Browse Source

simd: cleanup and ignore linux host warning

master
Tanguy Pruvot 9 years ago
parent
commit
2308f555c3
  1. 3
      Makefile.am
  2. 35
      x11/cuda_x11_simd512.cu
  3. 24
      x11/cuda_x11_simd512_func.cuh
  4. 66
      x11/cuda_x11_simd512_sm2.cuh

3
Makefile.am

@ -112,6 +112,9 @@ x11/cuda_x11_luffa512.o: x11/cuda_x11_luffa512.cu @@ -112,6 +112,9 @@ x11/cuda_x11_luffa512.o: x11/cuda_x11_luffa512.cu
x11/cuda_x11_luffa512_Cubehash.o: x11/cuda_x11_luffa512_Cubehash.cu
$(NVCC) $(nvcc_FLAGS) --maxrregcount=76 -o $@ -c $<
x11/cuda_x11_simd512.o: x11/cuda_x11_simd512.cu
$(NVCC) $(nvcc_FLAGS) -Xcompiler -Wno-unused-variable -o $@ -c $<
x13/cuda_x13_hamsi512.o: x13/cuda_x13_hamsi512.cu
$(NVCC) $(nvcc_FLAGS) --maxrregcount=72 -o $@ -c $<

35
x11/cuda_x11_simd512.cu

@ -1,9 +1,6 @@ @@ -1,9 +1,6 @@
// Parallelization:
//
// FFT_8 wird 2 times 8-fach parallel ausgeführt (in FFT_64)
// and 1 time 16-fach parallel (in FFT_128_full)
//
// STEP8_IF and STEP8_MAJ beinhalten je 2x 8-fach parallel Operations
/***************************************************************************************************
* SIMD512 SM3+ CUDA IMPLEMENTATION (require cuda_x11_simd512_func.cuh)
*/
#include "miner.h"
#include "cuda_helper.h"
@ -34,7 +31,7 @@ const uint8_t h_perm[8][8] = { @@ -34,7 +31,7 @@ const uint8_t h_perm[8][8] = {
{ 4, 5, 2, 3, 6, 7, 0, 1 }
};
/* for simd_functions.cuh */
/* used in cuda_x11_simd512_func.cuh (SIMD_Compress2) */
#ifdef DEVICE_DIRECT_CONSTANTS
__constant__ uint32_t c_IV_512[32] = {
#else
@ -87,22 +84,18 @@ static const short h_FFT256_2_128_Twiddle[128] = { @@ -87,22 +84,18 @@ static const short h_FFT256_2_128_Twiddle[128] = {
-30, 55, -58, -65, -95, -40, -98, 94
};
/************* the round function ****************/
#define IF(x, y, z) (((y ^ z) & x) ^ z)
#define MAJ(x, y, z) ((z &y) | ((z|y) & x))
#include "cuda_x11_simd512_sm2.cuh"
#include "cuda_x11_simd512_func.cuh"
#ifdef __INTELLISENSE__
/* just for vstudio code colors */
#define __CUDA_ARCH__ 500
#endif
/************* the round function ****************/
#undef IF
#undef MAJ
#define IF(x, y, z) (((y ^ z) & x) ^ z)
#define MAJ(x, y, z) ((z &y) | ((z|y) & x))
#include "x11/cuda_x11_simd512_func.cuh"
#if __CUDA_ARCH__ >= 300
/********************* Message expansion ************************/
@ -127,6 +120,13 @@ static const short h_FFT256_2_128_Twiddle[128] = { @@ -127,6 +120,13 @@ static const short h_FFT256_2_128_Twiddle[128] = {
#define REDUCE_FULL_S(x) \
EXTRA_REDUCE_S(REDUCE(x))
// Parallelization:
//
// FFT_8 wird 2 times 8-fach parallel ausgeführt (in FFT_64)
// and 1 time 16-fach parallel (in FFT_128_full)
//
// STEP8_IF and STEP8_MAJ beinhalten je 2x 8-fach parallel Operations
/**
* FFT_8 using w=4 as 8th root of unity
* Unrolled decimation in frequency (DIF) radix-2 NTT.
@ -670,14 +670,13 @@ int x11_simd512_cpu_init(int thr_id, uint32_t threads) @@ -670,14 +670,13 @@ int x11_simd512_cpu_init(int thr_id, uint32_t threads)
CUDA_CALL_OR_RET_X(cudaMalloc(&d_temp4[thr_id], 64*sizeof(uint4)*threads), (int) err); /* todo: prevent -i 21 */
CUDA_CALL_OR_RET_X(cudaMalloc(&d_state[thr_id], 32*sizeof(int)*threads), (int) err);
#ifndef DEVICE_DIRECT_CONSTANTS
cudaMemcpyToSymbol(c_perm, h_perm, sizeof(h_perm), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(c_IV_512, h_IV_512, sizeof(h_IV_512), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(c_FFT128_8_16_Twiddle, h_FFT128_8_16_Twiddle, sizeof(h_FFT128_8_16_Twiddle), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(c_FFT256_2_128_Twiddle, h_FFT256_2_128_Twiddle, sizeof(h_FFT256_2_128_Twiddle), 0, cudaMemcpyHostToDevice);
#endif
#if 0
cudaMemcpyToSymbol(d_cw0, h_cw0, sizeof(h_cw0), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(d_cw1, h_cw1, sizeof(h_cw1), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(d_cw2, h_cw2, sizeof(h_cw2), 0, cudaMemcpyHostToDevice);

24
x11/cuda_x11_simd512_func.cuh

@ -1046,8 +1046,12 @@ __device__ __forceinline__ void STEP8_IF_35(const uint32_t *w, const int r, cons @@ -1046,8 +1046,12 @@ __device__ __forceinline__ void STEP8_IF_35(const uint32_t *w, const int r, cons
}
}
#ifdef DEVICE_DIRECT_CONSTANTS
static __constant__ uint32_t d_cw0[8][8] = {
//static const uint32_t h_cw0[8][8] = {
#else
static __constant__ uint32_t d_cw0[8][8];
static const uint32_t h_cw0[8][8] = {
#endif
0x531B1720, 0xAC2CDE09, 0x0B902D87, 0x2369B1F4, 0x2931AA01, 0x02E4B082, 0xC914C914, 0xC1DAE1A6,
0xF18C2B5C, 0x08AC306B, 0x27BFC914, 0xCEDC548D, 0xC630C4BE, 0xF18C4335, 0xF0D3427C, 0xBE3DA380,
0x143C02E4, 0xA948C630, 0xA4F2DE09, 0xA71D2085, 0xA439BD84, 0x109FCD6A, 0xEEA8EF61, 0xA5AB1CE8,
@ -1070,8 +1074,12 @@ __device__ __forceinline__ void Round8_0_final(uint32_t *A, int r, int s, int t, @@ -1070,8 +1074,12 @@ __device__ __forceinline__ void Round8_0_final(uint32_t *A, int r, int s, int t,
STEP8_MAJ_7(d_cw0[7], u, r, &A[8], &A[16], &A[24], A);
}
#ifdef DEVICE_DIRECT_CONSTANTS
static __constant__ uint32_t d_cw1[8][8] = {
//static const uint32_t h_cw1[8][8] = {
#else
static __constant__ uint32_t d_cw1[8][8];
static const uint32_t h_cw1[8][8] = {
#endif
0xC34C07F3, 0xC914143C, 0x599CBC12, 0xBCCBE543, 0x385EF3B7, 0x14F54C9A, 0x0AD7C068, 0xB64A21F7,
0xDEC2AF10, 0xC6E9C121, 0x56B8A4F2, 0x1158D107, 0xEB0BA88F, 0x050FAABA, 0xC293264D, 0x548D46D2,
0xACE5E8E0, 0x53D421F7, 0xF470D279, 0xDC974E0C, 0xD6CF55FF, 0xFD1C4F7E, 0x36EC36EC, 0x3E261E5A,
@ -1094,8 +1102,12 @@ __device__ __forceinline__ void Round8_1_final(uint32_t *A, int r, int s, int t, @@ -1094,8 +1102,12 @@ __device__ __forceinline__ void Round8_1_final(uint32_t *A, int r, int s, int t,
STEP8_MAJ_15(d_cw1[7], u, r, &A[8], &A[16], &A[24], A);
}
#ifdef DEVICE_DIRECT_CONSTANTS
static __constant__ uint32_t d_cw2[8][8] = {
//static const uint32_t h_cw2[8][8] = {
#else
static __constant__ uint32_t d_cw2[8][8];
static const uint32_t h_cw2[8][8] = {
#endif
0xA4135BED, 0xE10E1EF2, 0x6C4F93B1, 0x6E2191DF, 0xE2E01D20, 0xD1952E6B, 0x6A7D9583, 0x131DECE3,
0x369CC964, 0xFB73048D, 0x9E9D6163, 0x280CD7F4, 0xD9C6263A, 0x1062EF9E, 0x2AC7D539, 0xAD2D52D3,
0x0A03F5FD, 0x197CE684, 0xAA72558E, 0xDE5321AD, 0xF0870F79, 0x607A9F86, 0xAFE85018, 0x2AC7D539,
@ -1118,8 +1130,12 @@ __device__ __forceinline__ void Round8_2_final(uint32_t *A, int r, int s, int t, @@ -1118,8 +1130,12 @@ __device__ __forceinline__ void Round8_2_final(uint32_t *A, int r, int s, int t,
STEP8_MAJ_23(d_cw2[7], u, r, &A[8], &A[16], &A[24], A);
}
#ifdef DEVICE_DIRECT_CONSTANTS
static __constant__ uint32_t d_cw3[8][8] = {
//static const uint32_t h_cw3[8][8] = {
#else
static __constant__ uint32_t d_cw3[8][8];
static const uint32_t h_cw3[8][8] = {
#endif
0x1234EDCC, 0xF5140AEC, 0xCDF1320F, 0x3DE4C21C, 0x48D0B730, 0x1234EDCC, 0x131DECE3, 0x52D3AD2D,
0xE684197C, 0x6D3892C8, 0x72AE8D52, 0x6FF3900D, 0x73978C69, 0xEB1114EF, 0x15D8EA28, 0x71C58E3B,
0x90F66F0A, 0x15D8EA28, 0x9BE2641E, 0x65F09A10, 0xEA2815D8, 0xBD8F4271, 0x3A40C5C0, 0xD9C6263A,

66
x11/cuda_x11_simd512_sm2.cuh

@ -1,3 +1,9 @@ @@ -1,3 +1,9 @@
/***************************************************************************************************
* SM 2.x SIMD512 CUDA Implementation without shuffle
*
* cbuchner 2014 / tpruvot 2015
*/
#include "cuda_helper.h"
#ifdef __INTELLISENSE__
@ -9,7 +15,7 @@ @@ -9,7 +15,7 @@
#define T32(x) (x)
#ifndef DEVICE_DIRECT_CONSTANTS /* already made in SM 3+ implementation */
#if 0 /* already declared in SM 3+ implementation */
__constant__ uint32_t c_IV_512[32];
const uint32_t h_IV_512[32] = {
0x0ba16b95, 0x72f999ad, 0x9fecc2ae, 0xba3264fc, 0x5e894929, 0x8e9f30e5, 0x2f1daa37, 0xf0f2c558,
@ -51,9 +57,7 @@ static const int h_FFT256_2_128_Twiddle[128] = { @@ -51,9 +57,7 @@ static const int h_FFT256_2_128_Twiddle[128] = {
};
#endif
__constant__ int c_FFT[256] =
//const int h_FFT[256] =
{
__constant__ int c_FFT[256] = {
// this is the FFT result in revbin permuted order
4, -4, 32, -32, -60, 60, 60, -60, 101, -101, 58, -58, 112, -112, -11, 11, -92, 92,
-119, 119, 42, -42, -82, 82, 32, -32, 32, -32, 121, -121, 17, -17, -47, 47, 63,
@ -73,7 +77,6 @@ __constant__ int c_FFT[256] = @@ -73,7 +77,6 @@ __constant__ int c_FFT[256] =
};
__constant__ int c_P8[32][8] = {
//static const int h_P8[32][8] = {
{ 2, 66, 34, 98, 18, 82, 50, 114 },
{ 6, 70, 38, 102, 22, 86, 54, 118 },
{ 0, 64, 32, 96, 16, 80, 48, 112 },
@ -109,7 +112,6 @@ __constant__ int c_P8[32][8] = { @@ -109,7 +112,6 @@ __constant__ int c_P8[32][8] = {
};
__constant__ int c_Q8[32][8] = {
//static const int h_Q8[32][8] = {
{ 130, 194, 162, 226, 146, 210, 178, 242 },
{ 134, 198, 166, 230, 150, 214, 182, 246 },
{ 128, 192, 160, 224, 144, 208, 176, 240 },
@ -153,8 +155,8 @@ __constant__ int c_Q8[32][8] = { @@ -153,8 +155,8 @@ __constant__ int c_Q8[32][8] = {
/************* the round function ****************/
#define IF(x, y, z) ((((y) ^ (z)) & (x)) ^ (z))
#define MAJ(x, y, z) (((z) & (y)) | (((z) | (y)) & (x)))
//#define IF(x, y, z) ((((y) ^ (z)) & (x)) ^ (z))
//#define MAJ(x, y, z) (((z) & (y)) | (((z) | (y)) & (x)))
__device__ __forceinline__
void STEP8_IF(const uint32_t *w, const int i, const int r, const int s, uint32_t *A, const uint32_t *B, const uint32_t *C, uint32_t *D)
@ -193,7 +195,6 @@ void Round8(uint32_t A[32], const int y[256], int i, int r, int s, int t, int u) @@ -193,7 +195,6 @@ void Round8(uint32_t A[32], const int y[256], int i, int r, int s, int t, int u)
{
uint32_t w[8][8];
int code = i<2? 185: 233;
int a, b;
/*
* The FFT output y is in revbin permuted order,
@ -201,9 +202,9 @@ void Round8(uint32_t A[32], const int y[256], int i, int r, int s, int t, int u) @@ -201,9 +202,9 @@ void Round8(uint32_t A[32], const int y[256], int i, int r, int s, int t, int u)
*/
#pragma unroll 8
for(a=0; a<8; a++) {
for(int a=0; a<8; a++) {
#pragma unroll 8
for(b=0; b<8; b++) {
for(int b=0; b<8; b++) {
w[a][b] = __byte_perm( (y[c_P8[8*i+a][b]] * code), (y[c_Q8[8*i+a][b]] * code), 0x5410);
}
}
@ -249,22 +250,22 @@ void FFT_8(int *y, int stripe) @@ -249,22 +250,22 @@ void FFT_8(int *y, int stripe)
* Unrolled decimation in frequency (DIF) radix-2 NTT.
* Output data is in revbin_permuted order.
*/
#define X(i) y[stripe*i]
#define X(i) y[stripe*i]
#define DO_REDUCE(i) \
#define DO_REDUCE(i) \
X(i) = REDUCE(X(i))
#define DO_REDUCE_FULL_S(i) do { \
#define DO_REDUCE_FULL_S(i) { \
X(i) = REDUCE(X(i)); \
X(i) = EXTRA_REDUCE_S(X(i)); \
} while(0)
}
#define BUTTERFLY(i,j,n) do { \
#define BUTTERFLY(i,j,n) { \
int u= X(i); \
int v= X(j); \
X(i) = u+v; \
X(j) = (u-v) << (2*n); \
} while(0)
}
BUTTERFLY(0, 4, 0);
BUTTERFLY(1, 5, 1);
@ -295,10 +296,10 @@ void FFT_8(int *y, int stripe) @@ -295,10 +296,10 @@ void FFT_8(int *y, int stripe)
DO_REDUCE_FULL_S(6);
DO_REDUCE_FULL_S(7);
#undef X
#undef DO_REDUCE
#undef DO_REDUCE_FULL_S
#undef BUTTERFLY
#undef X
#undef DO_REDUCE
#undef DO_REDUCE_FULL_S
#undef BUTTERFLY
}
__device__ __forceinline__
@ -315,19 +316,17 @@ void FFT_16(int *y, int stripe) @@ -315,19 +316,17 @@ void FFT_16(int *y, int stripe)
#define DO_REDUCE(i) \
X(i) = REDUCE(X(i))
#define DO_REDUCE_FULL_S(i) \
do { \
#define DO_REDUCE_FULL_S(i) { \
X(i) = REDUCE(X(i)); \
X(i) = EXTRA_REDUCE_S(X(i)); \
} while(0)
}
#define BUTTERFLY(i,j,n) \
do { \
#define BUTTERFLY(i,j,n) { \
int u= X(i); \
int v= X(j); \
X(i) = u+v; \
X(j) = (u-v) << n; \
} while(0)
}
BUTTERFLY(0, 8, 0);
BUTTERFLY(1, 9, 1);
@ -396,10 +395,10 @@ void FFT_16(int *y, int stripe) @@ -396,10 +395,10 @@ void FFT_16(int *y, int stripe)
DO_REDUCE_FULL_S(14);
DO_REDUCE_FULL_S(15);
#undef X
#undef DO_REDUCE
#undef DO_REDUCE_FULL_S
#undef BUTTERFLY
#undef X
#undef DO_REDUCE
#undef DO_REDUCE_FULL_S
#undef BUTTERFLY
}
__device__ __forceinline__
@ -549,7 +548,7 @@ void x11_simd512_gpu_hash_64_sm2(const uint32_t threads, const uint32_t startNou @@ -549,7 +548,7 @@ void x11_simd512_gpu_hash_64_sm2(const uint32_t threads, const uint32_t startNou
#else
__global__ void x11_simd512_gpu_hash_64_sm2(const uint32_t threads, const uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector) {}
#endif /* __CUDA_ARCH__ */
#endif /* __CUDA_ARCH__ < 300 */
__host__
static void x11_simd512_cpu_init_sm2(int thr_id)
@ -559,9 +558,6 @@ static void x11_simd512_cpu_init_sm2(int thr_id) @@ -559,9 +558,6 @@ static void x11_simd512_cpu_init_sm2(int thr_id)
cudaMemcpyToSymbol( c_FFT128_8_16_Twiddle, h_FFT128_8_16_Twiddle, sizeof(h_FFT128_8_16_Twiddle), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol( c_FFT256_2_128_Twiddle, h_FFT256_2_128_Twiddle, sizeof(h_FFT256_2_128_Twiddle), 0, cudaMemcpyHostToDevice);
#endif
// cudaMemcpyToSymbol( c_FFT, h_FFT, sizeof(h_FFT), 0, cudaMemcpyHostToDevice);
// cudaMemcpyToSymbol( c_P8, h_P8, sizeof(h_P8), 0, cudaMemcpyHostToDevice);
// cudaMemcpyToSymbol( c_Q8, h_Q8, sizeof(h_Q8), 0, cudaMemcpyHostToDevice);
}
__host__

Loading…
Cancel
Save