBC_NONCE_OFT32];
resNonces[0] += startNonce;
endiandata[LBC_NONCE_OFT32] = swab32_if(resNonces[0], !swap);
lbry_hash(vhash, endiandata);
if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget)) {
int res = 1;
uint32_t secNonce = resNonces[1];
work->nonces[0] = swab32_if(foundNonce, swap);
work->nonces[0] = swab32_if(resNonces[0], swap);
work_set_target_ratio(work, vhash);
if (secNonce != UINT32_MAX) {
if (resNonces[1] != UINT32_MAX) {
resNonces[1] += startNonce;
if (opt_debug)
gpulog(LOG_BLUE, thr_id, "found second nonce %08x", swab32(secNonce));
endiandata[LBC_NONCE_OFT32] = swab32_if(secNonce, !swap);
gpulog(LOG_BLUE, thr_id, "found second nonce %08x", resNonces[1]);
endiandata[LBC_NONCE_OFT32] = swab32_if(resNonces[1], !swap);
lbry_hash(vhash, endiandata);
work->nonces[1] = swab32_if(secNonce, swap);
work->nonces[1] = swab32_if(resNonces[1], swap);
if (bn_hash_target_ratio(vhash, ptarget) > work->shareratio) {
work_set_target_ratio(work, vhash);
xchg(work->nonces[0], work->nonces[1]);
@ -166,8 +169,9 @@ extern "C" int scanhash_lbry(int thr_id, struct work *work, uint32_t max_nonce, @@ -166,8 +169,9 @@ extern "C" int scanhash_lbry(int thr_id, struct work *work, uint32_t max_nonce,
}
pdata[LBC_NONCE_OFT32] = work->nonces[0];
return res;
} else {
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU %08x > %08x!", foundNonce, vhash[7], ptarget[7]);
} else if (vhash[7] > ptarget[7]) {
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU %08x > %08x!", resNonces[0], vhash[7], ptarget[7]);
cudaMemset(d_resNonce[thr_id], 0xFF, 2 * sizeof(uint32_t));
}
}
@ -180,13 +184,13 @@ extern "C" int scanhash_lbry(int thr_id, struct work *work, uint32_t max_nonce, @@ -180,13 +184,13 @@ extern "C" int scanhash_lbry(int thr_id, struct work *work, uint32_t max_nonce,
} while (!work_restart[thr_id].restart);
*hashes_done = pdata[LBC_NONCE_OFT32] - first_nonce;
*hashes_done = pdata[LBC_NONCE_OFT32] - first_nonce + 1;
return 0;
}
// cleanup
void free_lbry(int thr_id)
extern "C" void free_lbry(int thr_id)
{
if (!init[thr_id])
return;
@ -194,6 +198,7 @@ void free_lbry(int thr_id) @@ -194,6 +198,7 @@ void free_lbry(int thr_id)
cudaThreadSynchronize();
cudaFree(d_hash[thr_id]);
cudaFree(d_resNonce[thr_id]);
lbry_sha256_free(thr_id);
init[thr_id] = false;

Loading…
Cancel
Save