@ -1,35 +1,19 @@
#include <stdio.h>
#include <stdio.h>
#include <memory.h>
#include <string.h>
#include <map>
#include <openssl/sha.h>
#include <openssl/sha.h>
#include <map>
#ifndef _WIN32
#include <unistd.h>
#endif
// include thrust
// include thrust
#include <thrust/version.h>
#include <thrust/remove.h>
#include <thrust/remove.h>
#include <thrust/device_vector.h>
#include <thrust/device_vector.h>
#include <thrust/iterator/constant_iterator.h>
#include "miner.h"
#include "miner.h"
#include "hefty1.h"
extern "C" {
#include "sph/sph_keccak.h"
#include "sph/sph_keccak.h"
#include "sph/sph_blake.h"
#include "sph/sph_blake.h"
#include "sph/sph_groestl.h"
#include "sph/sph_groestl.h"
}
#include "heavy/cuda_hefty1.h"
#include "hefty1.h"
#include "heavy/cuda_sha256.h"
#include "heavy/heavy.h"
#include "heavy/cuda_keccak512.h"
#include "heavy/cuda_groestl512.h"
#include "heavy/cuda_blake512.h"
#include "heavy/cuda_combine.h"
#include "cuda_helper.h"
#include "cuda_helper.h"
extern uint32_t *d_hash2output[8];
extern uint32_t *d_hash2output[8];
@ -40,8 +24,10 @@ extern uint32_t *d_hash5output[8];
#define HEAVYCOIN_BLKHDR_SZ 84
#define HEAVYCOIN_BLKHDR_SZ 84
#define MNR_BLKHDR_SZ 80
#define MNR_BLKHDR_SZ 80
// nonce-array für die threads
// nonce-array für die threads
uint32_t *d_nonceVector[8];
uint32_t *heavy_nonceVector[8];
extern uint32_t *heavy_heftyHashes[8];
/* Combines top 64-bits from each hash into a single hash */
/* Combines top 64-bits from each hash into a single hash */
static void combine_hashes(uint32_t *out, const uint32_t *hash1, const uint32_t *hash2, const uint32_t *hash3, const uint32_t *hash4)
static void combine_hashes(uint32_t *out, const uint32_t *hash1, const uint32_t *hash2, const uint32_t *hash3, const uint32_t *hash4)
@ -98,14 +84,14 @@ static int findhighbit(const uint32_t *ptarget, int words)
}
}
// Generiere ein Multiword-Integer das die Zahl
// Generiere ein Multiword-Integer das die Zahl
// (2 << highbit) - 1 repräsentiert.
// (2 << highbit) - 1 repräsentiert.
static void genmask(uint32_t *ptarget, int words, int highbit)
static void genmask(uint32_t *ptarget, int words, int highbit)
{
{
int i;
int i;
for (i=words-1; i >= 0; --i)
for (i=words-1; i >= 0; --i)
{
{
if ((i+1)*32 <= highbit)
if ((i+1)*32 <= highbit)
ptarget[i] = 0xffffffff ;
ptarget[i] = UINT32_MAX ;
else if (i*32 > highbit)
else if (i*32 > highbit)
ptarget[i] = 0x00000000;
ptarget[i] = 0x00000000;
else
else
@ -121,6 +107,11 @@ struct check_nonce_for_remove
m_hashlen(hashlen),
m_hashlen(hashlen),
m_startNonce(startNonce) { }
m_startNonce(startNonce) { }
uint64_t m_target;
uint32_t *m_hashes;
uint32_t m_hashlen;
uint32_t m_startNonce;
__device__
__device__
bool operator()(const uint32_t x)
bool operator()(const uint32_t x)
{
{
@ -129,53 +120,39 @@ struct check_nonce_for_remove
// Wert des Hashes (als uint64_t) auslesen.
// Wert des Hashes (als uint64_t) auslesen.
// Steht im 6. und 7. Wort des Hashes (jeder dieser Hashes hat 512 Bits)
// Steht im 6. und 7. Wort des Hashes (jeder dieser Hashes hat 512 Bits)
uint64_t hashValue = *((uint64_t*)(&m_hashes[m_hashlen*hashIndex + 6]));
uint64_t hashValue = *((uint64_t*)(&m_hashes[m_hashlen*hashIndex + 6]));
// gegen das Target prüfen. Es dürfen nur Bits aus dem Target gesetzt sein.
bool res = (hashValue & m_target) != hashValue;
return (hashValue & m_target) != hashValue;
//printf("ndx=%x val=%08x target=%lx\n", hashIndex, hashValue, m_target);
// gegen das Target prüfen. Es dürfen nur Bits aus dem Target gesetzt sein.
return res;
}
}
uint64_t m_target;
uint32_t *m_hashes;
uint32_t m_hashlen;
uint32_t m_startNonce;
};
};
int scanhash_heavy_cpp(int thr_id, uint32_t *pdata,
static bool init[8] = {0,0,0,0,0,0,0,0};
const uint32_t *ptarget, uint32_t max_nonce,
unsigned long *hashes_done, uint32_t maxvote, int blocklen);
extern "C"
__host__
int scanhash_heavy(int thr_id, uint32_t *pdata,
int scanhash_heavy(int thr_id, uint32_t *pdata,
const uint32_t *ptarget, uint32_t max_nonce,
const uint32_t *ptarget, uint32_t max_nonce,
unsigned long *hashes_done, uint32_t maxvote, int blocklen)
unsigned long *hashes_done, uint32_t maxvote, int blocklen)
{
return scanhash_heavy_cpp(thr_id, pdata,
ptarget, max_nonce, hashes_done, maxvote, blocklen);
}
int scanhash_heavy_cpp(int thr_id, uint32_t *pdata,
const uint32_t *ptarget, uint32_t max_nonce,
unsigned long *hashes_done, uint32_t maxvote, int blocklen)
{
{
const uint32_t first_nonce = pdata[19]; /* to check */
const uint32_t first_nonce = pdata[19]; /* to check */
// CUDA will process thousands of threads.
// CUDA will process thousands of threads.
int throughput = opt_work_size ? opt_work_size : (1 << 19); // 128*4096
int throughput = opt_work_size ? opt_work_size : (1 << 19); // 256*2048
throughput = min(throughput, (int)(max_nonce - first_nonce));
throughput = min(throughput, (int)(max_nonce - first_nonce));
int rc = 0;
int rc = 0;
uint32_t *hash = NULL;
uint32_t *hash = NULL;
cudaMallocHost(&hash, throughput*8*sizeof(uint32_t));
uint32_t *cpu_nonceVector = NULL;
uint32_t *cpu_nonceVector = NULL;
cudaMallocHost(&cpu_nonceVector, throughput*sizeof(uint32_t));
CUDA_SAFE_CALL(cudaMallocHost(&hash, throughput*8*sizeof(uint32_t)));
CUDA_SAFE_CALL(cudaMallocHost(&cpu_nonceVector, throughput*sizeof(uint32_t)));
int nrmCalls[6];
int nrmCalls[6];
memset(nrmCalls, 0, sizeof(int) * 6);
memset(nrmCalls, 0, sizeof(int) * 6);
if (opt_benchmark)
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x0000 00ff;
((uint32_t*)ptarget)[7] = 0x 00ff;
// für jeden Hash ein individuelles Target erstellen basierend
// für jeden Hash ein individuelles Target erstellen basierend
// auf dem höchsten Bit, das in ptarget gesetzt ist.
// auf dem höchsten Bit, das in ptarget gesetzt ist.
int highbit = findhighbit(ptarget, 8);
int highbit = findhighbit(ptarget, 8);
uint32_t target2[2], target3[2], target4[2], target5[2];
uint32_t target2[2], target3[2], target4[2], target5[2];
genmask(target2, 2, highbit/4+(((highbit%4)>3)?1:0) ); // SHA256
genmask(target2, 2, highbit/4+(((highbit%4)>3)?1:0) ); // SHA256
@ -183,7 +160,6 @@ int scanhash_heavy_cpp(int thr_id, uint32_t *pdata,
genmask(target4, 2, highbit/4+(((highbit%4)>1)?1:0) ); // groestl512
genmask(target4, 2, highbit/4+(((highbit%4)>1)?1:0) ); // groestl512
genmask(target5, 2, highbit/4+(((highbit%4)>0)?1:0) ); // blake512
genmask(target5, 2, highbit/4+(((highbit%4)>0)?1:0) ); // blake512
static bool init[8] = {0,0,0,0,0,0,0,0};
if (!init[thr_id])
if (!init[thr_id])
{
{
hefty_cpu_init(thr_id, throughput);
hefty_cpu_init(thr_id, throughput);
@ -192,8 +168,10 @@ int scanhash_heavy_cpp(int thr_id, uint32_t *pdata,
groestl512_cpu_init(thr_id, throughput);
groestl512_cpu_init(thr_id, throughput);
blake512_cpu_init(thr_id, throughput);
blake512_cpu_init(thr_id, throughput);
combine_cpu_init(thr_id, throughput);
combine_cpu_init(thr_id, throughput);
CUDA_SAFE_CALL(cudaMalloc(&heavy_nonceVector[thr_id], sizeof(uint32_t) * throughput));
init[thr_id] = true;
init[thr_id] = true;
cudaMalloc(&d_nonceVector[thr_id], sizeof(uint32_t) * throughput);
}
}
if (blocklen == HEAVYCOIN_BLKHDR_SZ)
if (blocklen == HEAVYCOIN_BLKHDR_SZ)
@ -201,13 +179,13 @@ int scanhash_heavy_cpp(int thr_id, uint32_t *pdata,
uint16_t *ext = (uint16_t *)&pdata[20];
uint16_t *ext = (uint16_t *)&pdata[20];
if (opt_vote > maxvote) {
if (opt_vote > maxvote) {
printf("Warning: Your block reward vote (%hu) exceeds "
applog(LOG_WARNING, " Your block reward vote (%hu) exceeds "
"the maxvote reported by the pool (%hu).\n ",
"the maxvote reported by the pool (%hu).",
opt_vote, maxvote);
opt_vote, maxvote);
}
}
if (opt_trust_pool && opt_vote > maxvote) {
if (opt_trust_pool && opt_vote > maxvote) {
printf("Warning: Capping block reward vote to maxvote reported by pool.\n ");
applog(LOG_WARNING, " Capping block reward vote to maxvote reported by pool.");
ext[0] = maxvote;
ext[0] = maxvote;
}
}
else
else
@ -222,23 +200,24 @@ int scanhash_heavy_cpp(int thr_id, uint32_t *pdata,
blake512_cpu_setBlock(pdata, blocklen);
blake512_cpu_setBlock(pdata, blocklen);
do {
do {
uint32_t i;
////// Compaction init
////// Compaction init
thrust::device_ptr<uint32_t> devNoncePtr(d _nonceVector[thr_id]);
thrust::device_ptr<uint32_t> devNoncePtr(heavy _nonceVector[thr_id]);
thrust::device_ptr<uint32_t> devNoncePtrEnd((d _nonceVector[thr_id]) + throughput);
thrust::device_ptr<uint32_t> devNoncePtrEnd((heavy _nonceVector[thr_id]) + throughput);
uint32_t actualNumberOfValuesInNonceVectorGPU = throughput;
uint32_t actualNumberOfValuesInNonceVectorGPU = throughput;
uint64_t *t;
hefty_cpu_hash(thr_id, throughput, pdata[19]);
hefty_cpu_hash(thr_id, throughput, pdata[19]);
//cudaThreadSynchronize();
//cudaThreadSynchronize();
sha256_cpu_hash(thr_id, throughput, pdata[19]);
sha256_cpu_hash(thr_id, throughput, pdata[19]);
//cudaThreadSynchronize();
//cudaThreadSynchronize();
// Hier ist die längste CPU Wartephase. Deshalb ein strategisches MyStreamSynchronize() hier.
// Hier ist die längste CPU Wartephase. Deshalb ein strategisches MyStreamSynchronize() hier.
MyStreamSynchronize(NULL, 1, thr_id);
MyStreamSynchronize(NULL, 1, thr_id);
////// Compaction
////// Compaction
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*((uint64_t*)target2), d_hash2output[thr_id], 8, pdata[19]));
t = (uint64_t*) target2;
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*t, d_hash2output[thr_id], 8, pdata[19]));
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr);
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr);
if(actualNumberOfValuesInNonceVectorGPU == 0)
if(actualNumberOfValuesInNonceVectorGPU == 0)
goto emptyNonceVector;
goto emptyNonceVector;
@ -247,7 +226,8 @@ int scanhash_heavy_cpp(int thr_id, uint32_t *pdata,
//cudaThreadSynchronize();
//cudaThreadSynchronize();
////// Compaction
////// Compaction
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*((uint64_t*)target3), d_hash3output[thr_id], 16, pdata[19]));
t = (uint64_t*) target3;
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*t, d_hash3output[thr_id], 16, pdata[19]));
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr);
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr);
if(actualNumberOfValuesInNonceVectorGPU == 0)
if(actualNumberOfValuesInNonceVectorGPU == 0)
goto emptyNonceVector;
goto emptyNonceVector;
@ -256,7 +236,8 @@ int scanhash_heavy_cpp(int thr_id, uint32_t *pdata,
//cudaThreadSynchronize();
//cudaThreadSynchronize();
////// Compaction
////// Compaction
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*((uint64_t*)target5), d_hash5output[thr_id], 16, pdata[19]));
t = (uint64_t*) target5;
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*t, d_hash5output[thr_id], 16, pdata[19]));
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr);
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr);
if(actualNumberOfValuesInNonceVectorGPU == 0)
if(actualNumberOfValuesInNonceVectorGPU == 0)
goto emptyNonceVector;
goto emptyNonceVector;
@ -265,7 +246,8 @@ int scanhash_heavy_cpp(int thr_id, uint32_t *pdata,
//cudaThreadSynchronize();
//cudaThreadSynchronize();
////// Compaction
////// Compaction
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*((uint64_t*)target4), d_hash4output[thr_id], 16, pdata[19]));
t = (uint64_t*) target4;
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*t, d_hash4output[thr_id], 16, pdata[19]));
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr);
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr);
if(actualNumberOfValuesInNonceVectorGPU == 0)
if(actualNumberOfValuesInNonceVectorGPU == 0)
goto emptyNonceVector;
goto emptyNonceVector;
@ -273,17 +255,22 @@ int scanhash_heavy_cpp(int thr_id, uint32_t *pdata,
// combine
// combine
combine_cpu_hash(thr_id, actualNumberOfValuesInNonceVectorGPU, pdata[19], hash);
combine_cpu_hash(thr_id, actualNumberOfValuesInNonceVectorGPU, pdata[19], hash);
if (opt_tracegpu) {
applog(LOG_BLUE, "heavy GPU hash:");
applog_hash((uchar*)hash);
}
// Ergebnisse kopieren
// Ergebnisse kopieren
if(actualNumberOfValuesInNonceVectorGPU > 0)
if(actualNumberOfValuesInNonceVectorGPU > 0)
{
{
cudaMemcpy(cpu_nonceVector, d_nonceVector[thr_id], sizeof(uint32_t) * actualNumberOfValuesInNonceVectorGPU, cudaMemcpyDeviceToHost);
size_t size = sizeof(uint32_t) * actualNumberOfValuesInNonceVectorGPU;
CUDA_SAFE_CALL(cudaMemcpy(cpu_nonceVector, heavy_nonceVector[thr_id], size, cudaMemcpyDeviceToHost));
cudaDeviceSynchronize();
for (i=0; i<actualNumberOfValuesInNonceVectorGPU;++i)
for (uint32_t i=0; i < actualNumberOfValuesInNonceVectorGPU; i ++)
{
{
uint32_t nonce = cpu_nonceVector[i];
uint32_t nonce = cpu_nonceVector[i];
//uint32_t index = nonce - pdata[19];
uint32_t *foundhash = &hash[8*i];
uint32_t index = i;
uint32_t *foundhash = &hash[8*index];
if (foundhash[7] <= ptarget[7]) {
if (foundhash[7] <= ptarget[7]) {
if (fulltest(foundhash, ptarget)) {
if (fulltest(foundhash, ptarget)) {
uint32_t verification[8];
uint32_t verification[8];
@ -291,9 +278,7 @@ int scanhash_heavy_cpp(int thr_id, uint32_t *pdata,
heavycoin_hash((uchar*)verification, (uchar*)pdata, blocklen);
heavycoin_hash((uchar*)verification, (uchar*)pdata, blocklen);
if (memcmp(verification, foundhash, 8*sizeof(uint32_t))) {
if (memcmp(verification, foundhash, 8*sizeof(uint32_t))) {
applog(LOG_ERR, "hash for nonce=$%08X does not validate on CPU!\n", nonce);
applog(LOG_ERR, "hash for nonce=$%08X does not validate on CPU!\n", nonce);
}
} else {
else
{
*hashes_done = pdata[19] - first_nonce;
*hashes_done = pdata[19] - first_nonce;
rc = 1;
rc = 1;
goto exit;
goto exit;
@ -316,6 +301,7 @@ exit:
return rc;
return rc;
}
}
__host__
void heavycoin_hash(uchar* output, const uchar* input, int len)
void heavycoin_hash(uchar* output, const uchar* input, int len)
{
{
unsigned char hash1[32];
unsigned char hash1[32];