Browse Source

blake: merge sp improvements, start 1.7.2 dev..

to be tested on old arch too...
master
Tanguy Pruvot 9 years ago
parent
commit
4a7e239d7c
  1. 584
      Algo256/blake256.cu
  2. 2
      configure.ac
  3. 6
      cpuminer-config.h

584
Algo256/blake256.cu

@ -1,23 +1,20 @@
/** /**
* Blake-256 Cuda Kernel (Tested on SM 5.0) * Blake-256 Cuda Kernel (Tested on SM 5/5.2)
* *
* Tanguy Pruvot - Nov. 2014 * Tanguy Pruvot / SP - Jan 2016
*/ */
#define PRECALC64 1 #include <stdint.h>
#include <memory.h>
#include "miner.h" #include "miner.h"
extern "C" { extern "C" {
#include "sph/sph_blake.h" #include "sph/sph_blake.h"
//extern int blake256_rounds;
} }
#include <stdint.h> /* threads per block */
#include <memory.h> #define TPB 512
/* threads per block and throughput (intensity) */
#define TPB 128
/* hash by cpu with blake 256 */ /* hash by cpu with blake 256 */
extern "C" void blake256hash(void *output, const void *input, int8_t rounds = 14) extern "C" void blake256hash(void *output, const void *input, int8_t rounds = 14)
@ -36,16 +33,7 @@ extern "C" void blake256hash(void *output, const void *input, int8_t rounds = 14
#include "cuda_helper.h" #include "cuda_helper.h"
#if PRECALC64
__constant__ uint32_t _ALIGN(32) d_data[12]; __constant__ uint32_t _ALIGN(32) d_data[12];
#else
__constant__ static uint32_t _ALIGN(32) c_data[20];
/* midstate hash cache, this algo is run on 2 parts */
__device__ static uint32_t cache[8];
__device__ static uint32_t prevsum = 0;
/* crc32.c */
extern "C" uint32_t crc32_u32t(const uint32_t *buf, size_t size);
#endif
/* 8 adapters max */ /* 8 adapters max */
static uint32_t *d_resNonce[MAX_GPUS]; static uint32_t *d_resNonce[MAX_GPUS];
@ -55,73 +43,19 @@ static uint32_t *h_resNonce[MAX_GPUS];
#define NBN 2 #define NBN 2
static uint32_t extra_results[NBN] = { UINT32_MAX }; static uint32_t extra_results[NBN] = { UINT32_MAX };
/* prefer uint32_t to prevent size conversions = speed +5/10 % */ #define GSPREC(a,b,c,d,x,y) { \
__constant__ v[a] += (m[x] ^ c_u256[y]) + v[b]; \
static uint32_t _ALIGN(32) c_sigma[16][16] = { v[d] = __byte_perm(v[d] ^ v[a],0, 0x1032); \
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }
};
#if !PRECALC64
__device__ __constant__
static const uint32_t __align__(32) c_IV256[8] = {
SPH_C32(0x6A09E667), SPH_C32(0xBB67AE85),
SPH_C32(0x3C6EF372), SPH_C32(0xA54FF53A),
SPH_C32(0x510E527F), SPH_C32(0x9B05688C),
SPH_C32(0x1F83D9AB), SPH_C32(0x5BE0CD19)
};
#endif
__device__ __constant__
static const uint32_t __align__(32) c_u256[16] = {
SPH_C32(0x243F6A88), SPH_C32(0x85A308D3),
SPH_C32(0x13198A2E), SPH_C32(0x03707344),
SPH_C32(0xA4093822), SPH_C32(0x299F31D0),
SPH_C32(0x082EFA98), SPH_C32(0xEC4E6C89),
SPH_C32(0x452821E6), SPH_C32(0x38D01377),
SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C),
SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD),
SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917)
};
#define GS(a,b,c,d,x) { \
const uint32_t idx1 = c_sigma[r][x]; \
const uint32_t idx2 = c_sigma[r][x+1]; \
v[a] += (m[idx1] ^ c_u256[idx2]) + v[b]; \
v[d] = SPH_ROTL32(v[d] ^ v[a], 16); \
v[c] += v[d]; \ v[c] += v[d]; \
v[b] = SPH_ROTR32(v[b] ^ v[c], 12); \ v[b] = SPH_ROTR32(v[b] ^ v[c], 12); \
\ v[a] += (m[y] ^ c_u256[x]) + v[b]; \
v[a] += (m[idx2] ^ c_u256[idx1]) + v[b]; \ v[d] = __byte_perm(v[d] ^ v[a],0, 0x0321); \
v[d] = SPH_ROTR32(v[d] ^ v[a], 8); \
v[c] += v[d]; \ v[c] += v[d]; \
v[b] = SPH_ROTR32(v[b] ^ v[c], 7); \ v[b] = SPH_ROTR32(v[b] ^ v[c], 7); \
} }
/* Second part (64-80) msg never change, store it */ /* Second part (64-80) msg never change, store it */
__device__ __constant__ __device__ __forceinline__
static const uint32_t __align__(32) c_Padding[16] = {
0, 0, 0, 0,
0x80000000UL, 0, 0, 0,
0, 0, 0, 0,
0, 1, 0, 640,
};
__device__ static
void blake256_compress(uint32_t *h, const uint32_t *block, const uint32_t T0, const int rounds) void blake256_compress(uint32_t *h, const uint32_t *block, const uint32_t T0, const int rounds)
{ {
uint32_t /*_ALIGN(8)*/ m[16]; uint32_t /*_ALIGN(8)*/ m[16];
@ -132,12 +66,23 @@ void blake256_compress(uint32_t *h, const uint32_t *block, const uint32_t T0, co
m[2] = block[2]; m[2] = block[2];
m[3] = block[3]; m[3] = block[3];
const uint32_t c_u256[16] = {
0x243F6A88, 0x85A308D3, 0x13198A2E, 0x03707344,
0xA4093822, 0x299F31D0, 0x082EFA98, 0xEC4E6C89,
0x452821E6, 0x38D01377, 0xBE5466CF, 0x34E90C6C,
0xC0AC29B7, 0xC97C50DD, 0x3F84D5B5, 0xB5470917
};
const uint32_t c_Padding[16] = {
0, 0, 0, 0,
0x80000000UL, 0, 0, 0,
0, 0, 0, 0,
0, 1, 0, 640,
};
#pragma unroll
for (uint32_t i = 4; i < 16; i++) { for (uint32_t i = 4; i < 16; i++) {
#if PRECALC64
m[i] = c_Padding[i]; m[i] = c_Padding[i];
#else
m[i] = (T0 == 0x200) ? block[i] : c_Padding[i];
#endif
} }
//#pragma unroll 8 //#pragma unroll 8
@ -154,153 +99,333 @@ void blake256_compress(uint32_t *h, const uint32_t *block, const uint32_t T0, co
v[14] = c_u256[6]; v[14] = c_u256[6];
v[15] = c_u256[7]; v[15] = c_u256[7];
for (int r = 0; r < rounds; r++) { // { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
/* column step */ GSPREC(0, 4, 0x8, 0xC,0,1);
GS(0, 4, 0x8, 0xC, 0x0); GSPREC(1, 5, 0x9, 0xD,2,3);
GS(1, 5, 0x9, 0xD, 0x2); GSPREC(2, 6, 0xA, 0xE, 4,5);
GS(2, 6, 0xA, 0xE, 0x4); GSPREC(3, 7, 0xB, 0xF, 6,7);
GS(3, 7, 0xB, 0xF, 0x6); GSPREC(0, 5, 0xA, 0xF, 8,9);
/* diagonal step */ GSPREC(1, 6, 0xB, 0xC, 10,11);
GS(0, 5, 0xA, 0xF, 0x8); GSPREC(2, 7, 0x8, 0xD, 12,13);
GS(1, 6, 0xB, 0xC, 0xA); GSPREC(3, 4, 0x9, 0xE, 14,15);
GS(2, 7, 0x8, 0xD, 0xC); // { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
GS(3, 4, 0x9, 0xE, 0xE); GSPREC(0, 4, 0x8, 0xC, 14, 10);
} GSPREC(1, 5, 0x9, 0xD, 4, 8);
#if PRECALC64 GSPREC(2, 6, 0xA, 0xE, 9, 15);
GSPREC(3, 7, 0xB, 0xF, 13, 6);
GSPREC(0, 5, 0xA, 0xF, 1, 12);
GSPREC(1, 6, 0xB, 0xC, 0, 2);
GSPREC(2, 7, 0x8, 0xD, 11, 7);
GSPREC(3, 4, 0x9, 0xE, 5, 3);
// { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
GSPREC(0, 4, 0x8, 0xC, 11, 8);
GSPREC(1, 5, 0x9, 0xD, 12, 0);
GSPREC(2, 6, 0xA, 0xE, 5, 2);
GSPREC(3, 7, 0xB, 0xF, 15, 13);
GSPREC(0, 5, 0xA, 0xF, 10, 14);
GSPREC(1, 6, 0xB, 0xC, 3, 6);
GSPREC(2, 7, 0x8, 0xD, 7, 1);
GSPREC(3, 4, 0x9, 0xE, 9, 4);
// { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
GSPREC(0, 4, 0x8, 0xC, 7, 9);
GSPREC(1, 5, 0x9, 0xD, 3, 1);
GSPREC(2, 6, 0xA, 0xE, 13, 12);
GSPREC(3, 7, 0xB, 0xF, 11, 14);
GSPREC(0, 5, 0xA, 0xF, 2, 6);
GSPREC(1, 6, 0xB, 0xC, 5, 10);
GSPREC(2, 7, 0x8, 0xD, 4, 0);
GSPREC(3, 4, 0x9, 0xE, 15, 8);
// { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
GSPREC(0, 4, 0x8, 0xC, 9, 0);
GSPREC(1, 5, 0x9, 0xD, 5, 7);
GSPREC(2, 6, 0xA, 0xE, 2, 4);
GSPREC(3, 7, 0xB, 0xF, 10, 15);
GSPREC(0, 5, 0xA, 0xF, 14, 1);
GSPREC(1, 6, 0xB, 0xC, 11, 12);
GSPREC(2, 7, 0x8, 0xD, 6, 8);
GSPREC(3, 4, 0x9, 0xE, 3, 13);
// { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
GSPREC(0, 4, 0x8, 0xC, 2, 12);
GSPREC(1, 5, 0x9, 0xD, 6, 10);
GSPREC(2, 6, 0xA, 0xE, 0, 11);
GSPREC(3, 7, 0xB, 0xF, 8, 3);
GSPREC(0, 5, 0xA, 0xF, 4, 13);
GSPREC(1, 6, 0xB, 0xC, 7, 5);
GSPREC(2, 7, 0x8, 0xD, 15, 14);
GSPREC(3, 4, 0x9, 0xE, 1, 9);
// { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
GSPREC(0, 4, 0x8, 0xC, 12, 5);
GSPREC(1, 5, 0x9, 0xD, 1, 15);
GSPREC(2, 6, 0xA, 0xE, 14, 13);
GSPREC(3, 7, 0xB, 0xF, 4, 10);
GSPREC(0, 5, 0xA, 0xF, 0, 7);
GSPREC(1, 6, 0xB, 0xC, 6, 3);
GSPREC(2, 7, 0x8, 0xD, 9, 2);
GSPREC(3, 4, 0x9, 0xE, 8, 11);
// { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
GSPREC(0, 4, 0x8, 0xC, 13, 11);
GSPREC(1, 5, 0x9, 0xD, 7, 14);
GSPREC(2, 6, 0xA, 0xE, 12, 1);
GSPREC(3, 7, 0xB, 0xF, 3, 9);
GSPREC(0, 5, 0xA, 0xF, 5, 0);
GSPREC(1, 6, 0xB, 0xC, 15, 4);
GSPREC(2, 7, 0x8, 0xD, 8, 6);
GSPREC(3, 4, 0x9, 0xE, 2, 10);
// { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
GSPREC(0, 4, 0x8, 0xC, 6, 15);
GSPREC(1, 5, 0x9, 0xD, 14, 9);
GSPREC(2, 6, 0xA, 0xE, 11, 3);
GSPREC(3, 7, 0xB, 0xF, 0, 8);
GSPREC(0, 5, 0xA, 0xF, 12, 2);
GSPREC(1, 6, 0xB, 0xC, 13, 7);
GSPREC(2, 7, 0x8, 0xD, 1, 4);
GSPREC(3, 4, 0x9, 0xE, 10, 5);
// { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
GSPREC(0, 4, 0x8, 0xC, 10, 2);
GSPREC(1, 5, 0x9, 0xD, 8, 4);
GSPREC(2, 6, 0xA, 0xE, 7, 6);
GSPREC(3, 7, 0xB, 0xF, 1, 5);
GSPREC(0, 5, 0xA, 0xF, 15, 11);
GSPREC(1, 6, 0xB, 0xC, 9, 14);
GSPREC(2, 7, 0x8, 0xD, 3, 12);
GSPREC(3, 4, 0x9, 0xE, 13, 0);
// { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
GSPREC(0, 4, 0x8, 0xC, 0, 1);
GSPREC(1, 5, 0x9, 0xD, 2, 3);
GSPREC(2, 6, 0xA, 0xE, 4, 5);
GSPREC(3, 7, 0xB, 0xF, 6, 7);
GSPREC(0, 5, 0xA, 0xF, 8, 9);
GSPREC(1, 6, 0xB, 0xC, 10, 11);
GSPREC(2, 7, 0x8, 0xD, 12, 13);
GSPREC(3, 4, 0x9, 0xE, 14, 15);
// { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
GSPREC(0, 4, 0x8, 0xC, 14, 10);
GSPREC(1, 5, 0x9, 0xD, 4, 8);
GSPREC(2, 6, 0xA, 0xE, 9, 15);
GSPREC(3, 7, 0xB, 0xF, 13, 6);
GSPREC(0, 5, 0xA, 0xF, 1, 12);
GSPREC(1, 6, 0xB, 0xC, 0, 2);
GSPREC(2, 7, 0x8, 0xD, 11, 7);
GSPREC(3, 4, 0x9, 0xE, 5, 3);
// { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
GSPREC(0, 4, 0x8, 0xC, 11, 8);
GSPREC(1, 5, 0x9, 0xD, 12, 0);
GSPREC(2, 6, 0xA, 0xE, 5, 2);
GSPREC(3, 7, 0xB, 0xF, 15, 13);
GSPREC(0, 5, 0xA, 0xF, 10, 14);
GSPREC(1, 6, 0xB, 0xC, 3, 6);
GSPREC(2, 7, 0x8, 0xD, 7, 1);
GSPREC(3, 4, 0x9, 0xE, 9, 4);
// { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
GSPREC(0, 4, 0x8, 0xC, 7, 9);
GSPREC(1, 5, 0x9, 0xD, 3, 1);
GSPREC(2, 6, 0xA, 0xE, 13, 12);
GSPREC(3, 7, 0xB, 0xF, 11, 14);
GSPREC(0, 5, 0xA, 0xF, 2, 6);
GSPREC(1, 6, 0xB, 0xC, 5, 10);
GSPREC(2, 7, 0x8, 0xD, 4, 0);
GSPREC(3, 4, 0x9, 0xE, 15, 8);
// only compute h6 & 7 // only compute h6 & 7
h[6U] ^= v[6U] ^ v[14U]; h[6U] ^= v[6U] ^ v[14U];
h[7U] ^= v[7U] ^ v[15U]; h[7U] ^= v[7U] ^ v[15U];
#else
//#pragma unroll 16
for (uint32_t i = 0; i < 16; i++) {
uint32_t j = i % 8U;
h[j] ^= v[i];
}
#endif
} }
#if !PRECALC64 /* original method */ /* ############################################################################################################################### */
__global__ /* Precalculated 1st 64-bytes block (midstate) method */
void blake256_gpu_hash_80(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce,
const uint64_t highTarget, const int crcsum, const int rounds) __global__ __launch_bounds__(1024,1)
void blake256_gpu_hash_16(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce,
const uint64_t highTarget, const int rounds, const bool trace)
{ {
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads) if (thread < threads)
{ {
const uint32_t nonce = startNonce + thread; const uint32_t nonce = startNonce + thread;
uint32_t h[8]; uint32_t _ALIGN(16) h[8];
#pragma unroll #pragma unroll
for(int i=0; i<8; i++) { for(int i=0; i < 8; i++) {
h[i] = c_IV256[i]; h[i] = d_data[i];
}
if (crcsum != prevsum) {
prevsum = crcsum;
blake256_compress(h, c_data, 512, rounds);
#pragma unroll
for(int i=0; i<8; i++) {
cache[i] = h[i];
}
} else {
#pragma unroll
for(int i=0; i<8; i++) {
h[i] = cache[i];
}
} }
// ------ Close: Bytes 64 to 80 ------ // ------ Close: Bytes 64 to 80 ------
uint32_t ending[4]; uint32_t _ALIGN(16) ending[4];
ending[0] = c_data[16]; ending[0] = d_data[8];
ending[1] = c_data[17]; ending[1] = d_data[9];
ending[2] = c_data[18]; ending[2] = d_data[10];
ending[3] = nonce; /* our tested value */ ending[3] = nonce; /* our tested value */
blake256_compress(h, ending, 640, rounds); blake256_compress(h, ending, 640, rounds);
// not sure why, h[7] is ok if (h[7] == 0 && cuda_swab32(h[6]) <= highTarget) {
h[6] = cuda_swab32(h[6]);
// compare count of leading zeros h[6] + h[7]
uint64_t high64 = ((uint64_t*)h)[3];
if (high64 <= highTarget)
#if NBN == 2 #if NBN == 2
/* keep the smallest nonce, + extra one if found */ /* keep the smallest nonce, + extra one if found */
if (resNonce[0] > nonce) { if (resNonce[0] > nonce) {
// printf("%llx %llx \n", high64, highTarget); resNonce[1] = resNonce[0];
resNonce[1] = resNonce[0]; resNonce[0] = nonce;
resNonce[0] = nonce; }
} else
else resNonce[1] = nonce;
resNonce[1] = nonce;
#else #else
resNonce[0] = nonce; resNonce[0] = nonce;
#endif #endif
#ifdef _DEBUG
if (trace) {
uint64_t high64 = ((uint64_t*)h)[3];
printf("gpu: %16llx\n", high64);
printf("gpu: %08x.%08x\n", h[7], h[6]);
printf("tgt: %16llx\n", highTarget);
}
#endif
}
} }
} }
__host__
uint32_t blake256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, const uint64_t highTarget,
const uint32_t crcsum, const int8_t rounds)
{
const uint32_t threadsperblock = TPB;
uint32_t result = UINT32_MAX;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
size_t shared_size = 0;
/* Check error on Ctrl+C or kill to prevent segfaults on exit */
if (cudaMemset(d_resNonce[thr_id], 0xff, NBN*sizeof(uint32_t)) != cudaSuccess)
return result;
blake256_gpu_hash_80<<<grid, block, shared_size>>>(threads, startNonce, d_resNonce[thr_id], highTarget, crcsum, (int) rounds);
//MyStreamSynchronize(NULL, 0, thr_id);
if (cudaSuccess == cudaMemcpy(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost)) {
result = h_resNonce[thr_id][0];
for (int n=0; n < (NBN-1); n++)
extra_results[n] = h_resNonce[thr_id][n+1];
}
return result;
}
__host__
void blake256_cpu_setBlock_80(uint32_t *pdata, const uint32_t *ptarget)
{
uint32_t data[20];
memcpy(data, pdata, 80);
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_data, data, sizeof(data), 0, cudaMemcpyHostToDevice));
}
#else
/* ############################################################################################################################### */
/* Precalculated 1st 64-bytes block (midstate) method */
__global__ __global__
void blake256_gpu_hash_16(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce, void blake256_gpu_hash_16_8(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce,
const uint64_t highTarget, const int rounds, const bool trace) const uint64_t highTarget, const int rounds, const bool trace)
{ {
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads) if (thread < threads)
{ {
const uint32_t nonce = startNonce + thread; const uint32_t nonce = startNonce + thread;
uint32_t _ALIGN(16) h[8]; uint32_t _ALIGN(16) h[8];
#pragma unroll #pragma unroll
for(int i=0; i < 8; i++) { for (int i = 0; i < 8; i++) {
h[i] = d_data[i]; h[i] = d_data[i];
} }
// ------ Close: Bytes 64 to 80 ------ // ------ Close: Bytes 64 to 80 ------
uint32_t _ALIGN(16) ending[4]; uint32_t _ALIGN(16) block[4];
ending[0] = d_data[8]; block[0] = d_data[8];
ending[1] = d_data[9]; block[1] = d_data[9];
ending[2] = d_data[10]; block[2] = d_data[10];
ending[3] = nonce; /* our tested value */ block[3] = nonce; /* our tested value */
blake256_compress(h, ending, 640, rounds); // blake256_compress_8(h, block, 640, rounds);
uint32_t /*_ALIGN(8)*/ m[16];
uint32_t v[16];
m[0] = block[0];
m[1] = block[1];
m[2] = block[2];
m[3] = block[3];
const uint32_t c_u256[16] = {
0x243F6A88, 0x85A308D3, 0x13198A2E, 0x03707344,
0xA4093822, 0x299F31D0, 0x082EFA98, 0xEC4E6C89,
0x452821E6, 0x38D01377, 0xBE5466CF, 0x34E90C6C,
0xC0AC29B7, 0xC97C50DD, 0x3F84D5B5, 0xB5470917
};
const uint32_t c_Padding[16] = {
0, 0, 0, 0,
0x80000000UL, 0, 0, 0,
0, 0, 0, 0,
0, 1, 0, 640,
};
#pragma unroll
for (uint32_t i = 4; i < 16; i++) {
m[i] = c_Padding[i];
}
//#pragma unroll 8
for (uint32_t i = 0; i < 8; i++)
v[i] = h[i];
v[8] = c_u256[0];
v[9] = c_u256[1];
v[10] = c_u256[2];
v[11] = c_u256[3];
v[12] = c_u256[4] ^ 640;
v[13] = c_u256[5] ^ 640;
v[14] = c_u256[6];
v[15] = c_u256[7];
// { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
GSPREC(0, 4, 0x8, 0xC, 0, 1);
GSPREC(1, 5, 0x9, 0xD, 2, 3);
GSPREC(2, 6, 0xA, 0xE, 4, 5);
GSPREC(3, 7, 0xB, 0xF, 6, 7);
GSPREC(0, 5, 0xA, 0xF, 8, 9);
GSPREC(1, 6, 0xB, 0xC, 10, 11);
GSPREC(2, 7, 0x8, 0xD, 12, 13);
GSPREC(3, 4, 0x9, 0xE, 14, 15);
// { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
GSPREC(0, 4, 0x8, 0xC, 14, 10);
GSPREC(1, 5, 0x9, 0xD, 4, 8);
GSPREC(2, 6, 0xA, 0xE, 9, 15);
GSPREC(3, 7, 0xB, 0xF, 13, 6);
GSPREC(0, 5, 0xA, 0xF, 1, 12);
GSPREC(1, 6, 0xB, 0xC, 0, 2);
GSPREC(2, 7, 0x8, 0xD, 11, 7);
GSPREC(3, 4, 0x9, 0xE, 5, 3);
// { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
GSPREC(0, 4, 0x8, 0xC, 11, 8);
GSPREC(1, 5, 0x9, 0xD, 12, 0);
GSPREC(2, 6, 0xA, 0xE, 5, 2);
GSPREC(3, 7, 0xB, 0xF, 15, 13);
GSPREC(0, 5, 0xA, 0xF, 10, 14);
GSPREC(1, 6, 0xB, 0xC, 3, 6);
GSPREC(2, 7, 0x8, 0xD, 7, 1);
GSPREC(3, 4, 0x9, 0xE, 9, 4);
// { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
GSPREC(0, 4, 0x8, 0xC, 7, 9);
GSPREC(1, 5, 0x9, 0xD, 3, 1);
GSPREC(2, 6, 0xA, 0xE, 13, 12);
GSPREC(3, 7, 0xB, 0xF, 11, 14);
GSPREC(0, 5, 0xA, 0xF, 2, 6);
GSPREC(1, 6, 0xB, 0xC, 5, 10);
GSPREC(2, 7, 0x8, 0xD, 4, 0);
GSPREC(3, 4, 0x9, 0xE, 15, 8);
// { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
GSPREC(0, 4, 0x8, 0xC, 9, 0);
GSPREC(1, 5, 0x9, 0xD, 5, 7);
GSPREC(2, 6, 0xA, 0xE, 2, 4);
GSPREC(3, 7, 0xB, 0xF, 10, 15);
GSPREC(0, 5, 0xA, 0xF, 14, 1);
GSPREC(1, 6, 0xB, 0xC, 11, 12);
GSPREC(2, 7, 0x8, 0xD, 6, 8);
GSPREC(3, 4, 0x9, 0xE, 3, 13);
// { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
GSPREC(0, 4, 0x8, 0xC, 2, 12);
GSPREC(1, 5, 0x9, 0xD, 6, 10);
GSPREC(2, 6, 0xA, 0xE, 0, 11);
GSPREC(3, 7, 0xB, 0xF, 8, 3);
GSPREC(0, 5, 0xA, 0xF, 4, 13);
GSPREC(1, 6, 0xB, 0xC, 7, 5);
GSPREC(2, 7, 0x8, 0xD, 15, 14);
GSPREC(3, 4, 0x9, 0xE, 1, 9);
// { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
GSPREC(0, 4, 0x8, 0xC, 12, 5);
GSPREC(1, 5, 0x9, 0xD, 1, 15);
GSPREC(2, 6, 0xA, 0xE, 14, 13);
GSPREC(3, 7, 0xB, 0xF, 4, 10);
GSPREC(0, 5, 0xA, 0xF, 0, 7);
GSPREC(1, 6, 0xB, 0xC, 6, 3);
GSPREC(2, 7, 0x8, 0xD, 9, 2);
GSPREC(3, 4, 0x9, 0xE, 8, 11);
// { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
GSPREC(0, 4, 0x8, 0xC, 13, 11);
GSPREC(1, 5, 0x9, 0xD, 7, 14);
GSPREC(2, 6, 0xA, 0xE, 12, 1);
GSPREC(3, 7, 0xB, 0xF, 3, 9);
GSPREC(0, 5, 0xA, 0xF, 5, 0);
GSPREC(1, 6, 0xB, 0xC, 15, 4);
GSPREC(2, 7, 0x8, 0xD, 8, 6);
GSPREC(3, 4, 0x9, 0xE, 2, 10);
// { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
// only compute h6 & 7
h[6U] ^= v[6U] ^ v[14U];
h[7U] ^= v[7U] ^ v[15U];
if (h[7] == 0 && cuda_swab32(h[6]) <= highTarget) { if (h[7] == 0 && cuda_swab32(h[6]) <= highTarget) {
#if NBN == 2 #if NBN == 2
@ -330,26 +455,27 @@ __host__
static uint32_t blake256_cpu_hash_16(const int thr_id, const uint32_t threads, const uint32_t startNonce, const uint64_t highTarget, static uint32_t blake256_cpu_hash_16(const int thr_id, const uint32_t threads, const uint32_t startNonce, const uint64_t highTarget,
const int8_t rounds) const int8_t rounds)
{ {
const uint32_t threadsperblock = TPB;
uint32_t result = UINT32_MAX; uint32_t result = UINT32_MAX;
dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 grid((threads + TPB-1)/TPB);
dim3 block(threadsperblock); dim3 block(TPB);
cudaGetLastError();
/* Check error on Ctrl+C or kill to prevent segfaults on exit */ /* Check error on Ctrl+C or kill to prevent segfaults on exit */
if (cudaMemset(d_resNonce[thr_id], 0xff, NBN*sizeof(uint32_t)) != cudaSuccess) if (cudaMemset(d_resNonce[thr_id], 0xff, NBN*sizeof(uint32_t)) != cudaSuccess)
return result; return result;
blake256_gpu_hash_16 <<<grid, block>>> (threads, startNonce, d_resNonce[thr_id], highTarget, (int) rounds, opt_tracegpu); if (rounds == 8)
//MyStreamSynchronize(NULL, 0, thr_id); blake256_gpu_hash_16_8 <<<grid, block>>> (threads, startNonce, d_resNonce[thr_id], highTarget, (int)rounds, opt_tracegpu);
else
blake256_gpu_hash_16 <<<grid, block>>> (threads, startNonce, d_resNonce[thr_id], highTarget, (int)rounds, opt_tracegpu);
// cudaDeviceSynchronize();
if (cudaSuccess == cudaMemcpy(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost)) { if (cudaSuccess == cudaMemcpy(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost)) {
//cudaDeviceSynchronize(); /* seems no more required */
result = h_resNonce[thr_id][0]; result = h_resNonce[thr_id][0];
for (int n=0; n < (NBN-1); n++) for (int n=0; n < (NBN-1); n++)
extra_results[n] = h_resNonce[thr_id][n+1]; extra_results[n] = h_resNonce[thr_id][n+1];
} }
CUDA_LOG_ERROR();
return result; return result;
} }
@ -376,32 +502,29 @@ void blake256_cpu_setBlock_16(uint32_t *penddata, const uint32_t *midstate, cons
data[10]= penddata[2]; data[10]= penddata[2];
CUDA_SAFE_CALL(cudaMemcpyToSymbol(d_data, data, 32 + 12, 0, cudaMemcpyHostToDevice)); CUDA_SAFE_CALL(cudaMemcpyToSymbol(d_data, data, 32 + 12, 0, cudaMemcpyHostToDevice));
} }
#endif
static bool init[MAX_GPUS] = { 0 }; static bool init[MAX_GPUS] = { 0 };
extern "C" int scanhash_blake256(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done, int8_t blakerounds=14) extern "C" int scanhash_blake256(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done, int8_t blakerounds=14)
{ {
uint32_t _ALIGN(64) endiandata[20]; uint32_t _ALIGN(64) endiandata[20];
#if PRECALC64
uint32_t _ALIGN(64) midstate[8]; uint32_t _ALIGN(64) midstate[8];
#else
uint32_t crcsum;
#endif
uint32_t *pdata = work->data; uint32_t *pdata = work->data;
uint32_t *ptarget = work->target; uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19]; const uint32_t first_nonce = pdata[19];
uint64_t targetHigh = ((uint64_t*)ptarget)[3]; uint64_t targetHigh = ((uint64_t*)ptarget)[3];
int intensity = (device_sm[device_map[thr_id]] > 500) ? 22 : 20;
uint32_t intensity = (device_sm[device_map[thr_id]] > 500) ? 31 : 28;
uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity); uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity);
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce); if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
int rc = 0; int rc = 0;
if (opt_benchmark) { if (opt_benchmark) {
ptarget[7] = 0; targetHigh = 0x1ULL << 32;
ptarget[6] = swab32(0xff); ptarget[6] = swab32(0x00ff);
targetHigh = 0xffULL << 32;
} }
if (opt_tracegpu) { if (opt_tracegpu) {
@ -411,44 +534,33 @@ extern "C" int scanhash_blake256(int thr_id, struct work* work, uint32_t max_non
pdata[k] = swab32(pdata[k]); pdata[k] = swab32(pdata[k]);
} }
if (!init[thr_id]) { if (!init[thr_id])
{
cudaSetDevice(device_map[thr_id]); cudaSetDevice(device_map[thr_id]);
if (opt_cudaschedule == -1 && gpu_threads == 1) { if (opt_cudaschedule == -1 && gpu_threads == 1) {
cudaDeviceReset(); cudaDeviceReset();
// reduce cpu usage (linux) // reduce cpu usage (linux)
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
cudaDeviceSetCacheConfig(cudaFuncCachePreferL1);
CUDA_LOG_ERROR(); CUDA_LOG_ERROR();
} }
cudaMallocHost(&h_resNonce[thr_id], NBN * sizeof(uint32_t)); CUDA_CALL_OR_RET_X(cudaMalloc(&d_resNonce[thr_id], NBN * sizeof(uint32_t)), -1);
cudaMalloc(&d_resNonce[thr_id], NBN * sizeof(uint32_t)); CUDA_CALL_OR_RET_X(cudaMallocHost(&h_resNonce[thr_id], NBN * sizeof(uint32_t)), -1);
CUDA_LOG_ERROR();
init[thr_id] = true; init[thr_id] = true;
} }
#if PRECALC64
for (int k = 0; k < 16; k++) for (int k = 0; k < 16; k++)
be32enc(&endiandata[k], pdata[k]); be32enc(&endiandata[k], pdata[k]);
blake256mid(midstate, endiandata, blakerounds); blake256mid(midstate, endiandata, blakerounds);
blake256_cpu_setBlock_16(&pdata[16], midstate, ptarget); blake256_cpu_setBlock_16(&pdata[16], midstate, ptarget);
#else
blake256_cpu_setBlock_80(pdata, ptarget);
crcsum = crc32_u32t(pdata, 64);
#endif /* PRECALC64 */
do { do {
*hashes_done = pdata[19] - first_nonce + throughput;
uint32_t foundNonce =
#if PRECALC64
// GPU HASH (second block only, first is midstate) // GPU HASH (second block only, first is midstate)
blake256_cpu_hash_16(thr_id, throughput, pdata[19], targetHigh, blakerounds); uint32_t foundNonce = blake256_cpu_hash_16(thr_id, throughput, pdata[19], targetHigh, blakerounds);
#else
// GPU FULL HASH if (foundNonce != UINT32_MAX)
blake256_cpu_hash_80(thr_id, throughput, pdata[19], targetHigh, crcsum, blakerounds);
#endif
if (foundNonce != UINT32_MAX && bench_algo == -1)
{ {
uint32_t vhashcpu[8]; uint32_t vhashcpu[8];
uint32_t Htarg = (uint32_t)targetHigh; uint32_t Htarg = (uint32_t)targetHigh;
@ -463,16 +575,15 @@ extern "C" int scanhash_blake256(int thr_id, struct work* work, uint32_t max_non
{ {
rc = 1; rc = 1;
work_set_target_ratio(work, vhashcpu); work_set_target_ratio(work, vhashcpu);
*hashes_done = pdata[19] - first_nonce + throughput;
pdata[19] = foundNonce; pdata[19] = foundNonce;
#if NBN > 1 #if NBN > 1
if (extra_results[0] != UINT32_MAX) { if (extra_results[0] != UINT32_MAX) {
be32enc(&endiandata[19], extra_results[0]); be32enc(&endiandata[19], extra_results[0]);
blake256hash(vhashcpu, endiandata, blakerounds); blake256hash(vhashcpu, endiandata, blakerounds);
if (vhashcpu[6] <= Htarg && fulltest(vhashcpu, ptarget)) { if (vhashcpu[6] <= Htarg /* && fulltest(vhashcpu, ptarget) */) {
pdata[21] = extra_results[0]; pdata[21] = extra_results[0];
applog(LOG_BLUE, "1:%x 2:%x", foundNonce, extra_results[0]); applog(LOG_BLUE, "1:%x 2:%x", foundNonce, extra_results[0]);
if (bn_hash_target_ratio(vhashcpu, ptarget) > work->shareratio)
work_set_target_ratio(work, vhashcpu);
rc = 2; rc = 2;
} }
extra_results[0] = UINT32_MAX; extra_results[0] = UINT32_MAX;
@ -480,24 +591,20 @@ extern "C" int scanhash_blake256(int thr_id, struct work* work, uint32_t max_non
#endif #endif
return rc; return rc;
} }
else if (vhashcpu[7] > ptarget[7] && opt_debug) { else if (opt_debug) {
applog_hash((uchar*)ptarget); applog_hash((uchar*)ptarget);
applog_compare_hash((uchar*)vhashcpu, (uchar*)ptarget); applog_compare_hash((uchar*)vhashcpu, (uchar*)ptarget);
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNonce); gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNonce);
} }
} }
if ((uint64_t) throughput + pdata[19] >= max_nonce) {
pdata[19] = max_nonce;
break;
}
pdata[19] += throughput; pdata[19] += throughput;
} while (!work_restart[thr_id].restart); } while (!work_restart[thr_id].restart && ((uint64_t)max_nonce > (uint64_t)throughput + pdata[19]));
*hashes_done = pdata[19] - first_nonce; *hashes_done = pdata[19] - first_nonce;
MyStreamSynchronize(NULL, 0, device_map[thr_id]);
return rc; return rc;
} }
@ -507,7 +614,7 @@ extern "C" void free_blake256(int thr_id)
if (!init[thr_id]) if (!init[thr_id])
return; return;
cudaThreadSynchronize(); cudaDeviceSynchronize();
cudaFreeHost(h_resNonce[thr_id]); cudaFreeHost(h_resNonce[thr_id]);
cudaFree(d_resNonce[thr_id]); cudaFree(d_resNonce[thr_id]);
@ -516,3 +623,4 @@ extern "C" void free_blake256(int thr_id)
cudaDeviceSynchronize(); cudaDeviceSynchronize();
} }

2
configure.ac

@ -1,4 +1,4 @@
AC_INIT([ccminer], [1.7.1], [], [ccminer], [http://github.com/tpruvot/ccminer]) AC_INIT([ccminer], [1.7.2], [], [ccminer], [http://github.com/tpruvot/ccminer])
AC_PREREQ([2.59c]) AC_PREREQ([2.59c])
AC_CANONICAL_SYSTEM AC_CANONICAL_SYSTEM

6
cpuminer-config.h

@ -162,7 +162,7 @@
#define PACKAGE_NAME "ccminer" #define PACKAGE_NAME "ccminer"
/* Define to the full name and version of this package. */ /* Define to the full name and version of this package. */
#define PACKAGE_STRING "ccminer 1.7.1" #define PACKAGE_STRING "ccminer 1.7.2"
/* Define to the one symbol short name of this package. */ /* Define to the one symbol short name of this package. */
#define PACKAGE_TARNAME "ccminer" #define PACKAGE_TARNAME "ccminer"
@ -171,7 +171,7 @@
#define PACKAGE_URL "http://github.com/tpruvot/ccminer" #define PACKAGE_URL "http://github.com/tpruvot/ccminer"
/* Define to the version of this package. */ /* Define to the version of this package. */
#define PACKAGE_VERSION "1.7.1" #define PACKAGE_VERSION "1.7.2"
/* If using the C implementation of alloca, define if you know the /* If using the C implementation of alloca, define if you know the
direction of stack growth for your system; otherwise it will be direction of stack growth for your system; otherwise it will be
@ -185,7 +185,7 @@
#define STDC_HEADERS 1 #define STDC_HEADERS 1
/* Version number of package */ /* Version number of package */
#define VERSION "1.7.1" #define VERSION "1.7.2"
/* Define curl_free() as free() if our version of curl lacks curl_free. */ /* Define curl_free() as free() if our version of curl lacks curl_free. */
/* #undef curl_free */ /* #undef curl_free */

Loading…
Cancel
Save