@ -17,8 +17,8 @@ extern uint32_t *d_nonceVector[8];
@@ -17,8 +17,8 @@ extern uint32_t *d_nonceVector[8];
// globaler Speicher für unsere Ergebnisse
uint32_t *d_hash5output[8];
// die Message (116 Bytes) mit Padding zur Berechnung auf der GPU
__constant__ uint64_t c_PaddedMessage[16]; // padded message (84+32 bytes + padding)
// die Message (112 bzw. 11 6 Bytes) mit Padding zur Berechnung auf der GPU
__constant__ uint64_t c_PaddedMessage[16]; // padded message (80/8 4+32 bytes + padding)
// ---------------------------- BEGIN CUDA blake512 functions ------------------------------------
@ -44,10 +44,12 @@ const uint8_t host_sigma[16][16] =
@@ -44,10 +44,12 @@ const uint8_t host_sigma[16][16] =
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }
};
// Diese Makros besser nur für Compile Time Konstanten verwenden. Sie sind langsam.
#define SWAP32(x) \
((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) | \
(((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu))
// Diese Makros besser nur für Compile Time Konstanten verwenden. Sie sind langsam.
#define SWAP64(x) \
((uint64_t)((((uint64_t)(x) & 0xff00000000000000ULL) >> 56) | \
(((uint64_t)(x) & 0x00ff000000000000ULL) >> 40) | \
@ -58,11 +60,11 @@ const uint8_t host_sigma[16][16] =
@@ -58,11 +60,11 @@ const uint8_t host_sigma[16][16] =
(((uint64_t)(x) & 0x000000000000ff00ULL) << 40) | \
(((uint64_t)(x) & 0x00000000000000ffULL) << 56)))
__constant__ uint64_t c_SecondRound[16 ];
__constant__ uint64_t c_SecondRound[15 ];
const uint64_t host_SecondRound[16 ] =
const uint64_t host_SecondRound[15 ] =
{
0,0,0,0,0,0,0,0,0,0,0,0,0,SWAP64(1),0,SWAP64(0x3A0)
0,0,0,0,0,0,0,0,0,0,0,0,0,SWAP64(1),0
};
__constant__ uint64_t c_u512[16];
@ -80,24 +82,22 @@ const uint64_t host_u512[16] =
@@ -80,24 +82,22 @@ const uint64_t host_u512[16] =
};
#define ROTR(x,n) (((x)<<(64-n))|( (x)>>(n)))
#define G(a,b,c,d,e) \
v[a] += (m[sigma[i][e]] ^ u512[sigma[i][e+1]]) + v[b];\
v[d] = ROTR( v[d] ^ v[a],32); \
v[d] = ROTR64 ( v[d] ^ v[a],32); \
v[c] += v[d]; \
v[b] = ROTR( v[b] ^ v[c],25); \
v[b] = ROTR64 ( v[b] ^ v[c],25); \
v[a] += (m[sigma[i][e+1]] ^ u512[sigma[i][e]])+v[b]; \
v[d] = ROTR( v[d] ^ v[a],16); \
v[d] = ROTR64 ( v[d] ^ v[a],16); \
v[c] += v[d]; \
v[b] = ROTR( v[b] ^ v[c],11);
v[b] = ROTR64 ( v[b] ^ v[c],11);
__device__ void blake512_compress( uint64_t *h, const uint64_t *block, int nullt, const uint8_t ((*sigma)[16]), const uint64_t *u512 )
template <int BLOCKSIZE> __device__ void blake512_compress( uint64_t *h, const uint64_t *block, int nullt, const uint8_t ((*sigma)[16]), const uint64_t *u512 )
{
uint64_t v[16], m[16], i;
#pragma unroll 16
for( i = 0; i < 16; ++i ) m[i] = SWAP 64(block[i]);
for( i = 0; i < 16; ++i ) m[i] = cuda_swab 64(block[i]);
#pragma unroll 8
for( i = 0; i < 8; ++i ) v[i] = h[i];
@ -113,11 +113,11 @@ __device__ void blake512_compress( uint64_t *h, const uint64_t *block, int nullt
@@ -113,11 +113,11 @@ __device__ void blake512_compress( uint64_t *h, const uint64_t *block, int nullt
/* don't xor t when the block is only padding */
if ( !nullt ) {
v[12] ^= 928 ;
v[13] ^= 928 ;
v[12] ^= 8*(BLOCKSIZE+32) ;
v[13] ^= 8*(BLOCKSIZE+32) ;
}
#pragma unroll 16
// #pragma unroll 16
for( i = 0; i < 16; ++i )
{
/* column step */
@ -136,49 +136,9 @@ __device__ void blake512_compress( uint64_t *h, const uint64_t *block, int nullt
@@ -136,49 +136,9 @@ __device__ void blake512_compress( uint64_t *h, const uint64_t *block, int nullt
for( i = 0; i < 16; ++i ) h[i % 8] ^= v[i];
}
// Endian Drehung für 32 Bit Typen
static __device__ uint32_t cuda_swab32(uint32_t x)
{
return (((x << 24) & 0xff000000u) | ((x << 8) & 0x00ff0000u)
| ((x >> 8) & 0x0000ff00u) | ((x >> 24) & 0x000000ffu));
}
// Endian Drehung für 64 Bit Typen
static __device__ uint64_t cuda_swab64(uint64_t x) {
uint32_t h = (x >> 32);
uint32_t l = (x & 0xFFFFFFFFULL);
return (((uint64_t)cuda_swab32(l)) << 32) | ((uint64_t)cuda_swab32(h));
}
// das Hi Word aus einem 64 Bit Typen extrahieren
static __device__ uint32_t HIWORD(const uint64_t &x) {
#if __CUDA_ARCH__ >= 130
return (uint32_t)__double2hiint(__longlong_as_double(x));
#else
return (uint32_t)(x >> 32);
#endif
}
// das Hi Word in einem 64 Bit Typen ersetzen
static __device__ uint64_t REPLACE_HIWORD(const uint64_t &x, const uint32_t &y) {
return (x & 0xFFFFFFFFULL) | (((uint64_t)y) << 32ULL);
}
// das Lo Word aus einem 64 Bit Typen extrahieren
static __device__ uint32_t LOWORD(const uint64_t &x) {
#if __CUDA_ARCH__ >= 130
return (uint32_t)__double2loint(__longlong_as_double(x));
#else
return (uint32_t)(x & 0xFFFFFFFFULL);
#endif
}
// das Lo Word in einem 64 Bit Typen ersetzen
static __device__ uint64_t REPLACE_LOWORD(const uint64_t &x, const uint32_t &y) {
return (x & 0xFFFFFFFF00000000ULL) | ((uint64_t)y);
}
#include "cuda_helper.h"
__global__ void blake512_gpu_hash(int threads, uint32_t startNounce, void *outputHash, uint32_t *heftyHashes, uint32_t *nonceVector)
template <int BLOCKSIZE> __global__ void blake512_gpu_hash(int threads, uint32_t startNounce, void *outputHash, uint32_t *heftyHashes, uint32_t *nonceVector)
{
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
@ -211,40 +171,40 @@ __global__ void blake512_gpu_hash(int threads, uint32_t startNounce, void *outpu
@@ -211,40 +171,40 @@ __global__ void blake512_gpu_hash(int threads, uint32_t startNounce, void *outpu
// die Nounce durch die thread-spezifische ersetzen
buf[9] = REPLACE_HIWORD(buf[9], nounce);
// den thread-spezifischen Hefty1 hash einsetzen
uint32_t *hefty = heftyHashes + 8 * hashPosition;
buf[10] = REPLACE_HIWORD(buf[10], hefty[0]);
buf[11] = REPLACE_LOWORD(buf[11], hefty[1]);
buf[11] = REPLACE_HIWORD(buf[11], hefty[2]);
buf[12] = REPLACE_LOWORD(buf[12], hefty[3]);
buf[12] = REPLACE_HIWORD(buf[12], hefty[4]);
buf[13] = REPLACE_LOWORD(buf[13], hefty[5]);
buf[13] = REPLACE_HIWORD(buf[13], hefty[6]);
buf[14] = REPLACE_LOWORD(buf[14], hefty[7]);
if (BLOCKSIZE == 84) {
// den thread-spezifischen Hefty1 hash einsetzen
// aufwändig, weil das nicht mit uint64_t Wörtern aligned ist.
buf[10] = REPLACE_HIWORD(buf[10], hefty[0]);
buf[11] = REPLACE_LOWORD(buf[11], hefty[1]);
buf[11] = REPLACE_HIWORD(buf[11], hefty[2]);
buf[12] = REPLACE_LOWORD(buf[12], hefty[3]);
buf[12] = REPLACE_HIWORD(buf[12], hefty[4]);
buf[13] = REPLACE_LOWORD(buf[13], hefty[5]);
buf[13] = REPLACE_HIWORD(buf[13], hefty[6]);
buf[14] = REPLACE_LOWORD(buf[14], hefty[7]);
}
else if (BLOCKSIZE == 80) {
buf[10] = MAKE_ULONGLONG(hefty[0], hefty[1]);
buf[11] = MAKE_ULONGLONG(hefty[2], hefty[3]);
buf[12] = MAKE_ULONGLONG(hefty[4], hefty[5]);
buf[13] = MAKE_ULONGLONG(hefty[6], hefty[7]);
}
// erste Runde
blake512_compress( h, buf, 0, c_sigma, c_u512 );
blake512_compress<BLOCKSIZE>( h, buf, 0, c_sigma, c_u512 );
// zweite Runde
#pragma unroll 16
for (int i=0; i < 16; ++i) buf[i] = c_SecondRound[i];
blake512_compress( h, buf, 1, c_sigma, c_u512 );
#pragma unroll 15
for (int i=0; i < 15; ++i) buf[i] = c_SecondRound[i];
buf[15] = SWAP64(8*(BLOCKSIZE+32)); // Blocksize in Bits einsetzen
blake512_compress<BLOCKSIZE>( h, buf, 1, c_sigma, c_u512 );
// Hash rauslassen
#if 0
// ausschliesslich 32 bit Operationen sofern die SM1.3 double intrinsics verfügbar sind
uint32_t *outHash = (uint32_t *)outputHash + 16 * hashPosition;
#pragma unroll 8
for (int i=0; i < 8; ++i) {
outHash[2*i+0] = cuda_swab32( HIWORD(h[i]) );
outHash[2*i+1] = cuda_swab32( LOWORD(h[i]) );
}
#else
// in dieser Version passieren auch ein paar 64 Bit Shifts
uint64_t *outHash = (uint64_t *)outputHash + 8 * hashPosition;
#pragma unroll 8
for (int i=0; i < 8; ++i) outHash[i] = cuda_swab64( h[i] );
#endif
}
}
@ -274,22 +234,30 @@ __host__ void blake512_cpu_init(int thr_id, int threads)
@@ -274,22 +234,30 @@ __host__ void blake512_cpu_init(int thr_id, int threads)
cudaMalloc(&d_hash5output[thr_id], 16 * sizeof(uint32_t) * threads);
}
__host__ void blake512_cpu_setBlock(void *pdata)
static int BLOCKSIZE = 84;
__host__ void blake512_cpu_setBlock(void *pdata, int len)
// data muss 84-Byte haben!
// heftyHash hat 32-Byte
{
// Message mit Padding für erste Runde bereitstellen
unsigned char PaddedMessage[128];
memcpy(PaddedMessage, pdata, 84);
memset(PaddedMessage+84, 0, 32); // leeres Hefty Hash einfüllen
memset(PaddedMessage+116, 0, 12);
PaddedMessage[116] = 0x80;
if (len == 84) {
// Message mit Padding für erste Runde bereitstellen
memcpy(PaddedMessage, pdata, 84);
memset(PaddedMessage+84, 0, 32); // leeres Hefty Hash einfüllen
memset(PaddedMessage+116, 0, 12);
PaddedMessage[116] = 0x80;
} else if (len == 80) {
memcpy(PaddedMessage, pdata, 80);
memset(PaddedMessage+80, 0, 32); // leeres Hefty Hash einfüllen
memset(PaddedMessage+112, 0, 16);
PaddedMessage[112] = 0x80;
}
// die Message (116 Bytes) ohne Padding zur Berechnung auf der GPU
cudaMemcpyToSymbol( c_PaddedMessage, PaddedMessage, 16*sizeof(uint64_t), 0, cudaMemcpyHostToDevice);
BLOCKSIZE = len;
}
__host__ void blake512_cpu_hash(int thr_id, int threads, uint32_t startNounce)
{
const int threadsperblock = 256;
@ -303,5 +271,8 @@ __host__ void blake512_cpu_hash(int thr_id, int threads, uint32_t startNounce)
@@ -303,5 +271,8 @@ __host__ void blake512_cpu_hash(int thr_id, int threads, uint32_t startNounce)
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size);
blake512_gpu_hash<<<grid, block, shared_size>>>(threads, startNounce, d_hash5output[thr_id], d_heftyHashes[thr_id], d_nonceVector[thr_id]);
if (BLOCKSIZE == 80)
blake512_gpu_hash<80><<<grid, block, shared_size>>>(threads, startNounce, d_hash5output[thr_id], d_heftyHashes[thr_id], d_nonceVector[thr_id]);
else if (BLOCKSIZE == 84)
blake512_gpu_hash<84><<<grid, block, shared_size>>>(threads, startNounce, d_hash5output[thr_id], d_heftyHashes[thr_id], d_nonceVector[thr_id]);
}