Browse Source

add x17 algo, cleaned djm34 commit

todo: visual studio...
master
Tanguy Pruvot 10 years ago
parent
commit
64e8cd3f98
  1. 0
      JHA/.deps/.dirstamp
  2. 0
      JHA/.dirstamp
  3. 8
      Makefile.am
  4. 6
      ccminer.vcxproj
  5. 6
      ccminer.vcxproj.filters
  6. 8
      cpu-miner.c
  7. 74
      cuda_helper.h
  8. 5
      miner.h
  9. 0
      quark/.deps/.dirstamp
  10. 0
      quark/.dirstamp
  11. 983
      sph/haval.c
  12. 190
      sph/haval_helper.c
  13. 0
      sph/md_helper.c
  14. 256
      sph/sha2big.c
  15. 976
      sph/sph_haval.h
  16. 378
      sph/sph_sha2.h
  17. 8
      sph/whirlpool.c
  18. 4
      util.c
  19. 12
      x15/cuda_x15_whirlpool.cu
  20. 403
      x17/cuda_x17_haval512.cu
  21. 240
      x17/cuda_x17_sha512.cu
  22. 306
      x17/x17.cu

0
JHA/.deps/.dirstamp vendored

0
JHA/.dirstamp

8
Makefile.am

@ -36,11 +36,12 @@ ccminer_SOURCES = elist.h miner.h compat.h \
sph/bmw.c sph/blake.c sph/groestl.c sph/jh.c sph/keccak.c sph/skein.c \ sph/bmw.c sph/blake.c sph/groestl.c sph/jh.c sph/keccak.c sph/skein.c \
sph/cubehash.c sph/echo.c sph/luffa.c sph/sha2.c sph/shavite.c sph/simd.c \ sph/cubehash.c sph/echo.c sph/luffa.c sph/sha2.c sph/shavite.c sph/simd.c \
sph/hamsi.c sph/hamsi_helper.c sph/sph_hamsi.h \ sph/hamsi.c sph/hamsi_helper.c sph/sph_hamsi.h \
sph/shabal.c sph/whirlpool.c \ sph/shabal.c sph/whirlpool.c sph/sha2big.c sph/haval.c \
x11/x11.cu x11/fresh.cu x11/cuda_x11_luffa512.cu x11/cuda_x11_cubehash512.cu \ x11/x11.cu x11/fresh.cu x11/cuda_x11_luffa512.cu x11/cuda_x11_cubehash512.cu \
x11/cuda_x11_shavite512.cu x11/cuda_x11_simd512.cu x11/cuda_x11_echo.cu \ x11/cuda_x11_shavite512.cu x11/cuda_x11_simd512.cu x11/cuda_x11_echo.cu \
x13/x13.cu x13/cuda_x13_hamsi512.cu x13/cuda_x13_fugue512.cu \ x13/x13.cu x13/cuda_x13_hamsi512.cu x13/cuda_x13_fugue512.cu \
x15/x14.cu x15/x15.cu x15/cuda_x14_shabal512.cu x15/cuda_x15_whirlpool.cu x15/whirlcoin.cu x15/x14.cu x15/x15.cu x15/cuda_x14_shabal512.cu x15/cuda_x15_whirlpool.cu x15/whirlcoin.cu \
x17/x17.cu x17/cuda_x17_haval512.cu x17/cuda_x17_sha512.cu
ccminer_LDFLAGS = $(PTHREAD_FLAGS) @CUDA_LDFLAGS@ ccminer_LDFLAGS = $(PTHREAD_FLAGS) @CUDA_LDFLAGS@
ccminer_LDADD = @LIBCURL@ @JANSSON_LIBS@ @PTHREAD_LIBS@ @WS2_LIBS@ @CUDA_LIBS@ @OPENMP_CFLAGS@ @LIBS@ ccminer_LDADD = @LIBCURL@ @JANSSON_LIBS@ @PTHREAD_LIBS@ @WS2_LIBS@ @CUDA_LIBS@ @OPENMP_CFLAGS@ @LIBS@
@ -68,6 +69,9 @@ x11/cuda_x11_echo.o: x11/cuda_x11_echo.cu
x11/cuda_x11_shavite512.o: x11/cuda_x11_shavite512.cu x11/cuda_x11_shavite512.o: x11/cuda_x11_shavite512.cu
$(NVCC) $(nvcc_FLAGS) -I cudpp-2.1/include @CFLAGS@ --maxrregcount=128 -o $@ -c $< $(NVCC) $(nvcc_FLAGS) -I cudpp-2.1/include @CFLAGS@ --maxrregcount=128 -o $@ -c $<
x17/cuda_x17_sha512.o: x17/cuda_x17_sha512.cu
$(NVCC) $(nvcc_FLAGS) -O2 --maxrregcount=80 -o $@ -c $<
# ABI requiring code modules # ABI requiring code modules
quark/cuda_quark_compactionTest.o: quark/cuda_quark_compactionTest.cu quark/cuda_quark_compactionTest.o: quark/cuda_quark_compactionTest.cu
$(NVCC) $(nvcc_FLAGS) -I cudpp-2.1/include @CFLAGS@ -Xptxas "-abi=yes -v" --maxrregcount=80 -o $@ -c $< $(NVCC) $(nvcc_FLAGS) -I cudpp-2.1/include @CFLAGS@ -Xptxas "-abi=yes -v" --maxrregcount=80 -o $@ -c $<

6
ccminer.vcxproj

@ -252,6 +252,9 @@ copy "$(CudaToolkitBinDir)\cudart64*.dll" "$(OutDir)"</Command>
<ClCompile Include="sph\jh.c" /> <ClCompile Include="sph\jh.c" />
<ClCompile Include="sph\keccak.c" /> <ClCompile Include="sph\keccak.c" />
<ClCompile Include="sph\luffa.c" /> <ClCompile Include="sph\luffa.c" />
<ClCompile Include="sph\md_helper.c">
<ExcludedFromBuild>true</ExcludedFromBuild>
</ClCompile>
<ClCompile Include="sph\sha2.c" /> <ClCompile Include="sph\sha2.c" />
<ClCompile Include="sph\shabal.c" /> <ClCompile Include="sph\shabal.c" />
<ClCompile Include="sph\shavite.c" /> <ClCompile Include="sph\shavite.c" />
@ -260,9 +263,6 @@ copy "$(CudaToolkitBinDir)\cudart64*.dll" "$(OutDir)"</Command>
<ClCompile Include="sph\hamsi.c" /> <ClCompile Include="sph\hamsi.c" />
<ClCompile Include="sph\hamsi_helper.c" /> <ClCompile Include="sph\hamsi_helper.c" />
<ClCompile Include="sph\whirlpool.c" /> <ClCompile Include="sph\whirlpool.c" />
<ClCompile Include="sph\x15_helper.c">
<ExcludedFromBuild>true</ExcludedFromBuild>
</ClCompile>
<ClCompile Include="util.c"> <ClCompile Include="util.c">
<AdditionalOptions>/Tp %(AdditionalOptions)</AdditionalOptions> <AdditionalOptions>/Tp %(AdditionalOptions)</AdditionalOptions>
<Optimization Condition="'$(Configuration)'=='Release'">Full</Optimization> <Optimization Condition="'$(Configuration)'=='Release'">Full</Optimization>

6
ccminer.vcxproj.filters

@ -135,6 +135,9 @@
<ClCompile Include="sph\luffa.c"> <ClCompile Include="sph\luffa.c">
<Filter>Source Files\sph</Filter> <Filter>Source Files\sph</Filter>
</ClCompile> </ClCompile>
<ClCompile Include="sph\md_helper.c">
<Filter>Source Files\sph</Filter>
</ClCompile>
<ClCompile Include="sph\sha2.c"> <ClCompile Include="sph\sha2.c">
<Filter>Source Files\sph</Filter> <Filter>Source Files\sph</Filter>
</ClCompile> </ClCompile>
@ -162,9 +165,6 @@
<ClCompile Include="sph\whirlpool.c"> <ClCompile Include="sph\whirlpool.c">
<Filter>Source Files\sph</Filter> <Filter>Source Files\sph</Filter>
</ClCompile> </ClCompile>
<ClCompile Include="sph\x15_helper.c">
<Filter>Source Files\sph</Filter>
</ClCompile>
</ItemGroup> </ItemGroup>
<ItemGroup> <ItemGroup>
<ClInclude Include="compat.h"> <ClInclude Include="compat.h">

8
cpu-miner.c

@ -140,6 +140,7 @@ typedef enum {
ALGO_X13, ALGO_X13,
ALGO_X14, ALGO_X14,
ALGO_X15, ALGO_X15,
ALGO_X17,
ALGO_DMD_GR, ALGO_DMD_GR,
} sha256_algos; } sha256_algos;
@ -159,6 +160,7 @@ static const char *algo_names[] = {
"x13", "x13",
"x14", "x14",
"x15", "x15",
"x17",
"dmd-gr", "dmd-gr",
}; };
@ -238,6 +240,7 @@ Options:\n\
x13 X13 (MaruCoin) hash\n\ x13 X13 (MaruCoin) hash\n\
x14 X14 hash\n\ x14 X14 hash\n\
x15 X15 hash\n\ x15 X15 hash\n\
x17 X17 (peoplecurrency) hash\n\
dmd-gr Diamond-Groestl hash\n\ dmd-gr Diamond-Groestl hash\n\
-d, --devices takes a comma separated list of CUDA devices to use.\n\ -d, --devices takes a comma separated list of CUDA devices to use.\n\
Device IDs start counting from 0! Alternatively takes\n\ Device IDs start counting from 0! Alternatively takes\n\
@ -966,6 +969,11 @@ static void *miner_thread(void *userdata)
max_nonce, &hashes_done); max_nonce, &hashes_done);
break; break;
case ALGO_X17:
rc = scanhash_x17(thr_id, work.data, work.target,
max_nonce, &hashes_done);
break;
default: default:
/* should never happen */ /* should never happen */
goto out; goto out;

74
cuda_helper.h

@ -148,11 +148,9 @@ __device__ __forceinline__
uint64_t xor3(uint64_t a, uint64_t b, uint64_t c) uint64_t xor3(uint64_t a, uint64_t b, uint64_t c)
{ {
uint64_t result; uint64_t result;
asm("{" asm("xor.b64 %0, %2, %3;\n\t"
".reg .u64 lt;\n\t" "xor.b64 %0, %0, %1;\n\t"
"xor.b64 lt, %2, %3;\n\t" /* output : input registers */
"xor.b64 %0, %1, lt;\n\t"
"}"
: "=l"(result) : "l"(a), "l"(b), "l"(c)); : "=l"(result) : "l"(a), "l"(b), "l"(c));
return result; return result;
} }
@ -179,59 +177,56 @@ uint64_t xor8(uint64_t a, uint64_t b, uint64_t c, uint64_t d,uint64_t e,uint64_t
#define xor8(a,b,c,d,e,f,g,h) (a^b^c^d^e^f^g^h) #define xor8(a,b,c,d,e,f,g,h) (a^b^c^d^e^f^g^h)
#endif #endif
// device asm for whirpool // device asm for x17
__device__ __forceinline__ __device__ __forceinline__
uint64_t xandx(uint64_t a, uint64_t b, uint64_t c) uint64_t xandx(uint64_t a, uint64_t b, uint64_t c)
{ {
uint64_t result; uint64_t result;
asm("{\n\t" asm("{\n\t"
".reg .u64 m,n;\n\t" ".reg .u64 n;\n\t"
"xor.b64 m, %2,%3;\n\t" "xor.b64 %0, %2, %3;\n\t"
"and.b64 n, m,%1;\n\t" "and.b64 n, %0, %1;\n\t"
"xor.b64 %0, n,%3;\n\t" "xor.b64 %0, n, %3;"
"}\n\t" "}\n"
: "=l"(result) : "l"(a), "l"(b), "l"(c)); : "=l"(result) : "l"(a), "l"(b), "l"(c));
return result; return result;
} }
// device asm for whirpool // device asm for x17
__device__ __forceinline__ __device__ __forceinline__
uint64_t sph_t64(uint64_t x) uint64_t sph_t64(uint64_t x)
{ {
uint64_t result; uint64_t result;
asm("{\n\t" asm("{\n\t"
"and.b64 %0,%1,0xFFFFFFFFFFFFFFFF;\n\t" "and.b64 %0,%1,0xFFFFFFFFFFFFFFFF;\n\t"
"}\n\t" "}\n"
: "=l"(result) : "l"(x)); : "=l"(result) : "l"(x));
return result; return result;
} }
// device asm for ? // device asm for x17
__device__ __forceinline__ __device__ __forceinline__
uint64_t andor(uint64_t a, uint64_t b, uint64_t c) uint64_t andor(uint64_t a, uint64_t b, uint64_t c)
{ {
uint64_t result; uint64_t result;
asm("{\n\t" asm("{\n\t"
".reg .u64 m,n,o;\n\t" ".reg .u64 m,n;\n\t"
"and.b64 m, %1, %2;\n\t" "and.b64 m, %1, %2;\n\t"
" or.b64 n, %1, %2;\n\t" " or.b64 n, %1, %2;\n\t"
"and.b64 o, n, %3;\n\t" "and.b64 %0, n, %3;\n\t"
" or.b64 %0, m, o ;\n\t" " or.b64 %0, %0, m ;\n\t"
"}\n\t" "}\n"
: "=l"(result) : "l"(a), "l"(b), "l"(c)); : "=l"(result) : "l"(a), "l"(b), "l"(c));
return result; return result;
} }
// device asm for ? // device asm for x17
__device__ __forceinline__ __device__ __forceinline__
uint64_t shr_t64(uint64_t x, uint32_t n) uint64_t shr_t64(uint64_t x, uint32_t n)
{ {
uint64_t result; uint64_t result;
asm("{\n\t" asm("shr.b64 %0,%1,%2;\n\t"
".reg .u64 m;\n\t" "and.b64 %0,%0,0xFFFFFFFFFFFFFFFF;\n\t" /* useful ? */
"shr.b64 m,%1,%2;\n\t"
"and.b64 %0,m,0xFFFFFFFFFFFFFFFF;\n\t"
"}\n\t"
: "=l"(result) : "l"(x), "r"(n)); : "=l"(result) : "l"(x), "r"(n));
return result; return result;
} }
@ -241,11 +236,8 @@ __device__ __forceinline__
uint64_t shl_t64(uint64_t x, uint32_t n) uint64_t shl_t64(uint64_t x, uint32_t n)
{ {
uint64_t result; uint64_t result;
asm("{\n\t" asm("shl.b64 %0,%1,%2;\n\t"
".reg .u64 m;\n\t" "and.b64 %0,%0,0xFFFFFFFFFFFFFFFF;\n\t" /* useful ? */
"shl.b64 m,%1,%2;\n\t"
"and.b64 %0,m,0xFFFFFFFFFFFFFFFF;\n\t"
"}\n\t"
: "=l"(result) : "l"(x), "r"(n)); : "=l"(result) : "l"(x), "r"(n));
return result; return result;
} }
@ -272,13 +264,13 @@ uint64_t ROTR64(const uint64_t x, const int offset)
{ {
uint64_t result; uint64_t result;
asm("{\n\t" asm("{\n\t"
".reg .b64 lhs, rhs;\n\t" ".reg .b64 lhs;\n\t"
".reg .u32 amt2;\n\t" ".reg .u32 roff;\n\t"
"shr.b64 lhs, %1, %2;\n\t" "shr.b64 lhs, %1, %2;\n\t"
"sub.u32 amt2, 64, %2;\n\t" "sub.u32 roff, 64, %2;\n\t"
"shl.b64 rhs, %1, amt2;\n\t" "shl.b64 %0, %1, roff;\n\t"
"add.u64 %0, lhs, rhs;\n\t" "add.u64 %0, %0, lhs;\n\t"
"}\n\t" "}\n"
: "=l"(result) : "l"(x), "r"(offset)); : "=l"(result) : "l"(x), "r"(offset));
return result; return result;
} }
@ -307,13 +299,13 @@ uint64_t ROTL64(const uint64_t x, const int offset)
{ {
uint64_t result; uint64_t result;
asm("{\n\t" asm("{\n\t"
".reg .b64 lhs, rhs;\n\t" ".reg .b64 lhs;\n\t"
".reg .u32 amt2;\n\t" ".reg .u32 roff;\n\t"
"shl.b64 lhs, %1, %2;\n\t" "shl.b64 lhs, %1, %2;\n\t"
"sub.u32 amt2, 64, %2;\n\t" "sub.u32 roff, 64, %2;\n\t"
"shr.b64 rhs, %1, amt2;\n\t" "shr.b64 %0, %1, roff;\n\t"
"add.u64 %0, lhs, rhs;\n\t" "add.u64 %0, lhs, %0;\n\t"
"}\n\t" "}\n"
: "=l"(result) : "l"(x), "r"(offset)); : "=l"(result) : "l"(x), "r"(offset));
return result; return result;
} }

5
miner.h

@ -265,6 +265,10 @@ extern int scanhash_x15(int thr_id, uint32_t *pdata,
const uint32_t *ptarget, uint32_t max_nonce, const uint32_t *ptarget, uint32_t max_nonce,
unsigned long *hashes_done); unsigned long *hashes_done);
extern int scanhash_x17(int thr_id, uint32_t *pdata,
const uint32_t *ptarget, uint32_t max_nonce,
unsigned long *hashes_done);
struct thr_info { struct thr_info {
int id; int id;
pthread_t pth; pthread_t pth;
@ -402,6 +406,7 @@ void x11hash(void *output, const void *input);
void x13hash(void *output, const void *input); void x13hash(void *output, const void *input);
void x14hash(void *output, const void *input); void x14hash(void *output, const void *input);
void x15hash(void *output, const void *input); void x15hash(void *output, const void *input);
void x17hash(void *output, const void *input);
#ifdef __cplusplus #ifdef __cplusplus
} }

0
quark/.deps/.dirstamp vendored

0
quark/.dirstamp

983
sph/haval.c

@ -0,0 +1,983 @@
/* $Id: haval.c 227 2010-06-16 17:28:38Z tp $ */
/*
* HAVAL implementation.
*
* The HAVAL reference paper is of questionable clarity with regards to
* some details such as endianness of bits within a byte, bytes within
* a 32-bit word, or the actual ordering of words within a stream of
* words. This implementation has been made compatible with the reference
* implementation available on: http://labs.calyptix.com/haval.php
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#include <stddef.h>
#include <string.h>
#include "sph_haval.h"
#ifdef __cplusplus
extern "C"{
#endif
#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_HAVAL
#define SPH_SMALL_FOOTPRINT_HAVAL 1
#endif
/*
* Basic definition from the reference paper.
*
#define F1(x6, x5, x4, x3, x2, x1, x0) \
(((x1) & (x4)) ^ ((x2) & (x5)) ^ ((x3) & (x6)) ^ ((x0) & (x1)) ^ (x0))
*
*/
#define F1(x6, x5, x4, x3, x2, x1, x0) \
(((x1) & ((x0) ^ (x4))) ^ ((x2) & (x5)) ^ ((x3) & (x6)) ^ (x0))
/*
* Basic definition from the reference paper.
*
#define F2(x6, x5, x4, x3, x2, x1, x0) \
(((x1) & (x2) & (x3)) ^ ((x2) & (x4) & (x5)) ^ ((x1) & (x2)) \
^ ((x1) & (x4)) ^ ((x2) & (x6)) ^ ((x3) & (x5)) \
^ ((x4) & (x5)) ^ ((x0) & (x2)) ^ (x0))
*
*/
#define F2(x6, x5, x4, x3, x2, x1, x0) \
(((x2) & (((x1) & ~(x3)) ^ ((x4) & (x5)) ^ (x6) ^ (x0))) \
^ ((x4) & ((x1) ^ (x5))) ^ ((x3 & (x5)) ^ (x0)))
/*
* Basic definition from the reference paper.
*
#define F3(x6, x5, x4, x3, x2, x1, x0) \
(((x1) & (x2) & (x3)) ^ ((x1) & (x4)) ^ ((x2) & (x5)) \
^ ((x3) & (x6)) ^ ((x0) & (x3)) ^ (x0))
*
*/
#define F3(x6, x5, x4, x3, x2, x1, x0) \
(((x3) & (((x1) & (x2)) ^ (x6) ^ (x0))) \
^ ((x1) & (x4)) ^ ((x2) & (x5)) ^ (x0))
/*
* Basic definition from the reference paper.
*
#define F4(x6, x5, x4, x3, x2, x1, x0) \
(((x1) & (x2) & (x3)) ^ ((x2) & (x4) & (x5)) ^ ((x3) & (x4) & (x6)) \
^ ((x1) & (x4)) ^ ((x2) & (x6)) ^ ((x3) & (x4)) ^ ((x3) & (x5)) \
^ ((x3) & (x6)) ^ ((x4) & (x5)) ^ ((x4) & (x6)) ^ ((x0) & (x4)) ^ (x0))
*
*/
#define F4(x6, x5, x4, x3, x2, x1, x0) \
(((x3) & (((x1) & (x2)) ^ ((x4) | (x6)) ^ (x5))) \
^ ((x4) & ((~(x2) & (x5)) ^ (x1) ^ (x6) ^ (x0))) \
^ ((x2) & (x6)) ^ (x0))
/*
* Basic definition from the reference paper.
*
#define F5(x6, x5, x4, x3, x2, x1, x0) \
(((x1) & (x4)) ^ ((x2) & (x5)) ^ ((x3) & (x6)) \
^ ((x0) & (x1) & (x2) & (x3)) ^ ((x0) & (x5)) ^ (x0))
*
*/
#define F5(x6, x5, x4, x3, x2, x1, x0) \
(((x0) & ~(((x1) & (x2) & (x3)) ^ (x5))) \
^ ((x1) & (x4)) ^ ((x2) & (x5)) ^ ((x3) & (x6)))
/*
* The macros below integrate the phi() permutations, depending on the
* pass and the total number of passes.
*/
#define FP3_1(x6, x5, x4, x3, x2, x1, x0) \
F1(x1, x0, x3, x5, x6, x2, x4)
#define FP3_2(x6, x5, x4, x3, x2, x1, x0) \
F2(x4, x2, x1, x0, x5, x3, x6)
#define FP3_3(x6, x5, x4, x3, x2, x1, x0) \
F3(x6, x1, x2, x3, x4, x5, x0)
#define FP4_1(x6, x5, x4, x3, x2, x1, x0) \
F1(x2, x6, x1, x4, x5, x3, x0)
#define FP4_2(x6, x5, x4, x3, x2, x1, x0) \
F2(x3, x5, x2, x0, x1, x6, x4)
#define FP4_3(x6, x5, x4, x3, x2, x1, x0) \
F3(x1, x4, x3, x6, x0, x2, x5)
#define FP4_4(x6, x5, x4, x3, x2, x1, x0) \
F4(x6, x4, x0, x5, x2, x1, x3)
#define FP5_1(x6, x5, x4, x3, x2, x1, x0) \
F1(x3, x4, x1, x0, x5, x2, x6)
#define FP5_2(x6, x5, x4, x3, x2, x1, x0) \
F2(x6, x2, x1, x0, x3, x4, x5)
#define FP5_3(x6, x5, x4, x3, x2, x1, x0) \
F3(x2, x6, x0, x4, x3, x1, x5)
#define FP5_4(x6, x5, x4, x3, x2, x1, x0) \
F4(x1, x5, x3, x2, x0, x4, x6)
#define FP5_5(x6, x5, x4, x3, x2, x1, x0) \
F5(x2, x5, x0, x6, x4, x3, x1)
/*
* One step, for "n" passes, pass number "p" (1 <= p <= n), using
* input word number "w" and step constant "c".
*/
#define STEP(n, p, x7, x6, x5, x4, x3, x2, x1, x0, w, c) do { \
sph_u32 t = FP ## n ## _ ## p(x6, x5, x4, x3, x2, x1, x0); \
(x7) = SPH_T32(SPH_ROTR32(t, 7) + SPH_ROTR32((x7), 11) \
+ (w) + (c)); \
} while (0)
/*
* PASSy(n, in) computes pass number "y", for a total of "n", using the
* one-argument macro "in" to access input words. Current state is assumed
* to be held in variables "s0" to "s7".
*/
#if SPH_SMALL_FOOTPRINT_HAVAL
#define PASS1(n, in) do { \
unsigned pass_count; \
for (pass_count = 0; pass_count < 32; pass_count += 8) { \
STEP(n, 1, s7, s6, s5, s4, s3, s2, s1, s0, \
in(pass_count + 0), SPH_C32(0x00000000)); \
STEP(n, 1, s6, s5, s4, s3, s2, s1, s0, s7, \
in(pass_count + 1), SPH_C32(0x00000000)); \
STEP(n, 1, s5, s4, s3, s2, s1, s0, s7, s6, \
in(pass_count + 2), SPH_C32(0x00000000)); \
STEP(n, 1, s4, s3, s2, s1, s0, s7, s6, s5, \
in(pass_count + 3), SPH_C32(0x00000000)); \
STEP(n, 1, s3, s2, s1, s0, s7, s6, s5, s4, \
in(pass_count + 4), SPH_C32(0x00000000)); \
STEP(n, 1, s2, s1, s0, s7, s6, s5, s4, s3, \
in(pass_count + 5), SPH_C32(0x00000000)); \
STEP(n, 1, s1, s0, s7, s6, s5, s4, s3, s2, \
in(pass_count + 6), SPH_C32(0x00000000)); \
STEP(n, 1, s0, s7, s6, s5, s4, s3, s2, s1, \
in(pass_count + 7), SPH_C32(0x00000000)); \
} \
} while (0)
#define PASSG(p, n, in) do { \
unsigned pass_count; \
for (pass_count = 0; pass_count < 32; pass_count += 8) { \
STEP(n, p, s7, s6, s5, s4, s3, s2, s1, s0, \
in(MP ## p[pass_count + 0]), \
RK ## p[pass_count + 0]); \
STEP(n, p, s6, s5, s4, s3, s2, s1, s0, s7, \
in(MP ## p[pass_count + 1]), \
RK ## p[pass_count + 1]); \
STEP(n, p, s5, s4, s3, s2, s1, s0, s7, s6, \
in(MP ## p[pass_count + 2]), \
RK ## p[pass_count + 2]); \
STEP(n, p, s4, s3, s2, s1, s0, s7, s6, s5, \
in(MP ## p[pass_count + 3]), \
RK ## p[pass_count + 3]); \
STEP(n, p, s3, s2, s1, s0, s7, s6, s5, s4, \
in(MP ## p[pass_count + 4]), \
RK ## p[pass_count + 4]); \
STEP(n, p, s2, s1, s0, s7, s6, s5, s4, s3, \
in(MP ## p[pass_count + 5]), \
RK ## p[pass_count + 5]); \
STEP(n, p, s1, s0, s7, s6, s5, s4, s3, s2, \
in(MP ## p[pass_count + 6]), \
RK ## p[pass_count + 6]); \
STEP(n, p, s0, s7, s6, s5, s4, s3, s2, s1, \
in(MP ## p[pass_count + 7]), \
RK ## p[pass_count + 7]); \
} \
} while (0)
#define PASS2(n, in) PASSG(2, n, in)
#define PASS3(n, in) PASSG(3, n, in)
#define PASS4(n, in) PASSG(4, n, in)
#define PASS5(n, in) PASSG(5, n, in)
static const unsigned MP2[32] = {
5, 14, 26, 18, 11, 28, 7, 16,
0, 23, 20, 22, 1, 10, 4, 8,
30, 3, 21, 9, 17, 24, 29, 6,
19, 12, 15, 13, 2, 25, 31, 27
};
static const unsigned MP3[32] = {
19, 9, 4, 20, 28, 17, 8, 22,
29, 14, 25, 12, 24, 30, 16, 26,
31, 15, 7, 3, 1, 0, 18, 27,
13, 6, 21, 10, 23, 11, 5, 2
};
static const unsigned MP4[32] = {
24, 4, 0, 14, 2, 7, 28, 23,
26, 6, 30, 20, 18, 25, 19, 3,
22, 11, 31, 21, 8, 27, 12, 9,
1, 29, 5, 15, 17, 10, 16, 13
};
static const unsigned MP5[32] = {
27, 3, 21, 26, 17, 11, 20, 29,
19, 0, 12, 7, 13, 8, 31, 10,
5, 9, 14, 30, 18, 6, 28, 24,
2, 23, 16, 22, 4, 1, 25, 15
};
static const sph_u32 RK2[32] = {
SPH_C32(0x452821E6), SPH_C32(0x38D01377),
SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C),
SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD),
SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917),
SPH_C32(0x9216D5D9), SPH_C32(0x8979FB1B),
SPH_C32(0xD1310BA6), SPH_C32(0x98DFB5AC),
SPH_C32(0x2FFD72DB), SPH_C32(0xD01ADFB7),
SPH_C32(0xB8E1AFED), SPH_C32(0x6A267E96),
SPH_C32(0xBA7C9045), SPH_C32(0xF12C7F99),
SPH_C32(0x24A19947), SPH_C32(0xB3916CF7),
SPH_C32(0x0801F2E2), SPH_C32(0x858EFC16),
SPH_C32(0x636920D8), SPH_C32(0x71574E69),
SPH_C32(0xA458FEA3), SPH_C32(0xF4933D7E),
SPH_C32(0x0D95748F), SPH_C32(0x728EB658),
SPH_C32(0x718BCD58), SPH_C32(0x82154AEE),
SPH_C32(0x7B54A41D), SPH_C32(0xC25A59B5)
};
static const sph_u32 RK3[32] = {
SPH_C32(0x9C30D539), SPH_C32(0x2AF26013),
SPH_C32(0xC5D1B023), SPH_C32(0x286085F0),
SPH_C32(0xCA417918), SPH_C32(0xB8DB38EF),
SPH_C32(0x8E79DCB0), SPH_C32(0x603A180E),
SPH_C32(0x6C9E0E8B), SPH_C32(0xB01E8A3E),
SPH_C32(0xD71577C1), SPH_C32(0xBD314B27),
SPH_C32(0x78AF2FDA), SPH_C32(0x55605C60),
SPH_C32(0xE65525F3), SPH_C32(0xAA55AB94),
SPH_C32(0x57489862), SPH_C32(0x63E81440),
SPH_C32(0x55CA396A), SPH_C32(0x2AAB10B6),
SPH_C32(0xB4CC5C34), SPH_C32(0x1141E8CE),
SPH_C32(0xA15486AF), SPH_C32(0x7C72E993),
SPH_C32(0xB3EE1411), SPH_C32(0x636FBC2A),
SPH_C32(0x2BA9C55D), SPH_C32(0x741831F6),
SPH_C32(0xCE5C3E16), SPH_C32(0x9B87931E),
SPH_C32(0xAFD6BA33), SPH_C32(0x6C24CF5C)
};
static const sph_u32 RK4[32] = {
SPH_C32(0x7A325381), SPH_C32(0x28958677),
SPH_C32(0x3B8F4898), SPH_C32(0x6B4BB9AF),
SPH_C32(0xC4BFE81B), SPH_C32(0x66282193),
SPH_C32(0x61D809CC), SPH_C32(0xFB21A991),
SPH_C32(0x487CAC60), SPH_C32(0x5DEC8032),
SPH_C32(0xEF845D5D), SPH_C32(0xE98575B1),
SPH_C32(0xDC262302), SPH_C32(0xEB651B88),
SPH_C32(0x23893E81), SPH_C32(0xD396ACC5),
SPH_C32(0x0F6D6FF3), SPH_C32(0x83F44239),
SPH_C32(0x2E0B4482), SPH_C32(0xA4842004),
SPH_C32(0x69C8F04A), SPH_C32(0x9E1F9B5E),
SPH_C32(0x21C66842), SPH_C32(0xF6E96C9A),
SPH_C32(0x670C9C61), SPH_C32(0xABD388F0),
SPH_C32(0x6A51A0D2), SPH_C32(0xD8542F68),
SPH_C32(0x960FA728), SPH_C32(0xAB5133A3),
SPH_C32(0x6EEF0B6C), SPH_C32(0x137A3BE4)
};
static const sph_u32 RK5[32] = {
SPH_C32(0xBA3BF050), SPH_C32(0x7EFB2A98),
SPH_C32(0xA1F1651D), SPH_C32(0x39AF0176),
SPH_C32(0x66CA593E), SPH_C32(0x82430E88),
SPH_C32(0x8CEE8619), SPH_C32(0x456F9FB4),
SPH_C32(0x7D84A5C3), SPH_C32(0x3B8B5EBE),
SPH_C32(0xE06F75D8), SPH_C32(0x85C12073),
SPH_C32(0x401A449F), SPH_C32(0x56C16AA6),
SPH_C32(0x4ED3AA62), SPH_C32(0x363F7706),
SPH_C32(0x1BFEDF72), SPH_C32(0x429B023D),
SPH_C32(0x37D0D724), SPH_C32(0xD00A1248),
SPH_C32(0xDB0FEAD3), SPH_C32(0x49F1C09B),
SPH_C32(0x075372C9), SPH_C32(0x80991B7B),
SPH_C32(0x25D479D8), SPH_C32(0xF6E8DEF7),
SPH_C32(0xE3FE501A), SPH_C32(0xB6794C3B),
SPH_C32(0x976CE0BD), SPH_C32(0x04C006BA),
SPH_C32(0xC1A94FB6), SPH_C32(0x409F60C4)
};
#else
#define PASS1(n, in) do { \
STEP(n, 1, s7, s6, s5, s4, s3, s2, s1, s0, in( 0), SPH_C32(0x00000000)); \
STEP(n, 1, s6, s5, s4, s3, s2, s1, s0, s7, in( 1), SPH_C32(0x00000000)); \
STEP(n, 1, s5, s4, s3, s2, s1, s0, s7, s6, in( 2), SPH_C32(0x00000000)); \
STEP(n, 1, s4, s3, s2, s1, s0, s7, s6, s5, in( 3), SPH_C32(0x00000000)); \
STEP(n, 1, s3, s2, s1, s0, s7, s6, s5, s4, in( 4), SPH_C32(0x00000000)); \
STEP(n, 1, s2, s1, s0, s7, s6, s5, s4, s3, in( 5), SPH_C32(0x00000000)); \
STEP(n, 1, s1, s0, s7, s6, s5, s4, s3, s2, in( 6), SPH_C32(0x00000000)); \
STEP(n, 1, s0, s7, s6, s5, s4, s3, s2, s1, in( 7), SPH_C32(0x00000000)); \
\
STEP(n, 1, s7, s6, s5, s4, s3, s2, s1, s0, in( 8), SPH_C32(0x00000000)); \
STEP(n, 1, s6, s5, s4, s3, s2, s1, s0, s7, in( 9), SPH_C32(0x00000000)); \
STEP(n, 1, s5, s4, s3, s2, s1, s0, s7, s6, in(10), SPH_C32(0x00000000)); \
STEP(n, 1, s4, s3, s2, s1, s0, s7, s6, s5, in(11), SPH_C32(0x00000000)); \
STEP(n, 1, s3, s2, s1, s0, s7, s6, s5, s4, in(12), SPH_C32(0x00000000)); \
STEP(n, 1, s2, s1, s0, s7, s6, s5, s4, s3, in(13), SPH_C32(0x00000000)); \
STEP(n, 1, s1, s0, s7, s6, s5, s4, s3, s2, in(14), SPH_C32(0x00000000)); \
STEP(n, 1, s0, s7, s6, s5, s4, s3, s2, s1, in(15), SPH_C32(0x00000000)); \
\
STEP(n, 1, s7, s6, s5, s4, s3, s2, s1, s0, in(16), SPH_C32(0x00000000)); \
STEP(n, 1, s6, s5, s4, s3, s2, s1, s0, s7, in(17), SPH_C32(0x00000000)); \
STEP(n, 1, s5, s4, s3, s2, s1, s0, s7, s6, in(18), SPH_C32(0x00000000)); \
STEP(n, 1, s4, s3, s2, s1, s0, s7, s6, s5, in(19), SPH_C32(0x00000000)); \
STEP(n, 1, s3, s2, s1, s0, s7, s6, s5, s4, in(20), SPH_C32(0x00000000)); \
STEP(n, 1, s2, s1, s0, s7, s6, s5, s4, s3, in(21), SPH_C32(0x00000000)); \
STEP(n, 1, s1, s0, s7, s6, s5, s4, s3, s2, in(22), SPH_C32(0x00000000)); \
STEP(n, 1, s0, s7, s6, s5, s4, s3, s2, s1, in(23), SPH_C32(0x00000000)); \
\
STEP(n, 1, s7, s6, s5, s4, s3, s2, s1, s0, in(24), SPH_C32(0x00000000)); \
STEP(n, 1, s6, s5, s4, s3, s2, s1, s0, s7, in(25), SPH_C32(0x00000000)); \
STEP(n, 1, s5, s4, s3, s2, s1, s0, s7, s6, in(26), SPH_C32(0x00000000)); \
STEP(n, 1, s4, s3, s2, s1, s0, s7, s6, s5, in(27), SPH_C32(0x00000000)); \
STEP(n, 1, s3, s2, s1, s0, s7, s6, s5, s4, in(28), SPH_C32(0x00000000)); \
STEP(n, 1, s2, s1, s0, s7, s6, s5, s4, s3, in(29), SPH_C32(0x00000000)); \
STEP(n, 1, s1, s0, s7, s6, s5, s4, s3, s2, in(30), SPH_C32(0x00000000)); \
STEP(n, 1, s0, s7, s6, s5, s4, s3, s2, s1, in(31), SPH_C32(0x00000000)); \
} while (0)
#define PASS2(n, in) do { \
STEP(n, 2, s7, s6, s5, s4, s3, s2, s1, s0, in( 5), SPH_C32(0x452821E6)); \
STEP(n, 2, s6, s5, s4, s3, s2, s1, s0, s7, in(14), SPH_C32(0x38D01377)); \
STEP(n, 2, s5, s4, s3, s2, s1, s0, s7, s6, in(26), SPH_C32(0xBE5466CF)); \
STEP(n, 2, s4, s3, s2, s1, s0, s7, s6, s5, in(18), SPH_C32(0x34E90C6C)); \
STEP(n, 2, s3, s2, s1, s0, s7, s6, s5, s4, in(11), SPH_C32(0xC0AC29B7)); \
STEP(n, 2, s2, s1, s0, s7, s6, s5, s4, s3, in(28), SPH_C32(0xC97C50DD)); \
STEP(n, 2, s1, s0, s7, s6, s5, s4, s3, s2, in( 7), SPH_C32(0x3F84D5B5)); \
STEP(n, 2, s0, s7, s6, s5, s4, s3, s2, s1, in(16), SPH_C32(0xB5470917)); \
\
STEP(n, 2, s7, s6, s5, s4, s3, s2, s1, s0, in( 0), SPH_C32(0x9216D5D9)); \
STEP(n, 2, s6, s5, s4, s3, s2, s1, s0, s7, in(23), SPH_C32(0x8979FB1B)); \
STEP(n, 2, s5, s4, s3, s2, s1, s0, s7, s6, in(20), SPH_C32(0xD1310BA6)); \
STEP(n, 2, s4, s3, s2, s1, s0, s7, s6, s5, in(22), SPH_C32(0x98DFB5AC)); \
STEP(n, 2, s3, s2, s1, s0, s7, s6, s5, s4, in( 1), SPH_C32(0x2FFD72DB)); \
STEP(n, 2, s2, s1, s0, s7, s6, s5, s4, s3, in(10), SPH_C32(0xD01ADFB7)); \
STEP(n, 2, s1, s0, s7, s6, s5, s4, s3, s2, in( 4), SPH_C32(0xB8E1AFED)); \
STEP(n, 2, s0, s7, s6, s5, s4, s3, s2, s1, in( 8), SPH_C32(0x6A267E96)); \
\
STEP(n, 2, s7, s6, s5, s4, s3, s2, s1, s0, in(30), SPH_C32(0xBA7C9045)); \
STEP(n, 2, s6, s5, s4, s3, s2, s1, s0, s7, in( 3), SPH_C32(0xF12C7F99)); \
STEP(n, 2, s5, s4, s3, s2, s1, s0, s7, s6, in(21), SPH_C32(0x24A19947)); \
STEP(n, 2, s4, s3, s2, s1, s0, s7, s6, s5, in( 9), SPH_C32(0xB3916CF7)); \
STEP(n, 2, s3, s2, s1, s0, s7, s6, s5, s4, in(17), SPH_C32(0x0801F2E2)); \
STEP(n, 2, s2, s1, s0, s7, s6, s5, s4, s3, in(24), SPH_C32(0x858EFC16)); \
STEP(n, 2, s1, s0, s7, s6, s5, s4, s3, s2, in(29), SPH_C32(0x636920D8)); \
STEP(n, 2, s0, s7, s6, s5, s4, s3, s2, s1, in( 6), SPH_C32(0x71574E69)); \
\
STEP(n, 2, s7, s6, s5, s4, s3, s2, s1, s0, in(19), SPH_C32(0xA458FEA3)); \
STEP(n, 2, s6, s5, s4, s3, s2, s1, s0, s7, in(12), SPH_C32(0xF4933D7E)); \
STEP(n, 2, s5, s4, s3, s2, s1, s0, s7, s6, in(15), SPH_C32(0x0D95748F)); \
STEP(n, 2, s4, s3, s2, s1, s0, s7, s6, s5, in(13), SPH_C32(0x728EB658)); \
STEP(n, 2, s3, s2, s1, s0, s7, s6, s5, s4, in( 2), SPH_C32(0x718BCD58)); \
STEP(n, 2, s2, s1, s0, s7, s6, s5, s4, s3, in(25), SPH_C32(0x82154AEE)); \
STEP(n, 2, s1, s0, s7, s6, s5, s4, s3, s2, in(31), SPH_C32(0x7B54A41D)); \
STEP(n, 2, s0, s7, s6, s5, s4, s3, s2, s1, in(27), SPH_C32(0xC25A59B5)); \
} while (0)
#define PASS3(n, in) do { \
STEP(n, 3, s7, s6, s5, s4, s3, s2, s1, s0, in(19), SPH_C32(0x9C30D539)); \
STEP(n, 3, s6, s5, s4, s3, s2, s1, s0, s7, in( 9), SPH_C32(0x2AF26013)); \
STEP(n, 3, s5, s4, s3, s2, s1, s0, s7, s6, in( 4), SPH_C32(0xC5D1B023)); \
STEP(n, 3, s4, s3, s2, s1, s0, s7, s6, s5, in(20), SPH_C32(0x286085F0)); \
STEP(n, 3, s3, s2, s1, s0, s7, s6, s5, s4, in(28), SPH_C32(0xCA417918)); \
STEP(n, 3, s2, s1, s0, s7, s6, s5, s4, s3, in(17), SPH_C32(0xB8DB38EF)); \
STEP(n, 3, s1, s0, s7, s6, s5, s4, s3, s2, in( 8), SPH_C32(0x8E79DCB0)); \
STEP(n, 3, s0, s7, s6, s5, s4, s3, s2, s1, in(22), SPH_C32(0x603A180E)); \
\
STEP(n, 3, s7, s6, s5, s4, s3, s2, s1, s0, in(29), SPH_C32(0x6C9E0E8B)); \
STEP(n, 3, s6, s5, s4, s3, s2, s1, s0, s7, in(14), SPH_C32(0xB01E8A3E)); \
STEP(n, 3, s5, s4, s3, s2, s1, s0, s7, s6, in(25), SPH_C32(0xD71577C1)); \
STEP(n, 3, s4, s3, s2, s1, s0, s7, s6, s5, in(12), SPH_C32(0xBD314B27)); \
STEP(n, 3, s3, s2, s1, s0, s7, s6, s5, s4, in(24), SPH_C32(0x78AF2FDA)); \
STEP(n, 3, s2, s1, s0, s7, s6, s5, s4, s3, in(30), SPH_C32(0x55605C60)); \
STEP(n, 3, s1, s0, s7, s6, s5, s4, s3, s2, in(16), SPH_C32(0xE65525F3)); \
STEP(n, 3, s0, s7, s6, s5, s4, s3, s2, s1, in(26), SPH_C32(0xAA55AB94)); \
\
STEP(n, 3, s7, s6, s5, s4, s3, s2, s1, s0, in(31), SPH_C32(0x57489862)); \
STEP(n, 3, s6, s5, s4, s3, s2, s1, s0, s7, in(15), SPH_C32(0x63E81440)); \
STEP(n, 3, s5, s4, s3, s2, s1, s0, s7, s6, in( 7), SPH_C32(0x55CA396A)); \
STEP(n, 3, s4, s3, s2, s1, s0, s7, s6, s5, in( 3), SPH_C32(0x2AAB10B6)); \
STEP(n, 3, s3, s2, s1, s0, s7, s6, s5, s4, in( 1), SPH_C32(0xB4CC5C34)); \
STEP(n, 3, s2, s1, s0, s7, s6, s5, s4, s3, in( 0), SPH_C32(0x1141E8CE)); \
STEP(n, 3, s1, s0, s7, s6, s5, s4, s3, s2, in(18), SPH_C32(0xA15486AF)); \
STEP(n, 3, s0, s7, s6, s5, s4, s3, s2, s1, in(27), SPH_C32(0x7C72E993)); \
\
STEP(n, 3, s7, s6, s5, s4, s3, s2, s1, s0, in(13), SPH_C32(0xB3EE1411)); \
STEP(n, 3, s6, s5, s4, s3, s2, s1, s0, s7, in( 6), SPH_C32(0x636FBC2A)); \
STEP(n, 3, s5, s4, s3, s2, s1, s0, s7, s6, in(21), SPH_C32(0x2BA9C55D)); \
STEP(n, 3, s4, s3, s2, s1, s0, s7, s6, s5, in(10), SPH_C32(0x741831F6)); \
STEP(n, 3, s3, s2, s1, s0, s7, s6, s5, s4, in(23), SPH_C32(0xCE5C3E16)); \
STEP(n, 3, s2, s1, s0, s7, s6, s5, s4, s3, in(11), SPH_C32(0x9B87931E)); \
STEP(n, 3, s1, s0, s7, s6, s5, s4, s3, s2, in( 5), SPH_C32(0xAFD6BA33)); \
STEP(n, 3, s0, s7, s6, s5, s4, s3, s2, s1, in( 2), SPH_C32(0x6C24CF5C)); \
} while (0)
#define PASS4(n, in) do { \
STEP(n, 4, s7, s6, s5, s4, s3, s2, s1, s0, in(24), SPH_C32(0x7A325381)); \
STEP(n, 4, s6, s5, s4, s3, s2, s1, s0, s7, in( 4), SPH_C32(0x28958677)); \
STEP(n, 4, s5, s4, s3, s2, s1, s0, s7, s6, in( 0), SPH_C32(0x3B8F4898)); \
STEP(n, 4, s4, s3, s2, s1, s0, s7, s6, s5, in(14), SPH_C32(0x6B4BB9AF)); \
STEP(n, 4, s3, s2, s1, s0, s7, s6, s5, s4, in( 2), SPH_C32(0xC4BFE81B)); \
STEP(n, 4, s2, s1, s0, s7, s6, s5, s4, s3, in( 7), SPH_C32(0x66282193)); \
STEP(n, 4, s1, s0, s7, s6, s5, s4, s3, s2, in(28), SPH_C32(0x61D809CC)); \
STEP(n, 4, s0, s7, s6, s5, s4, s3, s2, s1, in(23), SPH_C32(0xFB21A991)); \
\
STEP(n, 4, s7, s6, s5, s4, s3, s2, s1, s0, in(26), SPH_C32(0x487CAC60)); \
STEP(n, 4, s6, s5, s4, s3, s2, s1, s0, s7, in( 6), SPH_C32(0x5DEC8032)); \
STEP(n, 4, s5, s4, s3, s2, s1, s0, s7, s6, in(30), SPH_C32(0xEF845D5D)); \
STEP(n, 4, s4, s3, s2, s1, s0, s7, s6, s5, in(20), SPH_C32(0xE98575B1)); \
STEP(n, 4, s3, s2, s1, s0, s7, s6, s5, s4, in(18), SPH_C32(0xDC262302)); \
STEP(n, 4, s2, s1, s0, s7, s6, s5, s4, s3, in(25), SPH_C32(0xEB651B88)); \
STEP(n, 4, s1, s0, s7, s6, s5, s4, s3, s2, in(19), SPH_C32(0x23893E81)); \
STEP(n, 4, s0, s7, s6, s5, s4, s3, s2, s1, in( 3), SPH_C32(0xD396ACC5)); \
\
STEP(n, 4, s7, s6, s5, s4, s3, s2, s1, s0, in(22), SPH_C32(0x0F6D6FF3)); \
STEP(n, 4, s6, s5, s4, s3, s2, s1, s0, s7, in(11), SPH_C32(0x83F44239)); \
STEP(n, 4, s5, s4, s3, s2, s1, s0, s7, s6, in(31), SPH_C32(0x2E0B4482)); \
STEP(n, 4, s4, s3, s2, s1, s0, s7, s6, s5, in(21), SPH_C32(0xA4842004)); \
STEP(n, 4, s3, s2, s1, s0, s7, s6, s5, s4, in( 8), SPH_C32(0x69C8F04A)); \
STEP(n, 4, s2, s1, s0, s7, s6, s5, s4, s3, in(27), SPH_C32(0x9E1F9B5E)); \
STEP(n, 4, s1, s0, s7, s6, s5, s4, s3, s2, in(12), SPH_C32(0x21C66842)); \
STEP(n, 4, s0, s7, s6, s5, s4, s3, s2, s1, in( 9), SPH_C32(0xF6E96C9A)); \
\
STEP(n, 4, s7, s6, s5, s4, s3, s2, s1, s0, in( 1), SPH_C32(0x670C9C61)); \
STEP(n, 4, s6, s5, s4, s3, s2, s1, s0, s7, in(29), SPH_C32(0xABD388F0)); \
STEP(n, 4, s5, s4, s3, s2, s1, s0, s7, s6, in( 5), SPH_C32(0x6A51A0D2)); \
STEP(n, 4, s4, s3, s2, s1, s0, s7, s6, s5, in(15), SPH_C32(0xD8542F68)); \
STEP(n, 4, s3, s2, s1, s0, s7, s6, s5, s4, in(17), SPH_C32(0x960FA728)); \
STEP(n, 4, s2, s1, s0, s7, s6, s5, s4, s3, in(10), SPH_C32(0xAB5133A3)); \
STEP(n, 4, s1, s0, s7, s6, s5, s4, s3, s2, in(16), SPH_C32(0x6EEF0B6C)); \
STEP(n, 4, s0, s7, s6, s5, s4, s3, s2, s1, in(13), SPH_C32(0x137A3BE4)); \
} while (0)
#define PASS5(n, in) do { \
STEP(n, 5, s7, s6, s5, s4, s3, s2, s1, s0, in(27), SPH_C32(0xBA3BF050)); \
STEP(n, 5, s6, s5, s4, s3, s2, s1, s0, s7, in( 3), SPH_C32(0x7EFB2A98)); \
STEP(n, 5, s5, s4, s3, s2, s1, s0, s7, s6, in(21), SPH_C32(0xA1F1651D)); \
STEP(n, 5, s4, s3, s2, s1, s0, s7, s6, s5, in(26), SPH_C32(0x39AF0176)); \
STEP(n, 5, s3, s2, s1, s0, s7, s6, s5, s4, in(17), SPH_C32(0x66CA593E)); \
STEP(n, 5, s2, s1, s0, s7, s6, s5, s4, s3, in(11), SPH_C32(0x82430E88)); \
STEP(n, 5, s1, s0, s7, s6, s5, s4, s3, s2, in(20), SPH_C32(0x8CEE8619)); \
STEP(n, 5, s0, s7, s6, s5, s4, s3, s2, s1, in(29), SPH_C32(0x456F9FB4)); \
\
STEP(n, 5, s7, s6, s5, s4, s3, s2, s1, s0, in(19), SPH_C32(0x7D84A5C3)); \
STEP(n, 5, s6, s5, s4, s3, s2, s1, s0, s7, in( 0), SPH_C32(0x3B8B5EBE)); \
STEP(n, 5, s5, s4, s3, s2, s1, s0, s7, s6, in(12), SPH_C32(0xE06F75D8)); \
STEP(n, 5, s4, s3, s2, s1, s0, s7, s6, s5, in( 7), SPH_C32(0x85C12073)); \
STEP(n, 5, s3, s2, s1, s0, s7, s6, s5, s4, in(13), SPH_C32(0x401A449F)); \
STEP(n, 5, s2, s1, s0, s7, s6, s5, s4, s3, in( 8), SPH_C32(0x56C16AA6)); \
STEP(n, 5, s1, s0, s7, s6, s5, s4, s3, s2, in(31), SPH_C32(0x4ED3AA62)); \
STEP(n, 5, s0, s7, s6, s5, s4, s3, s2, s1, in(10), SPH_C32(0x363F7706)); \
\
STEP(n, 5, s7, s6, s5, s4, s3, s2, s1, s0, in( 5), SPH_C32(0x1BFEDF72)); \
STEP(n, 5, s6, s5, s4, s3, s2, s1, s0, s7, in( 9), SPH_C32(0x429B023D)); \
STEP(n, 5, s5, s4, s3, s2, s1, s0, s7, s6, in(14), SPH_C32(0x37D0D724)); \
STEP(n, 5, s4, s3, s2, s1, s0, s7, s6, s5, in(30), SPH_C32(0xD00A1248)); \
STEP(n, 5, s3, s2, s1, s0, s7, s6, s5, s4, in(18), SPH_C32(0xDB0FEAD3)); \
STEP(n, 5, s2, s1, s0, s7, s6, s5, s4, s3, in( 6), SPH_C32(0x49F1C09B)); \
STEP(n, 5, s1, s0, s7, s6, s5, s4, s3, s2, in(28), SPH_C32(0x075372C9)); \
STEP(n, 5, s0, s7, s6, s5, s4, s3, s2, s1, in(24), SPH_C32(0x80991B7B)); \
\
STEP(n, 5, s7, s6, s5, s4, s3, s2, s1, s0, in( 2), SPH_C32(0x25D479D8)); \
STEP(n, 5, s6, s5, s4, s3, s2, s1, s0, s7, in(23), SPH_C32(0xF6E8DEF7)); \
STEP(n, 5, s5, s4, s3, s2, s1, s0, s7, s6, in(16), SPH_C32(0xE3FE501A)); \
STEP(n, 5, s4, s3, s2, s1, s0, s7, s6, s5, in(22), SPH_C32(0xB6794C3B)); \
STEP(n, 5, s3, s2, s1, s0, s7, s6, s5, s4, in( 4), SPH_C32(0x976CE0BD)); \
STEP(n, 5, s2, s1, s0, s7, s6, s5, s4, s3, in( 1), SPH_C32(0x04C006BA)); \
STEP(n, 5, s1, s0, s7, s6, s5, s4, s3, s2, in(25), SPH_C32(0xC1A94FB6)); \
STEP(n, 5, s0, s7, s6, s5, s4, s3, s2, s1, in(15), SPH_C32(0x409F60C4)); \
} while (0)
#endif
#define SAVE_STATE \
sph_u32 u0, u1, u2, u3, u4, u5, u6, u7; \
do { \
u0 = s0; \
u1 = s1; \
u2 = s2; \
u3 = s3; \
u4 = s4; \
u5 = s5; \
u6 = s6; \
u7 = s7; \
} while (0)
#define UPDATE_STATE do { \
s0 = SPH_T32(s0 + u0); \
s1 = SPH_T32(s1 + u1); \
s2 = SPH_T32(s2 + u2); \
s3 = SPH_T32(s3 + u3); \
s4 = SPH_T32(s4 + u4); \
s5 = SPH_T32(s5 + u5); \
s6 = SPH_T32(s6 + u6); \
s7 = SPH_T32(s7 + u7); \
} while (0)
/*
* COREn(in) performs the core HAVAL computation for "n" passes, using
* the one-argument macro "in" to access the input words. Running state
* is held in variable "s0" to "s7".
*/
#define CORE3(in) do { \
SAVE_STATE; \
PASS1(3, in); \
PASS2(3, in); \
PASS3(3, in); \
UPDATE_STATE; \
} while (0)
#define CORE4(in) do { \
SAVE_STATE; \
PASS1(4, in); \
PASS2(4, in); \
PASS3(4, in); \
PASS4(4, in); \
UPDATE_STATE; \
} while (0)
#define CORE5(in) do { \
SAVE_STATE; \
PASS1(5, in); \
PASS2(5, in); \
PASS3(5, in); \
PASS4(5, in); \
PASS5(5, in); \
UPDATE_STATE; \
} while (0)
/*
* DSTATE declares the state variables "s0" to "s7".
*/
#define DSTATE sph_u32 s0, s1, s2, s3, s4, s5, s6, s7
/*
* RSTATE fills the state variables from the context "sc".
*/
#define RSTATE do { \
s0 = sc->s0; \
s1 = sc->s1; \
s2 = sc->s2; \
s3 = sc->s3; \
s4 = sc->s4; \
s5 = sc->s5; \
s6 = sc->s6; \
s7 = sc->s7; \
} while (0)
/*
* WSTATE updates the context "sc" from the state variables.
*/
#define WSTATE do { \
sc->s0 = s0; \
sc->s1 = s1; \
sc->s2 = s2; \
sc->s3 = s3; \
sc->s4 = s4; \
sc->s5 = s5; \
sc->s6 = s6; \
sc->s7 = s7; \
} while (0)
/*
* Initialize a context. "olen" is the output length, in 32-bit words
* (between 4 and 8, inclusive). "passes" is the number of passes
* (3, 4 or 5).
*/
static void
haval_init(sph_haval_context *sc, unsigned olen, unsigned passes)
{
sc->s0 = SPH_C32(0x243F6A88);
sc->s1 = SPH_C32(0x85A308D3);
sc->s2 = SPH_C32(0x13198A2E);
sc->s3 = SPH_C32(0x03707344);
sc->s4 = SPH_C32(0xA4093822);
sc->s5 = SPH_C32(0x299F31D0);
sc->s6 = SPH_C32(0x082EFA98);
sc->s7 = SPH_C32(0xEC4E6C89);
sc->olen = olen;
sc->passes = passes;
#if SPH_64
sc->count = 0;
#else
sc->count_high = 0;
sc->count_low = 0;
#endif
}
/*
* IN_PREPARE(data) contains declarations and code to prepare for
* reading input words pointed to by "data".
* INW(i) reads the word number "i" (from 0 to 31).
*/
#if SPH_LITTLE_FAST
#define IN_PREPARE(indata) const unsigned char *const load_ptr = \
(const unsigned char *)(indata)
#define INW(i) sph_dec32le_aligned(load_ptr + 4 * (i))
#else
#define IN_PREPARE(indata) \
sph_u32 X_var[32]; \
int load_index; \
\
for (load_index = 0; load_index < 32; load_index ++) \
X_var[load_index] = sph_dec32le_aligned( \
(const unsigned char *)(indata) + 4 * load_index)
#define INW(i) X_var[i]
#endif
/*
* Mixing operation used for 128-bit output tailoring. This function
* takes the byte 0 from a0, byte 1 from a1, byte 2 from a2 and byte 3
* from a3, and combines them into a 32-bit word, which is then rotated
* to the left by n bits.
*/
static SPH_INLINE sph_u32
mix128(sph_u32 a0, sph_u32 a1, sph_u32 a2, sph_u32 a3, int n)
{
sph_u32 tmp;
tmp = (a0 & SPH_C32(0x000000FF))
| (a1 & SPH_C32(0x0000FF00))
| (a2 & SPH_C32(0x00FF0000))
| (a3 & SPH_C32(0xFF000000));
if (n > 0)
tmp = SPH_ROTL32(tmp, n);
return tmp;
}
/*
* Mixing operation used to compute output word 0 for 160-bit output.
*/
static SPH_INLINE sph_u32
mix160_0(sph_u32 x5, sph_u32 x6, sph_u32 x7)
{
sph_u32 tmp;
tmp = (x5 & SPH_C32(0x01F80000))
| (x6 & SPH_C32(0xFE000000))
| (x7 & SPH_C32(0x0000003F));
return SPH_ROTL32(tmp, 13);
}
/*
* Mixing operation used to compute output word 1 for 160-bit output.
*/
static SPH_INLINE sph_u32
mix160_1(sph_u32 x5, sph_u32 x6, sph_u32 x7)
{
sph_u32 tmp;
tmp = (x5 & SPH_C32(0xFE000000))
| (x6 & SPH_C32(0x0000003F))
| (x7 & SPH_C32(0x00000FC0));
return SPH_ROTL32(tmp, 7);
}
/*
* Mixing operation used to compute output word 2 for 160-bit output.
*/
static SPH_INLINE sph_u32
mix160_2(sph_u32 x5, sph_u32 x6, sph_u32 x7)
{
sph_u32 tmp;
tmp = (x5 & SPH_C32(0x0000003F))
| (x6 & SPH_C32(0x00000FC0))
| (x7 & SPH_C32(0x0007F000));
return tmp;
}
/*
* Mixing operation used to compute output word 3 for 160-bit output.
*/
static SPH_INLINE sph_u32
mix160_3(sph_u32 x5, sph_u32 x6, sph_u32 x7)
{
sph_u32 tmp;
tmp = (x5 & SPH_C32(0x00000FC0))
| (x6 & SPH_C32(0x0007F000))
| (x7 & SPH_C32(0x01F80000));
return tmp >> 6;
}
/*
* Mixing operation used to compute output word 4 for 160-bit output.
*/
static SPH_INLINE sph_u32
mix160_4(sph_u32 x5, sph_u32 x6, sph_u32 x7)
{
sph_u32 tmp;
tmp = (x5 & SPH_C32(0x0007F000))
| (x6 & SPH_C32(0x01F80000))
| (x7 & SPH_C32(0xFE000000));
return tmp >> 12;
}
/*
* Mixing operation used to compute output word 0 for 192-bit output.
*/
static SPH_INLINE sph_u32
mix192_0(sph_u32 x6, sph_u32 x7)
{
sph_u32 tmp;
tmp = (x6 & SPH_C32(0xFC000000)) | (x7 & SPH_C32(0x0000001F));
return SPH_ROTL32(tmp, 6);
}
/*
* Mixing operation used to compute output word 1 for 192-bit output.
*/
static SPH_INLINE sph_u32
mix192_1(sph_u32 x6, sph_u32 x7)
{
return (x6 & SPH_C32(0x0000001F)) | (x7 & SPH_C32(0x000003E0));
}
/*
* Mixing operation used to compute output word 2 for 192-bit output.
*/
static SPH_INLINE sph_u32
mix192_2(sph_u32 x6, sph_u32 x7)
{
return ((x6 & SPH_C32(0x000003E0)) | (x7 & SPH_C32(0x0000FC00))) >> 5;
}
/*
* Mixing operation used to compute output word 3 for 192-bit output.
*/
static SPH_INLINE sph_u32
mix192_3(sph_u32 x6, sph_u32 x7)
{
return ((x6 & SPH_C32(0x0000FC00)) | (x7 & SPH_C32(0x001F0000))) >> 10;
}
/*
* Mixing operation used to compute output word 4 for 192-bit output.
*/
static SPH_INLINE sph_u32
mix192_4(sph_u32 x6, sph_u32 x7)
{
return ((x6 & SPH_C32(0x001F0000)) | (x7 & SPH_C32(0x03E00000))) >> 16;
}
/*
* Mixing operation used to compute output word 5 for 192-bit output.
*/
static SPH_INLINE sph_u32
mix192_5(sph_u32 x6, sph_u32 x7)
{
return ((x6 & SPH_C32(0x03E00000)) | (x7 & SPH_C32(0xFC000000))) >> 21;
}
/*
* Write out HAVAL output. The output length is tailored to the requested
* length.
*/
static void
haval_out(sph_haval_context *sc, void *dst)
{
DSTATE;
unsigned char *buf;
buf = dst;
RSTATE;
switch (sc->olen) {
case 4:
sph_enc32le(buf, SPH_T32(s0 + mix128(s7, s4, s5, s6, 24)));
sph_enc32le(buf + 4, SPH_T32(s1 + mix128(s6, s7, s4, s5, 16)));
sph_enc32le(buf + 8, SPH_T32(s2 + mix128(s5, s6, s7, s4, 8)));
sph_enc32le(buf + 12, SPH_T32(s3 + mix128(s4, s5, s6, s7, 0)));
break;
case 5:
sph_enc32le(buf, SPH_T32(s0 + mix160_0(s5, s6, s7)));
sph_enc32le(buf + 4, SPH_T32(s1 + mix160_1(s5, s6, s7)));
sph_enc32le(buf + 8, SPH_T32(s2 + mix160_2(s5, s6, s7)));
sph_enc32le(buf + 12, SPH_T32(s3 + mix160_3(s5, s6, s7)));
sph_enc32le(buf + 16, SPH_T32(s4 + mix160_4(s5, s6, s7)));
break;
case 6:
sph_enc32le(buf, SPH_T32(s0 + mix192_0(s6, s7)));
sph_enc32le(buf + 4, SPH_T32(s1 + mix192_1(s6, s7)));
sph_enc32le(buf + 8, SPH_T32(s2 + mix192_2(s6, s7)));
sph_enc32le(buf + 12, SPH_T32(s3 + mix192_3(s6, s7)));
sph_enc32le(buf + 16, SPH_T32(s4 + mix192_4(s6, s7)));
sph_enc32le(buf + 20, SPH_T32(s5 + mix192_5(s6, s7)));
break;
case 7:
sph_enc32le(buf, SPH_T32(s0 + ((s7 >> 27) & 0x1F)));
sph_enc32le(buf + 4, SPH_T32(s1 + ((s7 >> 22) & 0x1F)));
sph_enc32le(buf + 8, SPH_T32(s2 + ((s7 >> 18) & 0x0F)));
sph_enc32le(buf + 12, SPH_T32(s3 + ((s7 >> 13) & 0x1F)));
sph_enc32le(buf + 16, SPH_T32(s4 + ((s7 >> 9) & 0x0F)));
sph_enc32le(buf + 20, SPH_T32(s5 + ((s7 >> 4) & 0x1F)));
sph_enc32le(buf + 24, SPH_T32(s6 + ((s7 ) & 0x0F)));
break;
case 8:
sph_enc32le(buf, s0);
sph_enc32le(buf + 4, s1);
sph_enc32le(buf + 8, s2);
sph_enc32le(buf + 12, s3);
sph_enc32le(buf + 16, s4);
sph_enc32le(buf + 20, s5);
sph_enc32le(buf + 24, s6);
sph_enc32le(buf + 28, s7);
break;
}
}
/*
* The main core functions inline the code with the COREx() macros. We
* use a helper file, included three times, which avoids code copying.
*/
#undef PASSES
#define PASSES 3
#include "haval_helper.c"
#undef PASSES
#define PASSES 4
#include "haval_helper.c"
#undef PASSES
#define PASSES 5
#include "haval_helper.c"
/* ====================================================================== */
#define API(xxx, y) \
void \
sph_haval ## xxx ## _ ## y ## _init(void *cc) \
{ \
haval_init(cc, xxx >> 5, y); \
} \
\
void \
sph_haval ## xxx ## _ ## y (void *cc, const void *data, size_t len) \
{ \
haval ## y(cc, data, len); \
} \
\
void \
sph_haval ## xxx ## _ ## y ## _close(void *cc, void *dst) \
{ \
haval ## y ## _close(cc, 0, 0, dst); \
} \
\
void \
sph_haval ## xxx ## _ ## y ## addbits_and_close( \
void *cc, unsigned ub, unsigned n, void *dst) \
{ \
haval ## y ## _close(cc, ub, n, dst); \
}
API(128, 3)
API(128, 4)
API(128, 5)
API(160, 3)
API(160, 4)
API(160, 5)
API(192, 3)
API(192, 4)
API(192, 5)
API(224, 3)
API(224, 4)
API(224, 5)
API(256, 3)
API(256, 4)
API(256, 5)
#define RVAL do { \
s0 = val[0]; \
s1 = val[1]; \
s2 = val[2]; \
s3 = val[3]; \
s4 = val[4]; \
s5 = val[5]; \
s6 = val[6]; \
s7 = val[7]; \
} while (0)
#define WVAL do { \
val[0] = s0; \
val[1] = s1; \
val[2] = s2; \
val[3] = s3; \
val[4] = s4; \
val[5] = s5; \
val[6] = s6; \
val[7] = s7; \
} while (0)
#define INMSG(i) msg[i]
/* see sph_haval.h */
void
sph_haval_3_comp(const sph_u32 msg[32], sph_u32 val[8])
{
DSTATE;
RVAL;
CORE3(INMSG);
WVAL;
}
/* see sph_haval.h */
void
sph_haval_4_comp(const sph_u32 msg[32], sph_u32 val[8])
{
DSTATE;
RVAL;
CORE4(INMSG);
WVAL;
}
/* see sph_haval.h */
void
sph_haval_5_comp(const sph_u32 msg[32], sph_u32 val[8])
{
DSTATE;
RVAL;
CORE5(INMSG);
WVAL;
}
#ifdef __cplusplus
}
#endif

190
sph/haval_helper.c

@ -0,0 +1,190 @@
/* $Id: haval_helper.c 218 2010-06-08 17:06:34Z tp $ */
/*
* Helper code, included (three times !) by HAVAL implementation.
*
* TODO: try to merge this with md_helper.c.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#undef SPH_XCAT
#define SPH_XCAT(a, b) SPH_XCAT_(a, b)
#undef SPH_XCAT_
#define SPH_XCAT_(a, b) a ## b
static void
#ifdef SPH_UPTR
SPH_XCAT(SPH_XCAT(haval, PASSES), _short)
#else
SPH_XCAT(haval, PASSES)
#endif
(sph_haval_context *sc, const void *data, size_t len)
{
unsigned current;
#if SPH_64
current = (unsigned)sc->count & 127U;
#else
current = (unsigned)sc->count_low & 127U;
#endif
while (len > 0) {
unsigned clen;
#if !SPH_64
sph_u32 clow, clow2;
#endif
clen = 128U - current;
if (clen > len)
clen = len;
memcpy(sc->buf + current, data, clen);
data = (const unsigned char *)data + clen;
current += clen;
len -= clen;
if (current == 128U) {
DSTATE;
IN_PREPARE(sc->buf);
RSTATE;
SPH_XCAT(CORE, PASSES)(INW);
WSTATE;
current = 0;
}
#if SPH_64
sc->count += clen;
#else
clow = sc->count_low;
clow2 = SPH_T32(clow + clen);
sc->count_low = clow2;
if (clow2 < clow)
sc->count_high ++;
#endif
}
}
#ifdef SPH_UPTR
static void
SPH_XCAT(haval, PASSES)(sph_haval_context *sc, const void *data, size_t len)
{
unsigned current;
size_t orig_len;
#if !SPH_64
sph_u32 clow, clow2;
#endif
DSTATE;
if (len < 256U) {
SPH_XCAT(SPH_XCAT(haval, PASSES), _short)(sc, data, len);
return;
}
#if SPH_64
current = (unsigned)sc->count & 127U;
#else
current = (unsigned)sc->count_low & 127U;
#endif
if (current > 0) {
unsigned clen;
clen = 128U - current;
SPH_XCAT(SPH_XCAT(haval, PASSES), _short)(sc, data, clen);
data = (const unsigned char *)data + clen;
len -= clen;
}
#if !SPH_UNALIGNED
if (((SPH_UPTR)data & 3U) != 0) {
SPH_XCAT(SPH_XCAT(haval, PASSES), _short)(sc, data, len);
return;
}
#endif
orig_len = len;
RSTATE;
while (len >= 128U) {
IN_PREPARE(data);
SPH_XCAT(CORE, PASSES)(INW);
data = (const unsigned char *)data + 128U;
len -= 128U;
}
WSTATE;
if (len > 0)
memcpy(sc->buf, data, len);
#if SPH_64
sc->count += (sph_u64)orig_len;
#else
clow = sc->count_low;
clow2 = SPH_T32(clow + orig_len);
sc->count_low = clow2;
if (clow2 < clow)
sc->count_high ++;
orig_len >>= 12;
orig_len >>= 10;
orig_len >>= 10;
sc->count_high += orig_len;
#endif
}
#endif
static void
SPH_XCAT(SPH_XCAT(haval, PASSES), _close)(sph_haval_context *sc,
unsigned ub, unsigned n, void *dst)
{
unsigned current,j;
DSTATE;
#if SPH_64
current = (unsigned)sc->count & 127U;
#else
current = (unsigned)sc->count_low & 127U;
#endif
sc->buf[current ++] = (0x01 << n) | ((ub & 0xFF) >> (8 - n));
RSTATE;
if (current > 118U) {
memset(sc->buf + current, 0, 128U - current);
do {
IN_PREPARE(sc->buf);
SPH_XCAT(CORE, PASSES)(INW);
} while (0);
current = 0;
}
memset(sc->buf + current, 0, 118U - current);
sc->buf[118] = 0x01 | (PASSES << 3);
sc->buf[119] = sc->olen << 3;
#if SPH_64
sph_enc64le_aligned(sc->buf + 120, SPH_T64(sc->count << 3));
#else
sph_enc32le_aligned(sc->buf + 120, SPH_T32(sc->count_low << 3));
sph_enc32le_aligned(sc->buf + 124,
SPH_T32((sc->count_high << 3) | (sc->count_low >> 29)));
#endif
do {
IN_PREPARE(sc->buf);
SPH_XCAT(CORE, PASSES)(INW);
} while (0);
WSTATE;
haval_out(sc, dst);
haval_init(sc, sc->olen, sc->passes);
}

0
sph/x15_helper.c → sph/md_helper.c

256
sph/sha2big.c

@ -0,0 +1,256 @@
/* $Id: sha2big.c 216 2010-06-08 09:46:57Z tp $ */
/*
* SHA-384 / SHA-512 implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#include <stddef.h>
#include <string.h>
#include "sph_sha2.h"
#ifdef __cplusplus
extern "C"{
#endif
#if SPH_64
#define CH(X, Y, Z) ((((Y) ^ (Z)) & (X)) ^ (Z))
#define MAJ(X, Y, Z) (((X) & (Y)) | (((X) | (Y)) & (Z)))
#define ROTR64 SPH_ROTR64
#define BSG5_0(x) (ROTR64(x, 28) ^ ROTR64(x, 34) ^ ROTR64(x, 39))
#define BSG5_1(x) (ROTR64(x, 14) ^ ROTR64(x, 18) ^ ROTR64(x, 41))
#define SSG5_0(x) (ROTR64(x, 1) ^ ROTR64(x, 8) ^ SPH_T64((x) >> 7))
#define SSG5_1(x) (ROTR64(x, 19) ^ ROTR64(x, 61) ^ SPH_T64((x) >> 6))
static const sph_u64 K512[80] = {
SPH_C64(0x428A2F98D728AE22), SPH_C64(0x7137449123EF65CD),
SPH_C64(0xB5C0FBCFEC4D3B2F), SPH_C64(0xE9B5DBA58189DBBC),
SPH_C64(0x3956C25BF348B538), SPH_C64(0x59F111F1B605D019),
SPH_C64(0x923F82A4AF194F9B), SPH_C64(0xAB1C5ED5DA6D8118),
SPH_C64(0xD807AA98A3030242), SPH_C64(0x12835B0145706FBE),
SPH_C64(0x243185BE4EE4B28C), SPH_C64(0x550C7DC3D5FFB4E2),
SPH_C64(0x72BE5D74F27B896F), SPH_C64(0x80DEB1FE3B1696B1),
SPH_C64(0x9BDC06A725C71235), SPH_C64(0xC19BF174CF692694),
SPH_C64(0xE49B69C19EF14AD2), SPH_C64(0xEFBE4786384F25E3),
SPH_C64(0x0FC19DC68B8CD5B5), SPH_C64(0x240CA1CC77AC9C65),
SPH_C64(0x2DE92C6F592B0275), SPH_C64(0x4A7484AA6EA6E483),
SPH_C64(0x5CB0A9DCBD41FBD4), SPH_C64(0x76F988DA831153B5),
SPH_C64(0x983E5152EE66DFAB), SPH_C64(0xA831C66D2DB43210),
SPH_C64(0xB00327C898FB213F), SPH_C64(0xBF597FC7BEEF0EE4),
SPH_C64(0xC6E00BF33DA88FC2), SPH_C64(0xD5A79147930AA725),
SPH_C64(0x06CA6351E003826F), SPH_C64(0x142929670A0E6E70),
SPH_C64(0x27B70A8546D22FFC), SPH_C64(0x2E1B21385C26C926),
SPH_C64(0x4D2C6DFC5AC42AED), SPH_C64(0x53380D139D95B3DF),
SPH_C64(0x650A73548BAF63DE), SPH_C64(0x766A0ABB3C77B2A8),
SPH_C64(0x81C2C92E47EDAEE6), SPH_C64(0x92722C851482353B),
SPH_C64(0xA2BFE8A14CF10364), SPH_C64(0xA81A664BBC423001),
SPH_C64(0xC24B8B70D0F89791), SPH_C64(0xC76C51A30654BE30),
SPH_C64(0xD192E819D6EF5218), SPH_C64(0xD69906245565A910),
SPH_C64(0xF40E35855771202A), SPH_C64(0x106AA07032BBD1B8),
SPH_C64(0x19A4C116B8D2D0C8), SPH_C64(0x1E376C085141AB53),
SPH_C64(0x2748774CDF8EEB99), SPH_C64(0x34B0BCB5E19B48A8),
SPH_C64(0x391C0CB3C5C95A63), SPH_C64(0x4ED8AA4AE3418ACB),
SPH_C64(0x5B9CCA4F7763E373), SPH_C64(0x682E6FF3D6B2B8A3),
SPH_C64(0x748F82EE5DEFB2FC), SPH_C64(0x78A5636F43172F60),
SPH_C64(0x84C87814A1F0AB72), SPH_C64(0x8CC702081A6439EC),
SPH_C64(0x90BEFFFA23631E28), SPH_C64(0xA4506CEBDE82BDE9),
SPH_C64(0xBEF9A3F7B2C67915), SPH_C64(0xC67178F2E372532B),
SPH_C64(0xCA273ECEEA26619C), SPH_C64(0xD186B8C721C0C207),
SPH_C64(0xEADA7DD6CDE0EB1E), SPH_C64(0xF57D4F7FEE6ED178),
SPH_C64(0x06F067AA72176FBA), SPH_C64(0x0A637DC5A2C898A6),
SPH_C64(0x113F9804BEF90DAE), SPH_C64(0x1B710B35131C471B),
SPH_C64(0x28DB77F523047D84), SPH_C64(0x32CAAB7B40C72493),
SPH_C64(0x3C9EBE0A15C9BEBC), SPH_C64(0x431D67C49C100D4C),
SPH_C64(0x4CC5D4BECB3E42B6), SPH_C64(0x597F299CFC657E2A),
SPH_C64(0x5FCB6FAB3AD6FAEC), SPH_C64(0x6C44198C4A475817)
};
static const sph_u64 H384[8] = {
SPH_C64(0xCBBB9D5DC1059ED8), SPH_C64(0x629A292A367CD507),
SPH_C64(0x9159015A3070DD17), SPH_C64(0x152FECD8F70E5939),
SPH_C64(0x67332667FFC00B31), SPH_C64(0x8EB44A8768581511),
SPH_C64(0xDB0C2E0D64F98FA7), SPH_C64(0x47B5481DBEFA4FA4)
};
static const sph_u64 H512[8] = {
SPH_C64(0x6A09E667F3BCC908), SPH_C64(0xBB67AE8584CAA73B),
SPH_C64(0x3C6EF372FE94F82B), SPH_C64(0xA54FF53A5F1D36F1),
SPH_C64(0x510E527FADE682D1), SPH_C64(0x9B05688C2B3E6C1F),
SPH_C64(0x1F83D9ABFB41BD6B), SPH_C64(0x5BE0CD19137E2179)
};
/*
* This macro defines the body for a SHA-384 / SHA-512 compression function
* implementation. The "in" parameter should evaluate, when applied to a
* numerical input parameter from 0 to 15, to an expression which yields
* the corresponding input block. The "r" parameter should evaluate to
* an array or pointer expression designating the array of 8 words which
* contains the input and output of the compression function.
*
* SHA-512 is hard for the compiler. If the loop is completely unrolled,
* then the code will be quite huge (possibly more than 100 kB), and the
* performance will be degraded due to cache misses on the code. We
* unroll only eight steps, which avoids all needless copies when
* 64-bit registers are swapped.
*/
#define SHA3_STEP(A, B, C, D, E, F, G, H, i) do { \
sph_u64 T1, T2; \
T1 = SPH_T64(H + BSG5_1(E) + CH(E, F, G) + K512[i] + W[i]); \
T2 = SPH_T64(BSG5_0(A) + MAJ(A, B, C)); \
D = SPH_T64(D + T1); \
H = SPH_T64(T1 + T2); \
} while (0)
#define SHA3_ROUND_BODY(in, r) do { \
int i; \
sph_u64 A, B, C, D, E, F, G, H; \
sph_u64 W[80]; \
\
for (i = 0; i < 16; i ++) \
W[i] = in(i); \
\
for (i = 16; i < 80; i ++) \
W[i] = SPH_T64(SSG5_1(W[i - 2]) + W[i - 7] \
+ SSG5_0(W[i - 15]) + W[i - 16]); \
A = (r)[0]; \
B = (r)[1]; \
C = (r)[2]; \
D = (r)[3]; \
E = (r)[4]; \
F = (r)[5]; \
G = (r)[6]; \
H = (r)[7]; \
for (i = 0; i < 80; i += 8) { \
SHA3_STEP(A, B, C, D, E, F, G, H, i + 0); \
SHA3_STEP(H, A, B, C, D, E, F, G, i + 1); \
SHA3_STEP(G, H, A, B, C, D, E, F, i + 2); \
SHA3_STEP(F, G, H, A, B, C, D, E, i + 3); \
SHA3_STEP(E, F, G, H, A, B, C, D, i + 4); \
SHA3_STEP(D, E, F, G, H, A, B, C, i + 5); \
SHA3_STEP(C, D, E, F, G, H, A, B, i + 6); \
SHA3_STEP(B, C, D, E, F, G, H, A, i + 7); \
} \
(r)[0] = SPH_T64((r)[0] + A); \
(r)[1] = SPH_T64((r)[1] + B); \
(r)[2] = SPH_T64((r)[2] + C); \
(r)[3] = SPH_T64((r)[3] + D); \
(r)[4] = SPH_T64((r)[4] + E); \
(r)[5] = SPH_T64((r)[5] + F); \
(r)[6] = SPH_T64((r)[6] + G); \
(r)[7] = SPH_T64((r)[7] + H); \
} while (0)
/*
* One round of SHA-384 / SHA-512. The data must be aligned for 64-bit access.
*/
static void
sha3_round(const unsigned char *data, sph_u64 r[8])
{
#define SHA3_IN(x) sph_dec64be_aligned(data + (8 * (x)))
SHA3_ROUND_BODY(SHA3_IN, r);
#undef SHA3_IN
}
/* see sph_sha3.h */
void
sph_sha384_init(void *cc)
{
sph_sha384_context *sc;
sc = cc;
memcpy(sc->val, H384, sizeof H384);
sc->count = 0;
}
/* see sph_sha3.h */
void
sph_sha512_init(void *cc)
{
sph_sha512_context *sc;
sc = cc;
memcpy(sc->val, H512, sizeof H512);
sc->count = 0;
}
#define RFUN sha3_round
#define HASH sha384
#define BE64 1
#include "md_helper.c"
/* see sph_sha3.h */
void
sph_sha384_close(void *cc, void *dst)
{
sha384_close(cc, dst, 6);
sph_sha384_init(cc);
}
/* see sph_sha3.h */
void
sph_sha384_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
sha384_addbits_and_close(cc, ub, n, dst, 6);
sph_sha384_init(cc);
}
/* see sph_sha3.h */
void
sph_sha512_close(void *cc, void *dst)
{
sha384_close(cc, dst, 8);
sph_sha512_init(cc);
}
/* see sph_sha3.h */
void
sph_sha512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
sha384_addbits_and_close(cc, ub, n, dst, 8);
sph_sha512_init(cc);
}
/* see sph_sha3.h */
void
sph_sha384_comp(const sph_u64 msg[16], sph_u64 val[8])
{
#define SHA3_IN(x) msg[x]
SHA3_ROUND_BODY(SHA3_IN, val);
#undef SHA3_IN
}
#endif
#ifdef __cplusplus
}
#endif

976
sph/sph_haval.h

@ -0,0 +1,976 @@
/* $Id: sph_haval.h 218 2010-06-08 17:06:34Z tp $ */
/**
* HAVAL interface.
*
* HAVAL is actually a family of 15 hash functions, depending on whether
* the internal computation uses 3, 4 or 5 passes, and on the output
* length, which is 128, 160, 192, 224 or 256 bits. This implementation
* provides interface functions for all 15, which internally map to
* three cores (depending on the number of passes). Note that output
* lengths other than 256 bits are not obtained by a simple truncation
* of a longer result; the requested length is encoded within the
* padding data.
*
* HAVAL was published in: Yuliang Zheng, Josef Pieprzyk and Jennifer
* Seberry: "HAVAL -- a one-way hashing algorithm with variable length
* of output", Advances in Cryptology -- AUSCRYPT'92, Lecture Notes in
* Computer Science, Vol.718, pp.83-104, Springer-Verlag, 1993.
*
* This paper, and a reference implementation, are available on the
* Calyptix web site: http://labs.calyptix.com/haval.php
*
* The HAVAL reference paper is quite unclear on the data encoding
* details, i.e. endianness (both byte order within a 32-bit word, and
* word order within a message block). This implementation has been
* made compatible with the reference implementation referenced above.
*
* @warning A collision for HAVAL-128/3 (HAVAL with three passes and
* 128-bit output) has been published; this function is thus considered
* as cryptographically broken. The status for other variants is unclear;
* use only with care.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @file sph_haval.h
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#ifndef SPH_HAVAL_H__
#define SPH_HAVAL_H__
#ifdef __cplusplus
extern "C"{
#endif
#include <stddef.h>
#include "sph_types.h"
/**
* Output size (in bits) for HAVAL-128/3.
*/
#define SPH_SIZE_haval128_3 128
/**
* Output size (in bits) for HAVAL-128/4.
*/
#define SPH_SIZE_haval128_4 128
/**
* Output size (in bits) for HAVAL-128/5.
*/
#define SPH_SIZE_haval128_5 128
/**
* Output size (in bits) for HAVAL-160/3.
*/
#define SPH_SIZE_haval160_3 160
/**
* Output size (in bits) for HAVAL-160/4.
*/
#define SPH_SIZE_haval160_4 160
/**
* Output size (in bits) for HAVAL-160/5.
*/
#define SPH_SIZE_haval160_5 160
/**
* Output size (in bits) for HAVAL-192/3.
*/
#define SPH_SIZE_haval192_3 192
/**
* Output size (in bits) for HAVAL-192/4.
*/
#define SPH_SIZE_haval192_4 192
/**
* Output size (in bits) for HAVAL-192/5.
*/
#define SPH_SIZE_haval192_5 192
/**
* Output size (in bits) for HAVAL-224/3.
*/
#define SPH_SIZE_haval224_3 224
/**
* Output size (in bits) for HAVAL-224/4.
*/
#define SPH_SIZE_haval224_4 224
/**
* Output size (in bits) for HAVAL-224/5.
*/
#define SPH_SIZE_haval224_5 224
/**
* Output size (in bits) for HAVAL-256/3.
*/
#define SPH_SIZE_haval256_3 256
/**
* Output size (in bits) for HAVAL-256/4.
*/
#define SPH_SIZE_haval256_4 256
/**
* Output size (in bits) for HAVAL-256/5.
*/
#define SPH_SIZE_haval256_5 256
/**
* This structure is a context for HAVAL computations: it contains the
* intermediate values and some data from the last entered block. Once
* a HAVAL computation has been performed, the context can be reused for
* another computation.
*
* The contents of this structure are private. A running HAVAL computation
* can be cloned by copying the context (e.g. with a simple
* <code>memcpy()</code>).
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[128]; /* first field, for alignment */
sph_u32 s0, s1, s2, s3, s4, s5, s6, s7;
unsigned olen, passes;
#if SPH_64
sph_u64 count;
#else
sph_u32 count_high, count_low;
#endif
#endif
} sph_haval_context;
/**
* Type for a HAVAL-128/3 context (identical to the common context).
*/
typedef sph_haval_context sph_haval128_3_context;
/**
* Type for a HAVAL-128/4 context (identical to the common context).
*/
typedef sph_haval_context sph_haval128_4_context;
/**
* Type for a HAVAL-128/5 context (identical to the common context).
*/
typedef sph_haval_context sph_haval128_5_context;
/**
* Type for a HAVAL-160/3 context (identical to the common context).
*/
typedef sph_haval_context sph_haval160_3_context;
/**
* Type for a HAVAL-160/4 context (identical to the common context).
*/
typedef sph_haval_context sph_haval160_4_context;
/**
* Type for a HAVAL-160/5 context (identical to the common context).
*/
typedef sph_haval_context sph_haval160_5_context;
/**
* Type for a HAVAL-192/3 context (identical to the common context).
*/
typedef sph_haval_context sph_haval192_3_context;
/**
* Type for a HAVAL-192/4 context (identical to the common context).
*/
typedef sph_haval_context sph_haval192_4_context;
/**
* Type for a HAVAL-192/5 context (identical to the common context).
*/
typedef sph_haval_context sph_haval192_5_context;
/**
* Type for a HAVAL-224/3 context (identical to the common context).
*/
typedef sph_haval_context sph_haval224_3_context;
/**
* Type for a HAVAL-224/4 context (identical to the common context).
*/
typedef sph_haval_context sph_haval224_4_context;
/**
* Type for a HAVAL-224/5 context (identical to the common context).
*/
typedef sph_haval_context sph_haval224_5_context;
/**
* Type for a HAVAL-256/3 context (identical to the common context).
*/
typedef sph_haval_context sph_haval256_3_context;
/**
* Type for a HAVAL-256/4 context (identical to the common context).
*/
typedef sph_haval_context sph_haval256_4_context;
/**
* Type for a HAVAL-256/5 context (identical to the common context).
*/
typedef sph_haval_context sph_haval256_5_context;
/**
* Initialize the context for HAVAL-128/3.
*
* @param cc context to initialize (pointer to a
* <code>sph_haval128_3_context</code> structure)
*/
void sph_haval128_3_init(void *cc);
/**
* Process some data bytes for HAVAL-128/3. If <code>len</code> is 0,
* then this function does nothing.
*
* @param cc the HAVAL-128/3 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_haval128_3(void *cc, const void *data, size_t len);
/**
* Close a HAVAL-128/3 computation. The output buffer must be wide
* enough to accomodate the result (16 bytes). The context is automatically
* reinitialized.
*
* @param cc the HAVAL-128/3 context
* @param dst the output buffer
*/
void sph_haval128_3_close(void *cc, void *dst);
/**
* Close a HAVAL-128/3 computation. Up to 7 extra input bits may be added
* to the input message; these are the <code>n</code> upper bits of
* the <code>ub</code> byte (i.e. the first extra bit has value 128 in
* <code>ub</code>, the second extra bit has value 64, and so on). Other
* bits in <code>ub</code> are ignored.
*
* The output buffer must be wide enough to accomodate the result (16
* bytes). The context is automatically reinitialized.
*
* @param cc the HAVAL-128/3 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the output buffer
*/
void sph_haval128_3_addbits_and_close(void *cc,
unsigned ub, unsigned n, void *dst);
/**
* Initialize the context for HAVAL-128/4.
*
* @param cc context to initialize (pointer to a
* <code>sph_haval128_4_context</code> structure)
*/
void sph_haval128_4_init(void *cc);
/**
* Process some data bytes for HAVAL-128/4. If <code>len</code> is 0,
* then this function does nothing.
*
* @param cc the HAVAL-128/4 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_haval128_4(void *cc, const void *data, size_t len);
/**
* Close a HAVAL-128/4 computation. The output buffer must be wide
* enough to accomodate the result (16 bytes). The context is automatically
* reinitialized.
*
* @param cc the HAVAL-128/4 context
* @param dst the output buffer
*/
void sph_haval128_4_close(void *cc, void *dst);
/**
* Close a HAVAL-128/4 computation. Up to 7 extra input bits may be added
* to the input message; these are the <code>n</code> upper bits of
* the <code>ub</code> byte (i.e. the first extra bit has value 128 in
* <code>ub</code>, the second extra bit has value 64, and so on). Other
* bits in <code>ub</code> are ignored.
*
* The output buffer must be wide enough to accomodate the result (16
* bytes). The context is automatically reinitialized.
*
* @param cc the HAVAL-128/4 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the output buffer
*/
void sph_haval128_4_addbits_and_close(void *cc,
unsigned ub, unsigned n, void *dst);
/**
* Initialize the context for HAVAL-128/5.
*
* @param cc context to initialize (pointer to a
* <code>sph_haval128_5_context</code> structure)
*/
void sph_haval128_5_init(void *cc);
/**
* Process some data bytes for HAVAL-128/5. If <code>len</code> is 0,
* then this function does nothing.
*
* @param cc the HAVAL-128/5 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_haval128_5(void *cc, const void *data, size_t len);
/**
* Close a HAVAL-128/5 computation. The output buffer must be wide
* enough to accomodate the result (16 bytes). The context is automatically
* reinitialized.
*
* @param cc the HAVAL-128/5 context
* @param dst the output buffer
*/
void sph_haval128_5_close(void *cc, void *dst);
/**
* Close a HAVAL-128/5 computation. Up to 7 extra input bits may be added
* to the input message; these are the <code>n</code> upper bits of
* the <code>ub</code> byte (i.e. the first extra bit has value 128 in
* <code>ub</code>, the second extra bit has value 64, and so on). Other
* bits in <code>ub</code> are ignored.
*
* The output buffer must be wide enough to accomodate the result (16
* bytes). The context is automatically reinitialized.
*
* @param cc the HAVAL-128/5 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the output buffer
*/
void sph_haval128_5_addbits_and_close(void *cc,
unsigned ub, unsigned n, void *dst);
/**
* Initialize the context for HAVAL-160/3.
*
* @param cc context to initialize (pointer to a
* <code>sph_haval160_3_context</code> structure)
*/
void sph_haval160_3_init(void *cc);
/**
* Process some data bytes for HAVAL-160/3. If <code>len</code> is 0,
* then this function does nothing.
*
* @param cc the HAVAL-160/3 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_haval160_3(void *cc, const void *data, size_t len);
/**
* Close a HAVAL-160/3 computation. The output buffer must be wide
* enough to accomodate the result (20 bytes). The context is automatically
* reinitialized.
*
* @param cc the HAVAL-160/3 context
* @param dst the output buffer
*/
void sph_haval160_3_close(void *cc, void *dst);
/**
* Close a HAVAL-160/3 computation. Up to 7 extra input bits may be added
* to the input message; these are the <code>n</code> upper bits of
* the <code>ub</code> byte (i.e. the first extra bit has value 128 in
* <code>ub</code>, the second extra bit has value 64, and so on). Other
* bits in <code>ub</code> are ignored.
*
* The output buffer must be wide enough to accomodate the result (20
* bytes). The context is automatically reinitialized.
*
* @param cc the HAVAL-160/3 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the output buffer
*/
void sph_haval160_3_addbits_and_close(void *cc,
unsigned ub, unsigned n, void *dst);
/**
* Initialize the context for HAVAL-160/4.
*
* @param cc context to initialize (pointer to a
* <code>sph_haval160_4_context</code> structure)
*/
void sph_haval160_4_init(void *cc);
/**
* Process some data bytes for HAVAL-160/4. If <code>len</code> is 0,
* then this function does nothing.
*
* @param cc the HAVAL-160/4 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_haval160_4(void *cc, const void *data, size_t len);
/**
* Close a HAVAL-160/4 computation. The output buffer must be wide
* enough to accomodate the result (20 bytes). The context is automatically
* reinitialized.
*
* @param cc the HAVAL-160/4 context
* @param dst the output buffer
*/
void sph_haval160_4_close(void *cc, void *dst);
/**
* Close a HAVAL-160/4 computation. Up to 7 extra input bits may be added
* to the input message; these are the <code>n</code> upper bits of
* the <code>ub</code> byte (i.e. the first extra bit has value 128 in
* <code>ub</code>, the second extra bit has value 64, and so on). Other
* bits in <code>ub</code> are ignored.
*
* The output buffer must be wide enough to accomodate the result (20
* bytes). The context is automatically reinitialized.
*
* @param cc the HAVAL-160/4 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the output buffer
*/
void sph_haval160_3_addbits_and_close(void *cc,
unsigned ub, unsigned n, void *dst);
/**
* Initialize the context for HAVAL-160/5.
*
* @param cc context to initialize (pointer to a
* <code>sph_haval160_5_context</code> structure)
*/
void sph_haval160_5_init(void *cc);
/**
* Process some data bytes for HAVAL-160/5. If <code>len</code> is 0,
* then this function does nothing.
*
* @param cc the HAVAL-160/5 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_haval160_5(void *cc, const void *data, size_t len);
/**
* Close a HAVAL-160/5 computation. The output buffer must be wide
* enough to accomodate the result (20 bytes). The context is automatically
* reinitialized.
*
* @param cc the HAVAL-160/5 context
* @param dst the output buffer
*/
void sph_haval160_5_close(void *cc, void *dst);
/**
* Close a HAVAL-160/5 computation. Up to 7 extra input bits may be added
* to the input message; these are the <code>n</code> upper bits of
* the <code>ub</code> byte (i.e. the first extra bit has value 128 in
* <code>ub</code>, the second extra bit has value 64, and so on). Other
* bits in <code>ub</code> are ignored.
*
* The output buffer must be wide enough to accomodate the result (20
* bytes). The context is automatically reinitialized.
*
* @param cc the HAVAL-160/5 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the output buffer
*/
void sph_haval160_5_addbits_and_close(void *cc,
unsigned ub, unsigned n, void *dst);
/**
* Initialize the context for HAVAL-192/3.
*
* @param cc context to initialize (pointer to a
* <code>sph_haval192_3_context</code> structure)
*/
void sph_haval192_3_init(void *cc);
/**
* Process some data bytes for HAVAL-192/3. If <code>len</code> is 0,
* then this function does nothing.
*
* @param cc the HAVAL-192/3 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_haval192_3(void *cc, const void *data, size_t len);
/**
* Close a HAVAL-192/3 computation. The output buffer must be wide
* enough to accomodate the result (24 bytes). The context is automatically
* reinitialized.
*
* @param cc the HAVAL-192/3 context
* @param dst the output buffer
*/
void sph_haval192_3_close(void *cc, void *dst);
/**
* Close a HAVAL-192/3 computation. Up to 7 extra input bits may be added
* to the input message; these are the <code>n</code> upper bits of
* the <code>ub</code> byte (i.e. the first extra bit has value 128 in
* <code>ub</code>, the second extra bit has value 64, and so on). Other
* bits in <code>ub</code> are ignored.
*
* The output buffer must be wide enough to accomodate the result (24
* bytes). The context is automatically reinitialized.
*
* @param cc the HAVAL-192/3 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the output buffer
*/
void sph_haval192_3_addbits_and_close(void *cc,
unsigned ub, unsigned n, void *dst);
/**
* Initialize the context for HAVAL-192/4.
*
* @param cc context to initialize (pointer to a
* <code>sph_haval192_4_context</code> structure)
*/
void sph_haval192_4_init(void *cc);
/**
* Process some data bytes for HAVAL-192/4. If <code>len</code> is 0,
* then this function does nothing.
*
* @param cc the HAVAL-192/4 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_haval192_4(void *cc, const void *data, size_t len);
/**
* Close a HAVAL-192/4 computation. The output buffer must be wide
* enough to accomodate the result (24 bytes). The context is automatically
* reinitialized.
*
* @param cc the HAVAL-192/4 context
* @param dst the output buffer
*/
void sph_haval192_4_close(void *cc, void *dst);
/**
* Close a HAVAL-192/4 computation. Up to 7 extra input bits may be added
* to the input message; these are the <code>n</code> upper bits of
* the <code>ub</code> byte (i.e. the first extra bit has value 128 in
* <code>ub</code>, the second extra bit has value 64, and so on). Other
* bits in <code>ub</code> are ignored.
*
* The output buffer must be wide enough to accomodate the result (24
* bytes). The context is automatically reinitialized.
*
* @param cc the HAVAL-192/4 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the output buffer
*/
void sph_haval192_4_addbits_and_close(void *cc,
unsigned ub, unsigned n, void *dst);
/**
* Initialize the context for HAVAL-192/5.
*
* @param cc context to initialize (pointer to a
* <code>sph_haval192_5_context</code> structure)
*/
void sph_haval192_5_init(void *cc);
/**
* Process some data bytes for HAVAL-192/5. If <code>len</code> is 0,
* then this function does nothing.
*
* @param cc the HAVAL-192/5 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_haval192_5(void *cc, const void *data, size_t len);
/**
* Close a HAVAL-192/5 computation. The output buffer must be wide
* enough to accomodate the result (24 bytes). The context is automatically
* reinitialized.
*
* @param cc the HAVAL-192/5 context
* @param dst the output buffer
*/
void sph_haval192_5_close(void *cc, void *dst);
/**
* Close a HAVAL-192/5 computation. Up to 7 extra input bits may be added
* to the input message; these are the <code>n</code> upper bits of
* the <code>ub</code> byte (i.e. the first extra bit has value 128 in
* <code>ub</code>, the second extra bit has value 64, and so on). Other
* bits in <code>ub</code> are ignored.
*
* The output buffer must be wide enough to accomodate the result (24
* bytes). The context is automatically reinitialized.
*
* @param cc the HAVAL-192/5 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the output buffer
*/
void sph_haval192_5_addbits_and_close(void *cc,
unsigned ub, unsigned n, void *dst);
/**
* Initialize the context for HAVAL-224/3.
*
* @param cc context to initialize (pointer to a
* <code>sph_haval224_3_context</code> structure)
*/
void sph_haval224_3_init(void *cc);
/**
* Process some data bytes for HAVAL-224/3. If <code>len</code> is 0,
* then this function does nothing.
*
* @param cc the HAVAL-224/3 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_haval224_3(void *cc, const void *data, size_t len);
/**
* Close a HAVAL-224/3 computation. The output buffer must be wide
* enough to accomodate the result (28 bytes). The context is automatically
* reinitialized.
*
* @param cc the HAVAL-224/3 context
* @param dst the output buffer
*/
void sph_haval224_3_close(void *cc, void *dst);
/**
* Close a HAVAL-224/3 computation. Up to 7 extra input bits may be added
* to the input message; these are the <code>n</code> upper bits of
* the <code>ub</code> byte (i.e. the first extra bit has value 128 in
* <code>ub</code>, the second extra bit has value 64, and so on). Other
* bits in <code>ub</code> are ignored.
*
* The output buffer must be wide enough to accomodate the result (28
* bytes). The context is automatically reinitialized.
*
* @param cc the HAVAL-224/3 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the output buffer
*/
void sph_haval224_3_addbits_and_close(void *cc,
unsigned ub, unsigned n, void *dst);
/**
* Initialize the context for HAVAL-224/4.
*
* @param cc context to initialize (pointer to a
* <code>sph_haval224_4_context</code> structure)
*/
void sph_haval224_4_init(void *cc);
/**
* Process some data bytes for HAVAL-224/4. If <code>len</code> is 0,
* then this function does nothing.
*
* @param cc the HAVAL-224/4 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_haval224_4(void *cc, const void *data, size_t len);
/**
* Close a HAVAL-224/4 computation. The output buffer must be wide
* enough to accomodate the result (28 bytes). The context is automatically
* reinitialized.
*
* @param cc the HAVAL-224/4 context
* @param dst the output buffer
*/
void sph_haval224_4_close(void *cc, void *dst);
/**
* Close a HAVAL-224/4 computation. Up to 7 extra input bits may be added
* to the input message; these are the <code>n</code> upper bits of
* the <code>ub</code> byte (i.e. the first extra bit has value 128 in
* <code>ub</code>, the second extra bit has value 64, and so on). Other
* bits in <code>ub</code> are ignored.
*
* The output buffer must be wide enough to accomodate the result (28
* bytes). The context is automatically reinitialized.
*
* @param cc the HAVAL-224/4 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the output buffer
*/
void sph_haval224_4_addbits_and_close(void *cc,
unsigned ub, unsigned n, void *dst);
/**
* Initialize the context for HAVAL-224/5.
*
* @param cc context to initialize (pointer to a
* <code>sph_haval224_5_context</code> structure)
*/
void sph_haval224_5_init(void *cc);
/**
* Process some data bytes for HAVAL-224/5. If <code>len</code> is 0,
* then this function does nothing.
*
* @param cc the HAVAL-224/5 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_haval224_5(void *cc, const void *data, size_t len);
/**
* Close a HAVAL-224/5 computation. The output buffer must be wide
* enough to accomodate the result (28 bytes). The context is automatically
* reinitialized.
*
* @param cc the HAVAL-224/5 context
* @param dst the output buffer
*/
void sph_haval224_5_close(void *cc, void *dst);
/**
* Close a HAVAL-224/5 computation. Up to 7 extra input bits may be added
* to the input message; these are the <code>n</code> upper bits of
* the <code>ub</code> byte (i.e. the first extra bit has value 128 in
* <code>ub</code>, the second extra bit has value 64, and so on). Other
* bits in <code>ub</code> are ignored.
*
* The output buffer must be wide enough to accomodate the result (28
* bytes). The context is automatically reinitialized.
*
* @param cc the HAVAL-224/5 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the output buffer
*/
void sph_haval224_5_addbits_and_close(void *cc,
unsigned ub, unsigned n, void *dst);
/**
* Initialize the context for HAVAL-256/3.
*
* @param cc context to initialize (pointer to a
* <code>sph_haval256_3_context</code> structure)
*/
void sph_haval256_3_init(void *cc);
/**
* Process some data bytes for HAVAL-256/3. If <code>len</code> is 0,
* then this function does nothing.
*
* @param cc the HAVAL-256/3 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_haval256_3(void *cc, const void *data, size_t len);
/**
* Close a HAVAL-256/3 computation. The output buffer must be wide
* enough to accomodate the result (32 bytes). The context is automatically
* reinitialized.
*
* @param cc the HAVAL-256/3 context
* @param dst the output buffer
*/
void sph_haval256_3_close(void *cc, void *dst);
/**
* Close a HAVAL-256/3 computation. Up to 7 extra input bits may be added
* to the input message; these are the <code>n</code> upper bits of
* the <code>ub</code> byte (i.e. the first extra bit has value 128 in
* <code>ub</code>, the second extra bit has value 64, and so on). Other
* bits in <code>ub</code> are ignored.
*
* The output buffer must be wide enough to accomodate the result (32
* bytes). The context is automatically reinitialized.
*
* @param cc the HAVAL-256/3 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the output buffer
*/
void sph_haval256_3_addbits_and_close(void *cc,
unsigned ub, unsigned n, void *dst);
/**
* Initialize the context for HAVAL-256/4.
*
* @param cc context to initialize (pointer to a
* <code>sph_haval256_4_context</code> structure)
*/
void sph_haval256_4_init(void *cc);
/**
* Process some data bytes for HAVAL-256/4. If <code>len</code> is 0,
* then this function does nothing.
*
* @param cc the HAVAL-256/4 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_haval256_4(void *cc, const void *data, size_t len);
/**
* Close a HAVAL-256/4 computation. The output buffer must be wide
* enough to accomodate the result (32 bytes). The context is automatically
* reinitialized.
*
* @param cc the HAVAL-256/4 context
* @param dst the output buffer
*/
void sph_haval256_4_close(void *cc, void *dst);
/**
* Close a HAVAL-256/4 computation. Up to 7 extra input bits may be added
* to the input message; these are the <code>n</code> upper bits of
* the <code>ub</code> byte (i.e. the first extra bit has value 128 in
* <code>ub</code>, the second extra bit has value 64, and so on). Other
* bits in <code>ub</code> are ignored.
*
* The output buffer must be wide enough to accomodate the result (32
* bytes). The context is automatically reinitialized.
*
* @param cc the HAVAL-256/4 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the output buffer
*/
void sph_haval256_4_addbits_and_close(void *cc,
unsigned ub, unsigned n, void *dst);
/**
* Initialize the context for HAVAL-256/5.
*
* @param cc context to initialize (pointer to a
* <code>sph_haval256_5_context</code> structure)
*/
void sph_haval256_5_init(void *cc);
/**
* Process some data bytes for HAVAL-256/5. If <code>len</code> is 0,
* then this function does nothing.
*
* @param cc the HAVAL-256/5 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_haval256_5(void *cc, const void *data, size_t len);
/**
* Close a HAVAL-256/5 computation. The output buffer must be wide
* enough to accomodate the result (32 bytes). The context is automatically
* reinitialized.
*
* @param cc the HAVAL-256/5 context
* @param dst the output buffer
*/
void sph_haval256_5_close(void *cc, void *dst);
/**
* Close a HAVAL-256/5 computation. Up to 7 extra input bits may be added
* to the input message; these are the <code>n</code> upper bits of
* the <code>ub</code> byte (i.e. the first extra bit has value 128 in
* <code>ub</code>, the second extra bit has value 64, and so on). Other
* bits in <code>ub</code> are ignored.
*
* The output buffer must be wide enough to accomodate the result (32
* bytes). The context is automatically reinitialized.
*
* @param cc the HAVAL-256/5 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the output buffer
*/
void sph_haval256_5_addbits_and_close(void *cc,
unsigned ub, unsigned n, void *dst);
/**
* Apply the HAVAL compression function on the provided data. The
* <code>msg</code> parameter contains the 32 32-bit input blocks,
* as numerical values (hence after the little-endian decoding). The
* <code>val</code> parameter contains the 8 32-bit input blocks for
* the compression function; the output is written in place in this
* array. This function uses three internal passes.
*
* @param msg the message block (32 values)
* @param val the function 256-bit input and output
*/
void sph_haval_3_comp(const sph_u32 msg[32], sph_u32 val[8]);
/**
* Apply the HAVAL compression function on the provided data. The
* <code>msg</code> parameter contains the 32 32-bit input blocks,
* as numerical values (hence after the little-endian decoding). The
* <code>val</code> parameter contains the 8 32-bit input blocks for
* the compression function; the output is written in place in this
* array. This function uses four internal passes.
*
* @param msg the message block (32 values)
* @param val the function 256-bit input and output
*/
void sph_haval_4_comp(const sph_u32 msg[32], sph_u32 val[8]);
/**
* Apply the HAVAL compression function on the provided data. The
* <code>msg</code> parameter contains the 32 32-bit input blocks,
* as numerical values (hence after the little-endian decoding). The
* <code>val</code> parameter contains the 8 32-bit input blocks for
* the compression function; the output is written in place in this
* array. This function uses five internal passes.
*
* @param msg the message block (32 values)
* @param val the function 256-bit input and output
*/
void sph_haval_5_comp(const sph_u32 msg[32], sph_u32 val[8]);
#ifdef __cplusplus
}
#endif
#endif

378
sph/sph_sha2.h

@ -0,0 +1,378 @@
/* $Id: sph_sha2.h 216 2010-06-08 09:46:57Z tp $ */
/**
* SHA-224, SHA-256, SHA-384 and SHA-512 interface.
*
* SHA-256 has been published in FIPS 180-2, now amended with a change
* notice to include SHA-224 as well (which is a simple variation on
* SHA-256). SHA-384 and SHA-512 are also defined in FIPS 180-2. FIPS
* standards can be found at:
* http://csrc.nist.gov/publications/fips/
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @file sph_sha2.h
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#ifndef SPH_SHA2_H__
#define SPH_SHA2_H__
#include <stddef.h>
#include "sph_types.h"
#ifdef __cplusplus
extern "C"{
#endif
/**
* Output size (in bits) for SHA-224.
*/
#define SPH_SIZE_sha224 224
/**
* Output size (in bits) for SHA-256.
*/
#define SPH_SIZE_sha256 256
/**
* This structure is a context for SHA-224 computations: it contains the
* intermediate values and some data from the last entered block. Once
* a SHA-224 computation has been performed, the context can be reused for
* another computation.
*
* The contents of this structure are private. A running SHA-224 computation
* can be cloned by copying the context (e.g. with a simple
* <code>memcpy()</code>).
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[64]; /* first field, for alignment */
sph_u32 val[8];
#if SPH_64
sph_u64 count;
#else
sph_u32 count_high, count_low;
#endif
#endif
} sph_sha224_context;
/**
* This structure is a context for SHA-256 computations. It is identical
* to the SHA-224 context. However, a context is initialized for SHA-224
* <strong>or</strong> SHA-256, but not both (the internal IV is not the
* same).
*/
typedef sph_sha224_context sph_sha256_context;
/**
* Initialize a SHA-224 context. This process performs no memory allocation.
*
* @param cc the SHA-224 context (pointer to
* a <code>sph_sha224_context</code>)
*/
void sph_sha224_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the SHA-224 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_sha224(void *cc, const void *data, size_t len);
/**
* Terminate the current SHA-224 computation and output the result into the
* provided buffer. The destination buffer must be wide enough to
* accomodate the result (28 bytes). The context is automatically
* reinitialized.
*
* @param cc the SHA-224 context
* @param dst the destination buffer
*/
void sph_sha224_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (28 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the SHA-224 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_sha224_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst);
/**
* Apply the SHA-224 compression function on the provided data. The
* <code>msg</code> parameter contains the 16 32-bit input blocks,
* as numerical values (hence after the big-endian decoding). The
* <code>val</code> parameter contains the 8 32-bit input blocks for
* the compression function; the output is written in place in this
* array.
*
* @param msg the message block (16 values)
* @param val the function 256-bit input and output
*/
void sph_sha224_comp(const sph_u32 msg[16], sph_u32 val[8]);
/**
* Initialize a SHA-256 context. This process performs no memory allocation.
*
* @param cc the SHA-256 context (pointer to
* a <code>sph_sha256_context</code>)
*/
void sph_sha256_init(void *cc);
#ifdef DOXYGEN_IGNORE
/**
* Process some data bytes, for SHA-256. This function is identical to
* <code>sha_224()</code>
*
* @param cc the SHA-224 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_sha256(void *cc, const void *data, size_t len);
#endif
#ifndef DOXYGEN_IGNORE
#define sph_sha256 sph_sha224
#endif
/**
* Terminate the current SHA-256 computation and output the result into the
* provided buffer. The destination buffer must be wide enough to
* accomodate the result (32 bytes). The context is automatically
* reinitialized.
*
* @param cc the SHA-256 context
* @param dst the destination buffer
*/
void sph_sha256_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (32 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the SHA-256 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_sha256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst);
#ifdef DOXYGEN_IGNORE
/**
* Apply the SHA-256 compression function on the provided data. This
* function is identical to <code>sha224_comp()</code>.
*
* @param msg the message block (16 values)
* @param val the function 256-bit input and output
*/
void sph_sha256_comp(const sph_u32 msg[16], sph_u32 val[8]);
#endif
#ifndef DOXYGEN_IGNORE
#define sph_sha256_comp sph_sha224_comp
#endif
#if SPH_64
/**
* Output size (in bits) for SHA-384.
*/
#define SPH_SIZE_sha384 384
/**
* Output size (in bits) for SHA-512.
*/
#define SPH_SIZE_sha512 512
/**
* This structure is a context for SHA-384 computations: it contains the
* intermediate values and some data from the last entered block. Once
* a SHA-384 computation has been performed, the context can be reused for
* another computation.
*
* The contents of this structure are private. A running SHA-384 computation
* can be cloned by copying the context (e.g. with a simple
* <code>memcpy()</code>).
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[128]; /* first field, for alignment */
sph_u64 val[8];
sph_u64 count;
#endif
} sph_sha384_context;
/**
* Initialize a SHA-384 context. This process performs no memory allocation.
*
* @param cc the SHA-384 context (pointer to
* a <code>sph_sha384_context</code>)
*/
void sph_sha384_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the SHA-384 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_sha384(void *cc, const void *data, size_t len);
/**
* Terminate the current SHA-384 computation and output the result into the
* provided buffer. The destination buffer must be wide enough to
* accomodate the result (48 bytes). The context is automatically
* reinitialized.
*
* @param cc the SHA-384 context
* @param dst the destination buffer
*/
void sph_sha384_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (48 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the SHA-384 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_sha384_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst);
/**
* Apply the SHA-384 compression function on the provided data. The
* <code>msg</code> parameter contains the 16 64-bit input blocks,
* as numerical values (hence after the big-endian decoding). The
* <code>val</code> parameter contains the 8 64-bit input blocks for
* the compression function; the output is written in place in this
* array.
*
* @param msg the message block (16 values)
* @param val the function 512-bit input and output
*/
void sph_sha384_comp(const sph_u64 msg[16], sph_u64 val[8]);
/**
* This structure is a context for SHA-512 computations. It is identical
* to the SHA-384 context. However, a context is initialized for SHA-384
* <strong>or</strong> SHA-512, but not both (the internal IV is not the
* same).
*/
typedef sph_sha384_context sph_sha512_context;
/**
* Initialize a SHA-512 context. This process performs no memory allocation.
*
* @param cc the SHA-512 context (pointer to
* a <code>sph_sha512_context</code>)
*/
void sph_sha512_init(void *cc);
#ifdef DOXYGEN_IGNORE
/**
* Process some data bytes, for SHA-512. This function is identical to
* <code>sph_sha384()</code>.
*
* @param cc the SHA-384 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_sha512(void *cc, const void *data, size_t len);
#endif
#ifndef DOXYGEN_IGNORE
#define sph_sha512 sph_sha384
#endif
/**
* Terminate the current SHA-512 computation and output the result into the
* provided buffer. The destination buffer must be wide enough to
* accomodate the result (64 bytes). The context is automatically
* reinitialized.
*
* @param cc the SHA-512 context
* @param dst the destination buffer
*/
void sph_sha512_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (64 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the SHA-512 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_sha512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst);
#ifdef DOXYGEN_IGNORE
/**
* Apply the SHA-512 compression function. This function is identical to
* <code>sph_sha384_comp()</code>.
*
* @param msg the message block (16 values)
* @param val the function 512-bit input and output
*/
void sph_sha512_comp(const sph_u64 msg[16], sph_u64 val[8]);
#endif
#ifndef DOXYGEN_IGNORE
#define sph_sha512_comp sph_sha384_comp
#endif
#endif
#endif
#ifdef __cplusplus
}
#endif

8
sph/whirlpool.c

@ -3432,7 +3432,7 @@ ROUND_FUN(whirlpool1, old1)
* We want big-endian encoding of the message length, over 256 bits. BE64 * We want big-endian encoding of the message length, over 256 bits. BE64
* triggers that. However, our block length is 512 bits, not 1024 bits. * triggers that. However, our block length is 512 bits, not 1024 bits.
* Internally, our encoding/decoding is little-endian, which is not a * Internally, our encoding/decoding is little-endian, which is not a
* problem here since we also deactivate output in sph_x15_helper.c. * problem here since we also deactivate output in md_helper.c.
*/ */
#define BE64 1 #define BE64 1
#define SVAL sc->state #define SVAL sc->state
@ -3441,19 +3441,19 @@ ROUND_FUN(whirlpool1, old1)
#define RFUN whirlpool_round #define RFUN whirlpool_round
#define HASH whirlpool #define HASH whirlpool
#include "x15_helper.c" #include "md_helper.c"
#undef RFUN #undef RFUN
#undef HASH #undef HASH
#define RFUN whirlpool0_round #define RFUN whirlpool0_round
#define HASH whirlpool0 #define HASH whirlpool0
#include "x15_helper.c" #include "md_helper.c"
#undef RFUN #undef RFUN
#undef HASH #undef HASH
#define RFUN whirlpool1_round #define RFUN whirlpool1_round
#define HASH whirlpool1 #define HASH whirlpool1
#include "x15_helper.c" #include "md_helper.c"
#undef RFUN #undef RFUN
#undef HASH #undef HASH

4
util.c

@ -1410,5 +1410,9 @@ void print_hash_tests(void)
x15hash(&hash[0], &buf[0]); x15hash(&hash[0], &buf[0]);
printf("\nX15: "); print_hash(hash); printf("\nX15: "); print_hash(hash);
memset(hash, 0, sizeof hash);
x17hash(&hash[0], &buf[0]);
printf("\nX17: "); print_hash(hash);
printf("\n"); printf("\n");
} }

12
x15/cuda_x15_whirlpool.cu

@ -2282,7 +2282,7 @@ static uint64_t ROUND_ELT(const uint64_t* __restrict__ sharedMemory, uint64_t in
__global__ __global__
void whirlpool512_gpu_hash_80(int threads, uint32_t startNounce, void *outputHash) void oldwhirlpool_gpu_hash_80(int threads, uint32_t startNounce, void *outputHash)
{ {
__shared__ uint64_t sharedMemory[2048]; __shared__ uint64_t sharedMemory[2048];
@ -2376,7 +2376,7 @@ void whirlpool512_gpu_hash_80(int threads, uint32_t startNounce, void *outputHas
} }
__global__ __global__
void whirlpool512_gpu_hash_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector) void x15_whirlpool_gpu_hash_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector)
{ {
__shared__ uint64_t sharedMemory[2048]; __shared__ uint64_t sharedMemory[2048];
@ -2451,7 +2451,7 @@ void whirlpool512_gpu_hash_64(int threads, uint32_t startNounce, uint64_t *g_has
} }
__global__ __global__
void whirlpool512_gpu_finalhash_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector, uint32_t *resNounce) void oldwhirlpool_gpu_finalhash_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector, uint32_t *resNounce)
{ {
__shared__ uint64_t sharedMemory[2048]; __shared__ uint64_t sharedMemory[2048];
@ -2606,7 +2606,7 @@ extern void x15_whirlpool_cpu_hash_64(int thr_id, int threads, uint32_t startNou
size_t shared_size = 0; size_t shared_size = 0;
whirlpool512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector); x15_whirlpool_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector);
MyStreamSynchronize(NULL, order, thr_id); MyStreamSynchronize(NULL, order, thr_id);
} }
@ -2623,7 +2623,7 @@ extern uint32_t whirlpool512_cpu_finalhash_64(int thr_id, int threads, uint32_t
cudaMemset(d_WNonce[thr_id], 0xff, sizeof(uint32_t)); cudaMemset(d_WNonce[thr_id], 0xff, sizeof(uint32_t));
whirlpool512_gpu_finalhash_64<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector,d_WNonce[thr_id]); oldwhirlpool_gpu_finalhash_64<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector,d_WNonce[thr_id]);
MyStreamSynchronize(NULL, order, thr_id); MyStreamSynchronize(NULL, order, thr_id);
cudaMemcpy(d_wnounce[thr_id], d_WNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost); cudaMemcpy(d_wnounce[thr_id], d_WNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost);
@ -2642,7 +2642,7 @@ void whirlpool512_cpu_hash_80(int thr_id, int threads, uint32_t startNounce, uin
size_t shared_size = 0; size_t shared_size = 0;
whirlpool512_gpu_hash_80<<<grid, block, shared_size>>>(threads, startNounce, d_outputHash); oldwhirlpool_gpu_hash_80<<<grid, block, shared_size>>>(threads, startNounce, d_outputHash);
MyStreamSynchronize(NULL, order, thr_id); MyStreamSynchronize(NULL, order, thr_id);
} }

403
x17/cuda_x17_haval512.cu

@ -0,0 +1,403 @@
/*
* Haval-512 for X17
*
* Built on cbuchner1's implementation, actual hashing code
* heavily based on phm's sgminer
*
*/
/*
* Haval-512 kernel implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2014 djm34
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author phm <phm@inbox.com>
*/
#include <stdio.h>
#include <memory.h>
#define USE_SHARED 1
#include "cuda_helper.h"
#define SPH_ROTL32(x, n) SPH_T32(((x) << (n)) | ((x) >> (32 - (n))))
#define SPH_ROTR32(x, n) SPH_ROTL32(x, (32 - (n)))
#define SPH_T64(x) ((x) & SPH_C64(0xFFFFFFFFFFFFFFFF))
// in heavy.cu
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id);
static __constant__ uint32_t initVector[8];
static const uint32_t c_initVector[8] = {
SPH_C32(0x243F6A88),
SPH_C32(0x85A308D3),
SPH_C32(0x13198A2E),
SPH_C32(0x03707344),
SPH_C32(0xA4093822),
SPH_C32(0x299F31D0),
SPH_C32(0x082EFA98),
SPH_C32(0xEC4E6C89)
};
#define PASS1(n, in) { \
STEP(n, 1, s7, s6, s5, s4, s3, s2, s1, s0, in[ 0], SPH_C32(0x00000000)); \
STEP(n, 1, s6, s5, s4, s3, s2, s1, s0, s7, in[ 1], SPH_C32(0x00000000)); \
STEP(n, 1, s5, s4, s3, s2, s1, s0, s7, s6, in[ 2], SPH_C32(0x00000000)); \
STEP(n, 1, s4, s3, s2, s1, s0, s7, s6, s5, in[ 3], SPH_C32(0x00000000)); \
STEP(n, 1, s3, s2, s1, s0, s7, s6, s5, s4, in[ 4], SPH_C32(0x00000000)); \
STEP(n, 1, s2, s1, s0, s7, s6, s5, s4, s3, in[ 5], SPH_C32(0x00000000)); \
STEP(n, 1, s1, s0, s7, s6, s5, s4, s3, s2, in[ 6], SPH_C32(0x00000000)); \
STEP(n, 1, s0, s7, s6, s5, s4, s3, s2, s1, in[ 7], SPH_C32(0x00000000)); \
\
STEP(n, 1, s7, s6, s5, s4, s3, s2, s1, s0, in[ 8], SPH_C32(0x00000000)); \
STEP(n, 1, s6, s5, s4, s3, s2, s1, s0, s7, in[ 9], SPH_C32(0x00000000)); \
STEP(n, 1, s5, s4, s3, s2, s1, s0, s7, s6, in[10], SPH_C32(0x00000000)); \
STEP(n, 1, s4, s3, s2, s1, s0, s7, s6, s5, in[11], SPH_C32(0x00000000)); \
STEP(n, 1, s3, s2, s1, s0, s7, s6, s5, s4, in[12], SPH_C32(0x00000000)); \
STEP(n, 1, s2, s1, s0, s7, s6, s5, s4, s3, in[13], SPH_C32(0x00000000)); \
STEP(n, 1, s1, s0, s7, s6, s5, s4, s3, s2, in[14], SPH_C32(0x00000000)); \
STEP(n, 1, s0, s7, s6, s5, s4, s3, s2, s1, in[15], SPH_C32(0x00000000)); \
\
STEP(n, 1, s7, s6, s5, s4, s3, s2, s1, s0, in[16], SPH_C32(0x00000000)); \
STEP(n, 1, s6, s5, s4, s3, s2, s1, s0, s7, in[17], SPH_C32(0x00000000)); \
STEP(n, 1, s5, s4, s3, s2, s1, s0, s7, s6, in[18], SPH_C32(0x00000000)); \
STEP(n, 1, s4, s3, s2, s1, s0, s7, s6, s5, in[19], SPH_C32(0x00000000)); \
STEP(n, 1, s3, s2, s1, s0, s7, s6, s5, s4, in[20], SPH_C32(0x00000000)); \
STEP(n, 1, s2, s1, s0, s7, s6, s5, s4, s3, in[21], SPH_C32(0x00000000)); \
STEP(n, 1, s1, s0, s7, s6, s5, s4, s3, s2, in[22], SPH_C32(0x00000000)); \
STEP(n, 1, s0, s7, s6, s5, s4, s3, s2, s1, in[23], SPH_C32(0x00000000)); \
\
STEP(n, 1, s7, s6, s5, s4, s3, s2, s1, s0, in[24], SPH_C32(0x00000000)); \
STEP(n, 1, s6, s5, s4, s3, s2, s1, s0, s7, in[25], SPH_C32(0x00000000)); \
STEP(n, 1, s5, s4, s3, s2, s1, s0, s7, s6, in[26], SPH_C32(0x00000000)); \
STEP(n, 1, s4, s3, s2, s1, s0, s7, s6, s5, in[27], SPH_C32(0x00000000)); \
STEP(n, 1, s3, s2, s1, s0, s7, s6, s5, s4, in[28], SPH_C32(0x00000000)); \
STEP(n, 1, s2, s1, s0, s7, s6, s5, s4, s3, in[29], SPH_C32(0x00000000)); \
STEP(n, 1, s1, s0, s7, s6, s5, s4, s3, s2, in[30], SPH_C32(0x00000000)); \
STEP(n, 1, s0, s7, s6, s5, s4, s3, s2, s1, in[31], SPH_C32(0x00000000)); \
}
#define PASS2(n, in) { \
STEP(n, 2, s7, s6, s5, s4, s3, s2, s1, s0, in[ 5], SPH_C32(0x452821E6)); \
STEP(n, 2, s6, s5, s4, s3, s2, s1, s0, s7, in[14], SPH_C32(0x38D01377)); \
STEP(n, 2, s5, s4, s3, s2, s1, s0, s7, s6, in[26], SPH_C32(0xBE5466CF)); \
STEP(n, 2, s4, s3, s2, s1, s0, s7, s6, s5, in[18], SPH_C32(0x34E90C6C)); \
STEP(n, 2, s3, s2, s1, s0, s7, s6, s5, s4, in[11], SPH_C32(0xC0AC29B7)); \
STEP(n, 2, s2, s1, s0, s7, s6, s5, s4, s3, in[28], SPH_C32(0xC97C50DD)); \
STEP(n, 2, s1, s0, s7, s6, s5, s4, s3, s2, in[ 7], SPH_C32(0x3F84D5B5)); \
STEP(n, 2, s0, s7, s6, s5, s4, s3, s2, s1, in[16], SPH_C32(0xB5470917)); \
\
STEP(n, 2, s7, s6, s5, s4, s3, s2, s1, s0, in[ 0], SPH_C32(0x9216D5D9)); \
STEP(n, 2, s6, s5, s4, s3, s2, s1, s0, s7, in[23], SPH_C32(0x8979FB1B)); \
STEP(n, 2, s5, s4, s3, s2, s1, s0, s7, s6, in[20], SPH_C32(0xD1310BA6)); \
STEP(n, 2, s4, s3, s2, s1, s0, s7, s6, s5, in[22], SPH_C32(0x98DFB5AC)); \
STEP(n, 2, s3, s2, s1, s0, s7, s6, s5, s4, in[ 1], SPH_C32(0x2FFD72DB)); \
STEP(n, 2, s2, s1, s0, s7, s6, s5, s4, s3, in[10], SPH_C32(0xD01ADFB7)); \
STEP(n, 2, s1, s0, s7, s6, s5, s4, s3, s2, in[ 4], SPH_C32(0xB8E1AFED)); \
STEP(n, 2, s0, s7, s6, s5, s4, s3, s2, s1, in[ 8], SPH_C32(0x6A267E96)); \
\
STEP(n, 2, s7, s6, s5, s4, s3, s2, s1, s0, in[30], SPH_C32(0xBA7C9045)); \
STEP(n, 2, s6, s5, s4, s3, s2, s1, s0, s7, in[ 3], SPH_C32(0xF12C7F99)); \
STEP(n, 2, s5, s4, s3, s2, s1, s0, s7, s6, in[21], SPH_C32(0x24A19947)); \
STEP(n, 2, s4, s3, s2, s1, s0, s7, s6, s5, in[ 9], SPH_C32(0xB3916CF7)); \
STEP(n, 2, s3, s2, s1, s0, s7, s6, s5, s4, in[17], SPH_C32(0x0801F2E2)); \
STEP(n, 2, s2, s1, s0, s7, s6, s5, s4, s3, in[24], SPH_C32(0x858EFC16)); \
STEP(n, 2, s1, s0, s7, s6, s5, s4, s3, s2, in[29], SPH_C32(0x636920D8)); \
STEP(n, 2, s0, s7, s6, s5, s4, s3, s2, s1, in[ 6], SPH_C32(0x71574E69)); \
\
STEP(n, 2, s7, s6, s5, s4, s3, s2, s1, s0, in[19], SPH_C32(0xA458FEA3)); \
STEP(n, 2, s6, s5, s4, s3, s2, s1, s0, s7, in[12], SPH_C32(0xF4933D7E)); \
STEP(n, 2, s5, s4, s3, s2, s1, s0, s7, s6, in[15], SPH_C32(0x0D95748F)); \
STEP(n, 2, s4, s3, s2, s1, s0, s7, s6, s5, in[13], SPH_C32(0x728EB658)); \
STEP(n, 2, s3, s2, s1, s0, s7, s6, s5, s4, in[ 2], SPH_C32(0x718BCD58)); \
STEP(n, 2, s2, s1, s0, s7, s6, s5, s4, s3, in[25], SPH_C32(0x82154AEE)); \
STEP(n, 2, s1, s0, s7, s6, s5, s4, s3, s2, in[31], SPH_C32(0x7B54A41D)); \
STEP(n, 2, s0, s7, s6, s5, s4, s3, s2, s1, in[27], SPH_C32(0xC25A59B5)); \
}
#define PASS3(n, in) { \
STEP(n, 3, s7, s6, s5, s4, s3, s2, s1, s0, in[19], SPH_C32(0x9C30D539)); \
STEP(n, 3, s6, s5, s4, s3, s2, s1, s0, s7, in[ 9], SPH_C32(0x2AF26013)); \
STEP(n, 3, s5, s4, s3, s2, s1, s0, s7, s6, in[ 4], SPH_C32(0xC5D1B023)); \
STEP(n, 3, s4, s3, s2, s1, s0, s7, s6, s5, in[20], SPH_C32(0x286085F0)); \
STEP(n, 3, s3, s2, s1, s0, s7, s6, s5, s4, in[28], SPH_C32(0xCA417918)); \
STEP(n, 3, s2, s1, s0, s7, s6, s5, s4, s3, in[17], SPH_C32(0xB8DB38EF)); \
STEP(n, 3, s1, s0, s7, s6, s5, s4, s3, s2, in[ 8], SPH_C32(0x8E79DCB0)); \
STEP(n, 3, s0, s7, s6, s5, s4, s3, s2, s1, in[22], SPH_C32(0x603A180E)); \
\
STEP(n, 3, s7, s6, s5, s4, s3, s2, s1, s0, in[29], SPH_C32(0x6C9E0E8B)); \
STEP(n, 3, s6, s5, s4, s3, s2, s1, s0, s7, in[14], SPH_C32(0xB01E8A3E)); \
STEP(n, 3, s5, s4, s3, s2, s1, s0, s7, s6, in[25], SPH_C32(0xD71577C1)); \
STEP(n, 3, s4, s3, s2, s1, s0, s7, s6, s5, in[12], SPH_C32(0xBD314B27)); \
STEP(n, 3, s3, s2, s1, s0, s7, s6, s5, s4, in[24], SPH_C32(0x78AF2FDA)); \
STEP(n, 3, s2, s1, s0, s7, s6, s5, s4, s3, in[30], SPH_C32(0x55605C60)); \
STEP(n, 3, s1, s0, s7, s6, s5, s4, s3, s2, in[16], SPH_C32(0xE65525F3)); \
STEP(n, 3, s0, s7, s6, s5, s4, s3, s2, s1, in[26], SPH_C32(0xAA55AB94)); \
\
STEP(n, 3, s7, s6, s5, s4, s3, s2, s1, s0, in[31], SPH_C32(0x57489862)); \
STEP(n, 3, s6, s5, s4, s3, s2, s1, s0, s7, in[15], SPH_C32(0x63E81440)); \
STEP(n, 3, s5, s4, s3, s2, s1, s0, s7, s6, in[ 7], SPH_C32(0x55CA396A)); \
STEP(n, 3, s4, s3, s2, s1, s0, s7, s6, s5, in[ 3], SPH_C32(0x2AAB10B6)); \
STEP(n, 3, s3, s2, s1, s0, s7, s6, s5, s4, in[ 1], SPH_C32(0xB4CC5C34)); \
STEP(n, 3, s2, s1, s0, s7, s6, s5, s4, s3, in[ 0], SPH_C32(0x1141E8CE)); \
STEP(n, 3, s1, s0, s7, s6, s5, s4, s3, s2, in[18], SPH_C32(0xA15486AF)); \
STEP(n, 3, s0, s7, s6, s5, s4, s3, s2, s1, in[27], SPH_C32(0x7C72E993)); \
\
STEP(n, 3, s7, s6, s5, s4, s3, s2, s1, s0, in[13], SPH_C32(0xB3EE1411)); \
STEP(n, 3, s6, s5, s4, s3, s2, s1, s0, s7, in[ 6], SPH_C32(0x636FBC2A)); \
STEP(n, 3, s5, s4, s3, s2, s1, s0, s7, s6, in[21], SPH_C32(0x2BA9C55D)); \
STEP(n, 3, s4, s3, s2, s1, s0, s7, s6, s5, in[10], SPH_C32(0x741831F6)); \
STEP(n, 3, s3, s2, s1, s0, s7, s6, s5, s4, in[23], SPH_C32(0xCE5C3E16)); \
STEP(n, 3, s2, s1, s0, s7, s6, s5, s4, s3, in[11], SPH_C32(0x9B87931E)); \
STEP(n, 3, s1, s0, s7, s6, s5, s4, s3, s2, in[ 5], SPH_C32(0xAFD6BA33)); \
STEP(n, 3, s0, s7, s6, s5, s4, s3, s2, s1, in[ 2], SPH_C32(0x6C24CF5C)); \
}
#define PASS4(n, in) { \
STEP(n, 4, s7, s6, s5, s4, s3, s2, s1, s0, in[24], SPH_C32(0x7A325381)); \
STEP(n, 4, s6, s5, s4, s3, s2, s1, s0, s7, in[ 4], SPH_C32(0x28958677)); \
STEP(n, 4, s5, s4, s3, s2, s1, s0, s7, s6, in[ 0], SPH_C32(0x3B8F4898)); \
STEP(n, 4, s4, s3, s2, s1, s0, s7, s6, s5, in[14], SPH_C32(0x6B4BB9AF)); \
STEP(n, 4, s3, s2, s1, s0, s7, s6, s5, s4, in[ 2], SPH_C32(0xC4BFE81B)); \
STEP(n, 4, s2, s1, s0, s7, s6, s5, s4, s3, in[ 7], SPH_C32(0x66282193)); \
STEP(n, 4, s1, s0, s7, s6, s5, s4, s3, s2, in[28], SPH_C32(0x61D809CC)); \
STEP(n, 4, s0, s7, s6, s5, s4, s3, s2, s1, in[23], SPH_C32(0xFB21A991)); \
\
STEP(n, 4, s7, s6, s5, s4, s3, s2, s1, s0, in[26], SPH_C32(0x487CAC60)); \
STEP(n, 4, s6, s5, s4, s3, s2, s1, s0, s7, in[ 6], SPH_C32(0x5DEC8032)); \
STEP(n, 4, s5, s4, s3, s2, s1, s0, s7, s6, in[30], SPH_C32(0xEF845D5D)); \
STEP(n, 4, s4, s3, s2, s1, s0, s7, s6, s5, in[20], SPH_C32(0xE98575B1)); \
STEP(n, 4, s3, s2, s1, s0, s7, s6, s5, s4, in[18], SPH_C32(0xDC262302)); \
STEP(n, 4, s2, s1, s0, s7, s6, s5, s4, s3, in[25], SPH_C32(0xEB651B88)); \
STEP(n, 4, s1, s0, s7, s6, s5, s4, s3, s2, in[19], SPH_C32(0x23893E81)); \
STEP(n, 4, s0, s7, s6, s5, s4, s3, s2, s1, in[ 3], SPH_C32(0xD396ACC5)); \
\
STEP(n, 4, s7, s6, s5, s4, s3, s2, s1, s0, in[22], SPH_C32(0x0F6D6FF3)); \
STEP(n, 4, s6, s5, s4, s3, s2, s1, s0, s7, in[11], SPH_C32(0x83F44239)); \
STEP(n, 4, s5, s4, s3, s2, s1, s0, s7, s6, in[31], SPH_C32(0x2E0B4482)); \
STEP(n, 4, s4, s3, s2, s1, s0, s7, s6, s5, in[21], SPH_C32(0xA4842004)); \
STEP(n, 4, s3, s2, s1, s0, s7, s6, s5, s4, in[ 8], SPH_C32(0x69C8F04A)); \
STEP(n, 4, s2, s1, s0, s7, s6, s5, s4, s3, in[27], SPH_C32(0x9E1F9B5E)); \
STEP(n, 4, s1, s0, s7, s6, s5, s4, s3, s2, in[12], SPH_C32(0x21C66842)); \
STEP(n, 4, s0, s7, s6, s5, s4, s3, s2, s1, in[ 9], SPH_C32(0xF6E96C9A)); \
\
STEP(n, 4, s7, s6, s5, s4, s3, s2, s1, s0, in[ 1], SPH_C32(0x670C9C61)); \
STEP(n, 4, s6, s5, s4, s3, s2, s1, s0, s7, in[29], SPH_C32(0xABD388F0)); \
STEP(n, 4, s5, s4, s3, s2, s1, s0, s7, s6, in[ 5], SPH_C32(0x6A51A0D2)); \
STEP(n, 4, s4, s3, s2, s1, s0, s7, s6, s5, in[15], SPH_C32(0xD8542F68)); \
STEP(n, 4, s3, s2, s1, s0, s7, s6, s5, s4, in[17], SPH_C32(0x960FA728)); \
STEP(n, 4, s2, s1, s0, s7, s6, s5, s4, s3, in[10], SPH_C32(0xAB5133A3)); \
STEP(n, 4, s1, s0, s7, s6, s5, s4, s3, s2, in[16], SPH_C32(0x6EEF0B6C)); \
STEP(n, 4, s0, s7, s6, s5, s4, s3, s2, s1, in[13], SPH_C32(0x137A3BE4)); \
}
#define PASS5(n, in) { \
STEP(n, 5, s7, s6, s5, s4, s3, s2, s1, s0, in[27], SPH_C32(0xBA3BF050)); \
STEP(n, 5, s6, s5, s4, s3, s2, s1, s0, s7, in[ 3], SPH_C32(0x7EFB2A98)); \
STEP(n, 5, s5, s4, s3, s2, s1, s0, s7, s6, in[21], SPH_C32(0xA1F1651D)); \
STEP(n, 5, s4, s3, s2, s1, s0, s7, s6, s5, in[26], SPH_C32(0x39AF0176)); \
STEP(n, 5, s3, s2, s1, s0, s7, s6, s5, s4, in[17], SPH_C32(0x66CA593E)); \
STEP(n, 5, s2, s1, s0, s7, s6, s5, s4, s3, in[11], SPH_C32(0x82430E88)); \
STEP(n, 5, s1, s0, s7, s6, s5, s4, s3, s2, in[20], SPH_C32(0x8CEE8619)); \
STEP(n, 5, s0, s7, s6, s5, s4, s3, s2, s1, in[29], SPH_C32(0x456F9FB4)); \
\
STEP(n, 5, s7, s6, s5, s4, s3, s2, s1, s0, in[19], SPH_C32(0x7D84A5C3)); \
STEP(n, 5, s6, s5, s4, s3, s2, s1, s0, s7, in[ 0], SPH_C32(0x3B8B5EBE)); \
STEP(n, 5, s5, s4, s3, s2, s1, s0, s7, s6, in[12], SPH_C32(0xE06F75D8)); \
STEP(n, 5, s4, s3, s2, s1, s0, s7, s6, s5, in[ 7], SPH_C32(0x85C12073)); \
STEP(n, 5, s3, s2, s1, s0, s7, s6, s5, s4, in[13], SPH_C32(0x401A449F)); \
STEP(n, 5, s2, s1, s0, s7, s6, s5, s4, s3, in[ 8], SPH_C32(0x56C16AA6)); \
STEP(n, 5, s1, s0, s7, s6, s5, s4, s3, s2, in[31], SPH_C32(0x4ED3AA62)); \
STEP(n, 5, s0, s7, s6, s5, s4, s3, s2, s1, in[10], SPH_C32(0x363F7706)); \
\
STEP(n, 5, s7, s6, s5, s4, s3, s2, s1, s0, in[ 5], SPH_C32(0x1BFEDF72)); \
STEP(n, 5, s6, s5, s4, s3, s2, s1, s0, s7, in[ 9], SPH_C32(0x429B023D)); \
STEP(n, 5, s5, s4, s3, s2, s1, s0, s7, s6, in[14], SPH_C32(0x37D0D724)); \
STEP(n, 5, s4, s3, s2, s1, s0, s7, s6, s5, in[30], SPH_C32(0xD00A1248)); \
STEP(n, 5, s3, s2, s1, s0, s7, s6, s5, s4, in[18], SPH_C32(0xDB0FEAD3)); \
STEP(n, 5, s2, s1, s0, s7, s6, s5, s4, s3, in[ 6], SPH_C32(0x49F1C09B)); \
STEP(n, 5, s1, s0, s7, s6, s5, s4, s3, s2, in[28], SPH_C32(0x075372C9)); \
STEP(n, 5, s0, s7, s6, s5, s4, s3, s2, s1, in[24], SPH_C32(0x80991B7B)); \
\
STEP(n, 5, s7, s6, s5, s4, s3, s2, s1, s0, in[ 2], SPH_C32(0x25D479D8)); \
STEP(n, 5, s6, s5, s4, s3, s2, s1, s0, s7, in[23], SPH_C32(0xF6E8DEF7)); \
STEP(n, 5, s5, s4, s3, s2, s1, s0, s7, s6, in[16], SPH_C32(0xE3FE501A)); \
STEP(n, 5, s4, s3, s2, s1, s0, s7, s6, s5, in[22], SPH_C32(0xB6794C3B)); \
STEP(n, 5, s3, s2, s1, s0, s7, s6, s5, s4, in[ 4], SPH_C32(0x976CE0BD)); \
STEP(n, 5, s2, s1, s0, s7, s6, s5, s4, s3, in[ 1], SPH_C32(0x04C006BA)); \
STEP(n, 5, s1, s0, s7, s6, s5, s4, s3, s2, in[25], SPH_C32(0xC1A94FB6)); \
STEP(n, 5, s0, s7, s6, s5, s4, s3, s2, s1, in[15], SPH_C32(0x409F60C4)); \
}
#define F1(x6, x5, x4, x3, x2, x1, x0) \
(((x1) & ((x0) ^ (x4))) ^ ((x2) & (x5)) ^ ((x3) & (x6)) ^ (x0))
#define F2(x6, x5, x4, x3, x2, x1, x0) \
(((x2) & (((x1) & ~(x3)) ^ ((x4) & (x5)) ^ (x6) ^ (x0))) \
^ ((x4) & ((x1) ^ (x5))) ^ ((x3 & (x5)) ^ (x0)))
#define F3(x6, x5, x4, x3, x2, x1, x0) \
(((x3) & (((x1) & (x2)) ^ (x6) ^ (x0))) \
^ ((x1) & (x4)) ^ ((x2) & (x5)) ^ (x0))
#define F4(x6, x5, x4, x3, x2, x1, x0) \
(((x3) & (((x1) & (x2)) ^ ((x4) | (x6)) ^ (x5))) \
^ ((x4) & ((~(x2) & (x5)) ^ (x1) ^ (x6) ^ (x0))) \
^ ((x2) & (x6)) ^ (x0))
#define F5(x6, x5, x4, x3, x2, x1, x0) \
(((x0) & ~(((x1) & (x2) & (x3)) ^ (x5))) \
^ ((x1) & (x4)) ^ ((x2) & (x5)) ^ ((x3) & (x6)))
#define FP5_1(x6, x5, x4, x3, x2, x1, x0) \
F1(x3, x4, x1, x0, x5, x2, x6)
#define FP5_2(x6, x5, x4, x3, x2, x1, x0) \
F2(x6, x2, x1, x0, x3, x4, x5)
#define FP5_3(x6, x5, x4, x3, x2, x1, x0) \
F3(x2, x6, x0, x4, x3, x1, x5)
#define FP5_4(x6, x5, x4, x3, x2, x1, x0) \
F4(x1, x5, x3, x2, x0, x4, x6)
#define FP5_5(x6, x5, x4, x3, x2, x1, x0) \
F5(x2, x5, x0, x6, x4, x3, x1)
#define STEP(n, p, x7, x6, x5, x4, x3, x2, x1, x0, w, c) { \
uint32_t t = FP ## n ## _ ## p(x6, x5, x4, x3, x2, x1, x0); \
(x7) = SPH_T32(SPH_ROTR32(t, 7) + SPH_ROTR32((x7), 11) \
+ (w) + (c)); \
}
__global__
void x17_haval256_gpu_hash_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector)
{
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint32_t nounce = g_nonceVector ? g_nonceVector[thread] : (startNounce + thread);
int hashPosition = nounce - startNounce;
uint32_t *inpHash = (uint32_t*)&g_hash[8 * hashPosition];
union {
uint8_t h1[64];
uint32_t h4[16];
uint64_t h8[8];
} hash;
uint32_t u0, u1, u2, u3, u4, u5, u6, u7;
uint32_t s0,s1,s2,s3,s4,s5,s6,s7;
uint32_t buf[32];
s0 = initVector[0];
s1 = initVector[1];
s2 = initVector[2];
s3 = initVector[3];
s4 = initVector[4];
s5 = initVector[5];
s6 = initVector[6];
s7 = initVector[7];
u0 = s0;
u1 = s1;
u2 = s2;
u3 = s3;
u4 = s4;
u5 = s5;
u6 = s6;
u7 = s7;
#pragma unroll
for (int i=0; i<16; i++) {
hash.h4[i]= inpHash[i];
}
///////// input big /////////////////////
#pragma unroll
for (int i=0; i<32; i++) {
if (i<16) {
buf[i]=hash.h4[i];
} else {
buf[i]=0;
}
}
buf[16]=0x00000001;
buf[29]=0x40290000;
buf[30]=0x00000200;
PASS1(5, buf);
PASS2(5, buf);
PASS3(5, buf);
PASS4(5, buf);
PASS5(5, buf);
s0 = SPH_T32(s0 + u0);
s1 = SPH_T32(s1 + u1);
s2 = SPH_T32(s2 + u2);
s3 = SPH_T32(s3 + u3);
s4 = SPH_T32(s4 + u4);
s5 = SPH_T32(s5 + u5);
s6 = SPH_T32(s6 + u6);
s7 = SPH_T32(s7 + u7);
hash.h4[0]=s0;
hash.h4[1]=s1;
hash.h4[2]=s2;
hash.h4[3]=s3;
hash.h4[4]=s4;
hash.h4[5]=s5;
hash.h4[6]=s6;
hash.h4[7]=s7;
#pragma unroll 16
for (int u = 0; u < 16; u ++)
inpHash[u] = hash.h4[u];
} // threads
}
__host__
void x17_haval256_cpu_init(int thr_id, int threads)
{
cudaMemcpyToSymbol(initVector,c_initVector,sizeof(c_initVector),0, cudaMemcpyHostToDevice);
}
__host__
void x17_haval256_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
{
const int threadsperblock = 256; // Alignment mit mixtab Grösse. NICHT ÄNDERN
// berechne wie viele Thread Blocks wir brauchen
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
size_t shared_size = 0;
x17_haval256_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector);
MyStreamSynchronize(NULL, order, thr_id);
}

240
x17/cuda_x17_sha512.cu

@ -0,0 +1,240 @@
/**
* sha512 djm34
* (cleaned by tpruvot)
*/
/*
* sha-512 kernel implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2014 djm34
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author phm <phm@inbox.com>
*/
#include <stdio.h>
#define USE_SHARED 1
#include "cuda_helper.h"
#define SWAP64(u64) cuda_swab64(u64)
#define SPH_ROTL32(x, n) SPH_T32(((x) << (n)) | ((x) >> (32 - (n))))
#define SPH_ROTR32(x, n) SPH_ROTL32(x, (32 - (n)))
#define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF))
#define SPH_T64(x) ((x) & SPH_C64(0xFFFFFFFFFFFFFFFF))
// in heavy.cu
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id);
static __constant__ uint64_t H_512[8];
static const uint64_t H512[8] = {
SPH_C64(0x6A09E667F3BCC908), SPH_C64(0xBB67AE8584CAA73B),
SPH_C64(0x3C6EF372FE94F82B), SPH_C64(0xA54FF53A5F1D36F1),
SPH_C64(0x510E527FADE682D1), SPH_C64(0x9B05688C2B3E6C1F),
SPH_C64(0x1F83D9ABFB41BD6B), SPH_C64(0x5BE0CD19137E2179)
};
static __constant__ uint64_t K_512[80];
static const uint64_t K512[80] = {
SPH_C64(0x428A2F98D728AE22), SPH_C64(0x7137449123EF65CD),
SPH_C64(0xB5C0FBCFEC4D3B2F), SPH_C64(0xE9B5DBA58189DBBC),
SPH_C64(0x3956C25BF348B538), SPH_C64(0x59F111F1B605D019),
SPH_C64(0x923F82A4AF194F9B), SPH_C64(0xAB1C5ED5DA6D8118),
SPH_C64(0xD807AA98A3030242), SPH_C64(0x12835B0145706FBE),
SPH_C64(0x243185BE4EE4B28C), SPH_C64(0x550C7DC3D5FFB4E2),
SPH_C64(0x72BE5D74F27B896F), SPH_C64(0x80DEB1FE3B1696B1),
SPH_C64(0x9BDC06A725C71235), SPH_C64(0xC19BF174CF692694),
SPH_C64(0xE49B69C19EF14AD2), SPH_C64(0xEFBE4786384F25E3),
SPH_C64(0x0FC19DC68B8CD5B5), SPH_C64(0x240CA1CC77AC9C65),
SPH_C64(0x2DE92C6F592B0275), SPH_C64(0x4A7484AA6EA6E483),
SPH_C64(0x5CB0A9DCBD41FBD4), SPH_C64(0x76F988DA831153B5),
SPH_C64(0x983E5152EE66DFAB), SPH_C64(0xA831C66D2DB43210),
SPH_C64(0xB00327C898FB213F), SPH_C64(0xBF597FC7BEEF0EE4),
SPH_C64(0xC6E00BF33DA88FC2), SPH_C64(0xD5A79147930AA725),
SPH_C64(0x06CA6351E003826F), SPH_C64(0x142929670A0E6E70),
SPH_C64(0x27B70A8546D22FFC), SPH_C64(0x2E1B21385C26C926),
SPH_C64(0x4D2C6DFC5AC42AED), SPH_C64(0x53380D139D95B3DF),
SPH_C64(0x650A73548BAF63DE), SPH_C64(0x766A0ABB3C77B2A8),
SPH_C64(0x81C2C92E47EDAEE6), SPH_C64(0x92722C851482353B),
SPH_C64(0xA2BFE8A14CF10364), SPH_C64(0xA81A664BBC423001),
SPH_C64(0xC24B8B70D0F89791), SPH_C64(0xC76C51A30654BE30),
SPH_C64(0xD192E819D6EF5218), SPH_C64(0xD69906245565A910),
SPH_C64(0xF40E35855771202A), SPH_C64(0x106AA07032BBD1B8),
SPH_C64(0x19A4C116B8D2D0C8), SPH_C64(0x1E376C085141AB53),
SPH_C64(0x2748774CDF8EEB99), SPH_C64(0x34B0BCB5E19B48A8),
SPH_C64(0x391C0CB3C5C95A63), SPH_C64(0x4ED8AA4AE3418ACB),
SPH_C64(0x5B9CCA4F7763E373), SPH_C64(0x682E6FF3D6B2B8A3),
SPH_C64(0x748F82EE5DEFB2FC), SPH_C64(0x78A5636F43172F60),
SPH_C64(0x84C87814A1F0AB72), SPH_C64(0x8CC702081A6439EC),
SPH_C64(0x90BEFFFA23631E28), SPH_C64(0xA4506CEBDE82BDE9),
SPH_C64(0xBEF9A3F7B2C67915), SPH_C64(0xC67178F2E372532B),
SPH_C64(0xCA273ECEEA26619C), SPH_C64(0xD186B8C721C0C207),
SPH_C64(0xEADA7DD6CDE0EB1E), SPH_C64(0xF57D4F7FEE6ED178),
SPH_C64(0x06F067AA72176FBA), SPH_C64(0x0A637DC5A2C898A6),
SPH_C64(0x113F9804BEF90DAE), SPH_C64(0x1B710B35131C471B),
SPH_C64(0x28DB77F523047D84), SPH_C64(0x32CAAB7B40C72493),
SPH_C64(0x3C9EBE0A15C9BEBC), SPH_C64(0x431D67C49C100D4C),
SPH_C64(0x4CC5D4BECB3E42B6), SPH_C64(0x597F299CFC657E2A),
SPH_C64(0x5FCB6FAB3AD6FAEC), SPH_C64(0x6C44198C4A475817)
};
#define SHA3_STEP(ord,r,i) { \
uint64_t T1, T2; \
int a = 8-ord; \
T1 = SPH_T64(r[(7+a)%8] + BSG5_1(r[(4+a)%8]) + CH(r[(4+a)%8], r[(5+a)%8], r[(6+a)%8]) + K_512[i] + W[i]); \
T2 = SPH_T64(BSG5_0(r[(0+a)%8]) + MAJ(r[(0+a)%8], r[(1+a)%8], r[(2+a)%8])); \
r[(3+a)%8] = SPH_T64(r[(3+a)%8] + T1); \
r[(7+a)%8] = SPH_T64(T1 + T2); \
}
#define SHA3_STEP2(truc,ord,r,i) { \
uint64_t T1, T2; \
int a = 8-ord; \
T1 = Tone(truc,r,W,a,i); \
T2 = SPH_T64(BSG5_0(r[(0+a)%8]) + MAJ(r[(0+a)%8], r[(1+a)%8], r[(2+a)%8])); \
r[(3+a)%8] = SPH_T64(r[(3+a)%8] + T1); \
r[(7+a)%8] = SPH_T64(T1 + T2); \
}
//#define BSG5_0(x) (ROTR64(x, 28) ^ ROTR64(x, 34) ^ ROTR64(x, 39))
#define BSG5_0(x) xor3(ROTR64(x, 28),ROTR64(x, 34),ROTR64(x, 39))
//#define BSG5_1(x) (ROTR64(x, 14) ^ ROTR64(x, 18) ^ ROTR64(x, 41))
#define BSG5_1(x) xor3(ROTR64(x, 14),ROTR64(x, 18),ROTR64(x, 41))
//#define SSG5_0(x) (ROTR64(x, 1) ^ ROTR64(x, 8) ^ SPH_T64((x) >> 7))
#define SSG5_0(x) xor3(ROTR64(x, 1),ROTR64(x, 8),shr_t64(x,7))
//#define SSG5_1(x) (ROTR64(x, 19) ^ ROTR64(x, 61) ^ SPH_T64((x) >> 6))
#define SSG5_1(x) xor3(ROTR64(x, 19),ROTR64(x, 61),shr_t64(x,6))
//#define CH(X, Y, Z) ((((Y) ^ (Z)) & (X)) ^ (Z))
#define CH(x, y, z) xandx(x,y,z)
//#define MAJ(X, Y, Z) (((X) & (Y)) | (((X) | (Y)) & (Z)))
#define MAJ(x, y, z) andor(x,y,z)
__device__ __forceinline__
uint64_t Tone(const uint64_t* sharedMemory, uint64_t r[8], uint64_t W[80], uint32_t a, uint32_t i)
{
uint64_t h = r[(7+a)%8];
uint64_t e = r[(4+a)%8];
uint64_t f = r[(5+a)%8];
uint64_t g = r[(6+a)%8];
//uint64_t BSG51 = ROTR64(e, 14) ^ ROTR64(e, 18) ^ ROTR64(e, 41);
uint64_t BSG51 = xor3(ROTR64(e, 14),ROTR64(e, 18),ROTR64(e, 41));
//uint64_t CHl = (((f) ^ (g)) & (e)) ^ (g);
uint64_t CHl = xandx(e,f,g);
uint64_t result = SPH_T64(h+BSG51+CHl+sharedMemory[i]+W[i]);
return result;
}
__global__
void x17_sha512_gpu_hash_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector)
{
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread);
int hashPosition = nounce - startNounce;
uint32_t *inpHash = (uint32_t*)&g_hash[8 * hashPosition];
union {
uint8_t h1[64];
uint32_t h4[16];
uint64_t h8[8];
} hash;
#pragma unroll
for (int i=0;i<16;i++) {
hash.h4[i]= inpHash[i];
}
uint64_t W[80];
uint64_t r[8];
#pragma unroll 71
for (int i=9;i<80;i++) {
W[i]=0;
}
#pragma unroll
for (int i = 0; i < 8; i ++) {
W[i] = SWAP64(hash.h8[i]);
r[i] = H_512[i];
}
W[8] = 0x8000000000000000;
W[15]= 0x0000000000000200;
#pragma unroll 64
for (int i = 16; i < 80; i ++)
W[i] = SPH_T64(SSG5_1(W[i - 2]) + W[i - 7]
+ SSG5_0(W[i - 15]) + W[i - 16]);
#pragma unroll 10
for (int i = 0; i < 80; i += 8) {
#pragma unroll 8
for (int ord=0;ord<8;ord++) {
SHA3_STEP2(K_512,ord,r,i+ord);
}
}
#pragma unroll 8
for (int i = 0; i < 8; i++) {
r[i] = SPH_T64(r[i] + H_512[i]);
}
#pragma unroll 8
for(int i=0;i<8;i++) {
hash.h8[i] = SWAP64(r[i]);
}
#pragma unroll 16
for (int u = 0; u < 16; u ++) {
inpHash[u] = hash.h4[u];
}
}
}
__host__
void x17_sha512_cpu_init(int thr_id, int threads)
{
cudaMemcpyToSymbol(K_512,K512,80*sizeof(uint64_t),0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(H_512,H512,sizeof(H512),0, cudaMemcpyHostToDevice);
}
__host__
void x17_sha512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
{
const int threadsperblock = 256;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
size_t shared_size =0;
x17_sha512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector);
MyStreamSynchronize(NULL, order, thr_id);
}

306
x17/x17.cu

@ -0,0 +1,306 @@
/*
* X17 algorithm built on cbuchner1's original X11
*
*/
extern "C"
{
#include "sph/sph_blake.h"
#include "sph/sph_bmw.h"
#include "sph/sph_groestl.h"
#include "sph/sph_skein.h"
#include "sph/sph_jh.h"
#include "sph/sph_keccak.h"
#include "sph/sph_luffa.h"
#include "sph/sph_cubehash.h"
#include "sph/sph_shavite.h"
#include "sph/sph_simd.h"
#include "sph/sph_echo.h"
#include "sph/sph_hamsi.h"
#include "sph/sph_fugue.h"
#include "sph/sph_shabal.h"
#include "sph/sph_whirlpool.h"
#include "sph/sph_sha2.h"
#include "sph/sph_haval.h"
#include "miner.h"
}
static uint32_t *d_hash[8];
// cpu-miner.c
extern int device_map[8];
extern bool opt_benchmark;
extern void quark_blake512_cpu_init(int thr_id, int threads);
extern void quark_blake512_cpu_setBlock_80(void *pdata);
extern void quark_blake512_cpu_hash_80(int thr_id, int threads, uint32_t startNounce, uint32_t *d_hash, int order);
extern void quark_blake512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
extern void quark_bmw512_cpu_init(int thr_id, int threads);
extern void quark_bmw512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
extern void quark_groestl512_cpu_init(int thr_id, int threads);
extern void quark_groestl512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
extern void quark_skein512_cpu_init(int thr_id, int threads);
extern void quark_skein512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
extern void quark_keccak512_cpu_init(int thr_id, int threads);
extern void quark_keccak512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
extern void quark_jh512_cpu_init(int thr_id, int threads);
extern void quark_jh512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
extern void x11_luffa512_cpu_init(int thr_id, int threads);
extern void x11_luffa512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
extern void x11_cubehash512_cpu_init(int thr_id, int threads);
extern void x11_cubehash512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
extern void x11_shavite512_cpu_init(int thr_id, int threads);
extern void x11_shavite512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
extern void x11_simd512_cpu_init(int thr_id, int threads);
extern void x11_simd512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
extern void x11_echo512_cpu_init(int thr_id, int threads);
extern void x11_echo512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
extern void x13_hamsi512_cpu_init(int thr_id, int threads);
extern void x13_hamsi512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
extern void x13_fugue512_cpu_init(int thr_id, int threads);
extern void x13_fugue512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
extern void x14_shabal512_cpu_init(int thr_id, int threads);
extern void x14_shabal512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
extern void x15_whirlpool_cpu_init(int thr_id, int threads, int flag);
extern void x15_whirlpool_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
extern void x17_sha512_cpu_init(int thr_id, int threads);
extern void x17_sha512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
extern void x17_haval256_cpu_init(int thr_id, int threads);
extern void x17_haval256_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
extern void cuda_check_cpu_init(int thr_id, int threads);
extern void cuda_check_cpu_setTarget(const void *ptarget);
extern uint32_t cuda_check_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_inputHash, int order);
extern void quark_compactTest_cpu_init(int thr_id, int threads);
extern void quark_compactTest_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *inpHashes,
uint32_t *d_noncesTrue, size_t *nrmTrue, uint32_t *d_noncesFalse, size_t *nrmFalse,
int order);
// X17 Hashfunktion
extern "C" void x17hash(void *output, const void *input)
{
// blake1-bmw2-grs3-skein4-jh5-keccak6-luffa7-cubehash8-shavite9-simd10-echo11-hamsi12-fugue13-shabal14-whirlpool15-sha512-haval17
sph_blake512_context ctx_blake;
sph_bmw512_context ctx_bmw;
sph_groestl512_context ctx_groestl;
sph_jh512_context ctx_jh;
sph_keccak512_context ctx_keccak;
sph_skein512_context ctx_skein;
sph_luffa512_context ctx_luffa;
sph_cubehash512_context ctx_cubehash;
sph_shavite512_context ctx_shavite;
sph_simd512_context ctx_simd;
sph_echo512_context ctx_echo;
sph_hamsi512_context ctx_hamsi;
sph_fugue512_context ctx_fugue;
sph_shabal512_context ctx_shabal;
sph_whirlpool_context ctx_whirlpool;
sph_sha512_context ctx_sha512;
sph_haval256_5_context ctx_haval;
unsigned char hash[128]; // uint32_t hashA[16], hashB[16];
#define hashB hash+64
sph_blake512_init(&ctx_blake);
sph_blake512(&ctx_blake, input, 80);
sph_blake512_close(&ctx_blake, hash);
sph_bmw512_init(&ctx_bmw);
sph_bmw512(&ctx_bmw, (const void*) hash, 64);
sph_bmw512_close(&ctx_bmw, hash);
sph_groestl512_init(&ctx_groestl);
sph_groestl512(&ctx_groestl, (const void*) hash, 64);
sph_groestl512_close(&ctx_groestl, hash);
sph_skein512_init(&ctx_skein);
sph_skein512(&ctx_skein, (const void*) hash, 64);
sph_skein512_close(&ctx_skein, hash);
sph_jh512_init(&ctx_jh);
sph_jh512(&ctx_jh, (const void*) hash, 64);
sph_jh512_close(&ctx_jh, hash);
sph_keccak512_init(&ctx_keccak);
sph_keccak512(&ctx_keccak, (const void*) hash, 64);
sph_keccak512_close(&ctx_keccak, hash);
sph_luffa512_init(&ctx_luffa);
sph_luffa512(&ctx_luffa, (const void*) hash, 64);
sph_luffa512_close (&ctx_luffa, hash);
sph_cubehash512_init(&ctx_cubehash);
sph_cubehash512(&ctx_cubehash, (const void*) hash, 64);
sph_cubehash512_close(&ctx_cubehash, hash);
sph_shavite512_init(&ctx_shavite);
sph_shavite512(&ctx_shavite, (const void*) hash, 64);
sph_shavite512_close(&ctx_shavite, hash);
sph_simd512_init(&ctx_simd);
sph_simd512(&ctx_simd, (const void*) hash, 64);
sph_simd512_close(&ctx_simd, hash);
sph_echo512_init(&ctx_echo);
sph_echo512(&ctx_echo, (const void*) hash, 64);
sph_echo512_close(&ctx_echo, hash);
sph_hamsi512_init(&ctx_hamsi);
sph_hamsi512(&ctx_hamsi, (const void*) hash, 64);
sph_hamsi512_close(&ctx_hamsi, hash);
sph_fugue512_init(&ctx_fugue);
sph_fugue512(&ctx_fugue, (const void*) hash, 64);
sph_fugue512_close(&ctx_fugue, hash);
sph_shabal512_init(&ctx_shabal);
sph_shabal512(&ctx_shabal, (const void*) hash, 64);
sph_shabal512_close(&ctx_shabal, hash);
sph_whirlpool_init(&ctx_whirlpool);
sph_whirlpool (&ctx_whirlpool, (const void*) hash, 64);
sph_whirlpool_close(&ctx_whirlpool, hash);
sph_sha512_init(&ctx_sha512);
sph_sha512(&ctx_sha512,(const void*) hash, 64);
sph_sha512_close(&ctx_sha512,(void*) hash);
sph_haval256_5_init(&ctx_haval);
sph_haval256_5(&ctx_haval,(const void*) hash, 64);
sph_haval256_5_close(&ctx_haval,hash);
memcpy(output, hash, 32);
}
extern "C" int scanhash_x17(int thr_id, uint32_t *pdata,
const uint32_t *ptarget, uint32_t max_nonce,
unsigned long *hashes_done)
{
const uint32_t first_nonce = pdata[19];
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x0000ff;
const int throughput = 256*256*8;
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x0000ff;
static bool init[8] = {0,0,0,0,0,0,0,0};
uint32_t Htarg = ptarget[7];
if (opt_benchmark)
((uint32_t*)ptarget)[7] = Htarg = 0x0000ff;
if (!init[thr_id])
{
cudaSetDevice(device_map[thr_id]);
cudaMalloc(&d_hash[thr_id], 16 * sizeof(uint32_t) * throughput);
quark_blake512_cpu_init(thr_id, throughput);
quark_groestl512_cpu_init(thr_id, throughput);
quark_skein512_cpu_init(thr_id, throughput);
quark_bmw512_cpu_init(thr_id, throughput);
quark_keccak512_cpu_init(thr_id, throughput);
quark_jh512_cpu_init(thr_id, throughput);
x11_luffa512_cpu_init(thr_id, throughput);
x11_cubehash512_cpu_init(thr_id, throughput);
x11_shavite512_cpu_init(thr_id, throughput);
x11_simd512_cpu_init(thr_id, throughput);
x11_echo512_cpu_init(thr_id, throughput);
x13_hamsi512_cpu_init(thr_id, throughput);
x13_fugue512_cpu_init(thr_id, throughput);
x14_shabal512_cpu_init(thr_id, throughput);
x15_whirlpool_cpu_init(thr_id, throughput, 0);
x17_sha512_cpu_init(thr_id, throughput);
x17_haval256_cpu_init(thr_id, throughput);
cuda_check_cpu_init(thr_id, throughput);
init[thr_id] = true;
}
uint32_t endiandata[20];
for (int k=0; k < 20; k++)
be32enc(&endiandata[k], ((uint32_t*)pdata)[k]);
quark_blake512_cpu_setBlock_80((void*)endiandata);
cuda_check_cpu_setTarget(ptarget);
do {
int order = 0;
// Hash with CUDA
quark_blake512_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
quark_bmw512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
quark_groestl512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
quark_skein512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
quark_jh512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
quark_keccak512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
x11_luffa512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
x11_cubehash512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
x11_shavite512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
x11_simd512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
x11_echo512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
x13_hamsi512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
x13_fugue512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
x14_shabal512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
x15_whirlpool_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
x17_sha512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
x17_haval256_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
uint32_t foundNonce = cuda_check_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
if (foundNonce != 0xffffffff)
{
uint32_t vhash64[8];
be32enc(&endiandata[19], foundNonce);
x17hash(vhash64, endiandata);
if (vhash64[7] <= Htarg && fulltest(vhash64, ptarget))
{
pdata[19] = foundNonce;
*hashes_done = foundNonce - first_nonce + 1;
return 1;
}
else if (vhash64[7] > Htarg) {
applog(LOG_INFO, "GPU #%d: result for %08x is not in range: %x > %x", thr_id, foundNonce, vhash64[7], Htarg);
}
else {
applog(LOG_INFO, "GPU #%d: result for %08x does not validate on CPU!", thr_id, foundNonce);
}
}
pdata[19] += throughput;
} while (pdata[19] < max_nonce && !work_restart[thr_id].restart);
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
Loading…
Cancel
Save