ccminer-gostd-lite/lyra2/cuda_lyra2.cu

573 lines
15 KiB
Plaintext
Raw Normal View History

/**
2016-08-10 14:23:18 +02:00
* Lyra2 (v1) cuda implementation based on djm34 work
* tpruvot@github 2015, Nanashi 08/2016 (from 1.8-r2)
*/
#include <stdio.h>
#include <memory.h>
2016-08-10 14:23:18 +02:00
#define TPB52 32
#include "cuda_lyra2_sm2.cuh"
2016-08-10 14:23:18 +02:00
#include "cuda_lyra2_sm5.cuh"
2015-10-13 01:40:47 +02:00
#ifdef __INTELLISENSE__
/* just for vstudio code colors */
2016-08-10 14:23:18 +02:00
#define __CUDA_ARCH__ 520
2015-10-13 01:40:47 +02:00
#endif
2016-08-10 14:23:18 +02:00
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ > 500
2016-08-10 14:23:18 +02:00
#include "cuda_lyra2_vectors.h"
2016-08-10 14:23:18 +02:00
#ifdef __INTELLISENSE__
/* just for vstudio code colors */
__device__ uint32_t __shfl(uint32_t a, uint32_t b, uint32_t c);
#endif
2016-08-10 14:23:18 +02:00
#define Nrow 8
#define Ncol 8
2016-08-10 14:23:18 +02:00
#define memshift 3
#define BUF_COUNT 0
__device__ uint2 *DMatrix;
__device__ __forceinline__ void LD4S(uint2 res[3], const int row, const int col, const int thread, const int threads)
{
#if BUF_COUNT != 8
extern __shared__ uint2 shared_mem[];
const int s0 = (Ncol * (row - BUF_COUNT) + col) * memshift;
#endif
#if BUF_COUNT != 0
const int d0 = (memshift *(Ncol * row + col) * threads + thread)*blockDim.x + threadIdx.x;
#endif
#if BUF_COUNT == 8
#pragma unroll
for (int j = 0; j < 3; j++)
res[j] = *(DMatrix + d0 + j * threads * blockDim.x);
#elif BUF_COUNT == 0
#pragma unroll
for (int j = 0; j < 3; j++)
res[j] = shared_mem[((s0 + j) * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x];
#else
if (row < BUF_COUNT)
{
#pragma unroll
for (int j = 0; j < 3; j++)
res[j] = *(DMatrix + d0 + j * threads * blockDim.x);
}
else
{
#pragma unroll
for (int j = 0; j < 3; j++)
res[j] = shared_mem[((s0 + j) * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x];
}
#endif
}
__device__ __forceinline__ void ST4S(const int row, const int col, const uint2 data[3], const int thread, const int threads)
{
#if BUF_COUNT != 8
extern __shared__ uint2 shared_mem[];
const int s0 = (Ncol * (row - BUF_COUNT) + col) * memshift;
#endif
#if BUF_COUNT != 0
const int d0 = (memshift *(Ncol * row + col) * threads + thread)*blockDim.x + threadIdx.x;
#endif
#if BUF_COUNT == 8
#pragma unroll
for (int j = 0; j < 3; j++)
*(DMatrix + d0 + j * threads * blockDim.x) = data[j];
#elif BUF_COUNT == 0
#pragma unroll
for (int j = 0; j < 3; j++)
shared_mem[((s0 + j) * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x] = data[j];
#else
if (row < BUF_COUNT)
{
#pragma unroll
for (int j = 0; j < 3; j++)
*(DMatrix + d0 + j * threads * blockDim.x) = data[j];
}
else
{
#pragma unroll
for (int j = 0; j < 3; j++)
shared_mem[((s0 + j) * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x] = data[j];
}
#endif
}
#if __CUDA_ARCH__ >= 300
__device__ __forceinline__ uint32_t WarpShuffle(uint32_t a, uint32_t b, uint32_t c)
{
return __shfl(a, b, c);
}
2016-08-10 14:23:18 +02:00
__device__ __forceinline__ uint2 WarpShuffle(uint2 a, uint32_t b, uint32_t c)
{
return make_uint2(__shfl(a.x, b, c), __shfl(a.y, b, c));
}
__device__ __forceinline__ void WarpShuffle3(uint2 &a1, uint2 &a2, uint2 &a3, uint32_t b1, uint32_t b2, uint32_t b3, uint32_t c)
{
a1 = WarpShuffle(a1, b1, c);
a2 = WarpShuffle(a2, b2, c);
a3 = WarpShuffle(a3, b3, c);
}
#else
__device__ __forceinline__ uint32_t WarpShuffle(uint32_t a, uint32_t b, uint32_t c)
{
extern __shared__ uint2 shared_mem[];
const uint32_t thread = blockDim.x * threadIdx.y + threadIdx.x;
uint32_t *_ptr = (uint32_t*)shared_mem;
__threadfence_block();
uint32_t buf = _ptr[thread];
_ptr[thread] = a;
__threadfence_block();
uint32_t result = _ptr[(thread&~(c - 1)) + (b&(c - 1))];
__threadfence_block();
_ptr[thread] = buf;
__threadfence_block();
return result;
}
__device__ __forceinline__ uint2 WarpShuffle(uint2 a, uint32_t b, uint32_t c)
{
extern __shared__ uint2 shared_mem[];
const uint32_t thread = blockDim.x * threadIdx.y + threadIdx.x;
__threadfence_block();
uint2 buf = shared_mem[thread];
shared_mem[thread] = a;
__threadfence_block();
uint2 result = shared_mem[(thread&~(c - 1)) + (b&(c - 1))];
__threadfence_block();
shared_mem[thread] = buf;
__threadfence_block();
return result;
}
2016-08-10 14:23:18 +02:00
__device__ __forceinline__ void WarpShuffle3(uint2 &a1, uint2 &a2, uint2 &a3, uint32_t b1, uint32_t b2, uint32_t b3, uint32_t c)
{
extern __shared__ uint2 shared_mem[];
const uint32_t thread = blockDim.x * threadIdx.y + threadIdx.x;
__threadfence_block();
uint2 buf = shared_mem[thread];
shared_mem[thread] = a1;
__threadfence_block();
a1 = shared_mem[(thread&~(c - 1)) + (b1&(c - 1))];
__threadfence_block();
shared_mem[thread] = a2;
__threadfence_block();
a2 = shared_mem[(thread&~(c - 1)) + (b2&(c - 1))];
__threadfence_block();
shared_mem[thread] = a3;
__threadfence_block();
a3 = shared_mem[(thread&~(c - 1)) + (b3&(c - 1))];
__threadfence_block();
shared_mem[thread] = buf;
__threadfence_block();
}
#endif
#if __CUDA_ARCH__ > 500 || !defined(__CUDA_ARCH)
static __device__ __forceinline__
void Gfunc(uint2 &a, uint2 &b, uint2 &c, uint2 &d)
{
2016-08-10 14:23:18 +02:00
a += b; uint2 tmp = d; d.y = a.x ^ tmp.x; d.x = a.y ^ tmp.y;
c += d; b ^= c; b = ROR24(b);
a += b; d ^= a; d = ROR16(d);
c += d; b ^= c; b = ROR2(b, 63);
}
2016-08-10 14:23:18 +02:00
#endif
__device__ __forceinline__ void round_lyra(uint2 s[4])
{
Gfunc(s[0], s[1], s[2], s[3]);
WarpShuffle3(s[1], s[2], s[3], threadIdx.x + 1, threadIdx.x + 2, threadIdx.x + 3, 4);
Gfunc(s[0], s[1], s[2], s[3]);
WarpShuffle3(s[1], s[2], s[3], threadIdx.x + 3, threadIdx.x + 2, threadIdx.x + 1, 4);
}
static __device__ __forceinline__
void round_lyra(uint2x4* s)
{
Gfunc(s[0].x, s[1].x, s[2].x, s[3].x);
Gfunc(s[0].y, s[1].y, s[2].y, s[3].y);
Gfunc(s[0].z, s[1].z, s[2].z, s[3].z);
Gfunc(s[0].w, s[1].w, s[2].w, s[3].w);
Gfunc(s[0].x, s[1].y, s[2].z, s[3].w);
Gfunc(s[0].y, s[1].z, s[2].w, s[3].x);
Gfunc(s[0].z, s[1].w, s[2].x, s[3].y);
Gfunc(s[0].w, s[1].x, s[2].y, s[3].z);
}
static __device__ __forceinline__
2016-08-10 14:23:18 +02:00
void reduceDuplex(uint2 state[4], uint32_t thread, const uint32_t threads)
{
2016-08-10 14:23:18 +02:00
uint2 state1[3];
2016-08-10 14:23:18 +02:00
#if __CUDA_ARCH__ > 500
#pragma unroll
#endif
for (int i = 0; i < Nrow; i++)
{
ST4S(0, Ncol - i - 1, state, thread, threads);
round_lyra(state);
}
#pragma unroll 4
2016-08-10 14:23:18 +02:00
for (int i = 0; i < Nrow; i++)
{
2016-08-10 14:23:18 +02:00
LD4S(state1, 0, i, thread, threads);
for (int j = 0; j < 3; j++)
state[j] ^= state1[j];
round_lyra(state);
for (int j = 0; j < 3; j++)
state1[j] ^= state[j];
2016-08-10 14:23:18 +02:00
ST4S(1, Ncol - i - 1, state1, thread, threads);
}
}
static __device__ __forceinline__
2016-08-10 14:23:18 +02:00
void reduceDuplexRowSetup(const int rowIn, const int rowInOut, const int rowOut, uint2 state[4], uint32_t thread, const uint32_t threads)
{
2016-08-10 14:23:18 +02:00
uint2 state1[3], state2[3];
#pragma unroll 1
2016-08-10 14:23:18 +02:00
for (int i = 0; i < Nrow; i++)
{
2016-08-10 14:23:18 +02:00
LD4S(state1, rowIn, i, thread, threads);
LD4S(state2, rowInOut, i, thread, threads);
for (int j = 0; j < 3; j++)
2016-08-10 14:23:18 +02:00
state[j] ^= state1[j] + state2[j];
round_lyra(state);
#pragma unroll
for (int j = 0; j < 3; j++)
2016-08-10 14:23:18 +02:00
state1[j] ^= state[j];
ST4S(rowOut, Ncol - i - 1, state1, thread, threads);
//一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る)
uint2 Data0 = state[0];
uint2 Data1 = state[1];
uint2 Data2 = state[2];
WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4);
if (threadIdx.x == 0)
{
state2[0] ^= Data2;
state2[1] ^= Data0;
state2[2] ^= Data1;
} else {
state2[0] ^= Data0;
state2[1] ^= Data1;
state2[2] ^= Data2;
}
2016-08-10 14:23:18 +02:00
ST4S(rowInOut, i, state2, thread, threads);
}
}
static __device__ __forceinline__
void reduceDuplexRowt(const int rowIn, const int rowInOut, const int rowOut, uint2 state[4], const uint32_t thread, const uint32_t threads)
{
for (int i = 0; i < Nrow; i++)
{
uint2 state1[3], state2[3];
LD4S(state1, rowIn, i, thread, threads);
LD4S(state2, rowInOut, i, thread, threads);
#pragma unroll
for (int j = 0; j < 3; j++)
state[j] ^= state1[j] + state2[j];
round_lyra(state);
2016-08-10 14:23:18 +02:00
//一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る)
uint2 Data0 = state[0];
uint2 Data1 = state[1];
uint2 Data2 = state[2];
WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4);
if (threadIdx.x == 0)
{
state2[0] ^= Data2;
state2[1] ^= Data0;
state2[2] ^= Data1;
}
else
{
state2[0] ^= Data0;
state2[1] ^= Data1;
state2[2] ^= Data2;
}
2016-08-10 14:23:18 +02:00
ST4S(rowInOut, i, state2, thread, threads);
2016-08-10 14:23:18 +02:00
LD4S(state1, rowOut, i, thread, threads);
2016-08-10 14:23:18 +02:00
#pragma unroll
for (int j = 0; j < 3; j++)
2016-08-10 14:23:18 +02:00
state1[j] ^= state[j];
ST4S(rowOut, i, state1, thread, threads);
}
}
static __device__ __forceinline__
2016-08-10 14:23:18 +02:00
void reduceDuplexRowt_8(const int rowInOut, uint2* state, const uint32_t thread, const uint32_t threads)
{
2016-08-10 14:23:18 +02:00
uint2 state1[3], state2[3], last[3];
2016-08-10 14:23:18 +02:00
LD4S(state1, 2, 0, thread, threads);
LD4S(last, rowInOut, 0, thread, threads);
2016-08-10 14:23:18 +02:00
#pragma unroll
for (int j = 0; j < 3; j++)
state[j] ^= state1[j] + last[j];
2016-08-10 14:23:18 +02:00
round_lyra(state);
2016-08-10 14:23:18 +02:00
//一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る)
uint2 Data0 = state[0];
uint2 Data1 = state[1];
uint2 Data2 = state[2];
WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4);
2016-08-10 14:23:18 +02:00
if (threadIdx.x == 0)
{
last[0] ^= Data2;
last[1] ^= Data0;
last[2] ^= Data1;
} else {
last[0] ^= Data0;
last[1] ^= Data1;
last[2] ^= Data2;
}
2016-08-10 14:23:18 +02:00
if (rowInOut == 5)
{
#pragma unroll
for (int j = 0; j < 3; j++)
last[j] ^= state[j];
}
2016-08-10 14:23:18 +02:00
for (int i = 1; i < Nrow; i++)
{
LD4S(state1, 2, i, thread, threads);
LD4S(state2, rowInOut, i, thread, threads);
2016-08-10 14:23:18 +02:00
#pragma unroll
for (int j = 0; j < 3; j++)
state[j] ^= state1[j] + state2[j];
round_lyra(state);
}
2016-08-10 14:23:18 +02:00
#pragma unroll
for (int j = 0; j < 3; j++)
state[j] ^= last[j];
}
2016-08-10 14:23:18 +02:00
__constant__ uint2x4 blake2b_IV[2] = {
0xf3bcc908lu, 0x6a09e667lu,
0x84caa73blu, 0xbb67ae85lu,
0xfe94f82blu, 0x3c6ef372lu,
0x5f1d36f1lu, 0xa54ff53alu,
0xade682d1lu, 0x510e527flu,
0x2b3e6c1flu, 0x9b05688clu,
0xfb41bd6blu, 0x1f83d9ablu,
0x137e2179lu, 0x5be0cd19lu
};
__global__ __launch_bounds__(64, 1)
void lyra2_gpu_hash_32_1(uint32_t threads, uint32_t startNounce, uint2 *g_hash)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint2x4 state[4];
2016-08-10 14:23:18 +02:00
state[0].x = state[1].x = __ldg(&g_hash[thread + threads * 0]);
state[0].y = state[1].y = __ldg(&g_hash[thread + threads * 1]);
state[0].z = state[1].z = __ldg(&g_hash[thread + threads * 2]);
state[0].w = state[1].w = __ldg(&g_hash[thread + threads * 3]);
state[2] = blake2b_IV[0];
state[3] = blake2b_IV[1];
for (int i = 0; i<24; i++)
round_lyra(state); //because 12 is not enough
2016-08-10 14:23:18 +02:00
((uint2x4*)DMatrix)[threads * 0 + thread] = state[0];
((uint2x4*)DMatrix)[threads * 1 + thread] = state[1];
((uint2x4*)DMatrix)[threads * 2 + thread] = state[2];
((uint2x4*)DMatrix)[threads * 3 + thread] = state[3];
}
}
2016-08-10 14:23:18 +02:00
__global__
__launch_bounds__(TPB52, 1)
void lyra2_gpu_hash_32_2(uint32_t threads, uint32_t startNounce, uint64_t *g_hash)
{
const uint32_t thread = blockDim.y * blockIdx.x + threadIdx.y;
2016-08-10 14:23:18 +02:00
if (thread < threads)
{
uint2 state[4];
state[0] = __ldg(&DMatrix[(0 * threads + thread) * blockDim.x + threadIdx.x]);
state[1] = __ldg(&DMatrix[(1 * threads + thread) * blockDim.x + threadIdx.x]);
state[2] = __ldg(&DMatrix[(2 * threads + thread) * blockDim.x + threadIdx.x]);
state[3] = __ldg(&DMatrix[(3 * threads + thread) * blockDim.x + threadIdx.x]);
reduceDuplex(state, thread, threads);
reduceDuplexRowSetup(1, 0, 2, state, thread, threads);
reduceDuplexRowSetup(2, 1, 3, state, thread, threads);
reduceDuplexRowSetup(3, 0, 4, state, thread, threads);
reduceDuplexRowSetup(4, 3, 5, state, thread, threads);
reduceDuplexRowSetup(5, 2, 6, state, thread, threads);
reduceDuplexRowSetup(6, 1, 7, state, thread, threads);
uint32_t rowa = WarpShuffle(state[0].x, 0, 4) & 7;
reduceDuplexRowt(7, rowa, 0, state, thread, threads);
rowa = WarpShuffle(state[0].x, 0, 4) & 7;
reduceDuplexRowt(0, rowa, 3, state, thread, threads);
rowa = WarpShuffle(state[0].x, 0, 4) & 7;
reduceDuplexRowt(3, rowa, 6, state, thread, threads);
rowa = WarpShuffle(state[0].x, 0, 4) & 7;
reduceDuplexRowt(6, rowa, 1, state, thread, threads);
rowa = WarpShuffle(state[0].x, 0, 4) & 7;
reduceDuplexRowt(1, rowa, 4, state, thread, threads);
rowa = WarpShuffle(state[0].x, 0, 4) & 7;
reduceDuplexRowt(4, rowa, 7, state, thread, threads);
rowa = WarpShuffle(state[0].x, 0, 4) & 7;
reduceDuplexRowt(7, rowa, 2, state, thread, threads);
rowa = WarpShuffle(state[0].x, 0, 4) & 7;
reduceDuplexRowt_8(rowa, state, thread, threads);
DMatrix[(0 * threads + thread) * blockDim.x + threadIdx.x] = state[0];
DMatrix[(1 * threads + thread) * blockDim.x + threadIdx.x] = state[1];
DMatrix[(2 * threads + thread) * blockDim.x + threadIdx.x] = state[2];
DMatrix[(3 * threads + thread) * blockDim.x + threadIdx.x] = state[3];
}
}
__global__ __launch_bounds__(64, 1)
void lyra2_gpu_hash_32_3(uint32_t threads, uint32_t startNounce, uint2 *g_hash)
{
const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x;
uint28 state[4];
if (thread < threads)
{
state[0] = __ldg4(&((uint2x4*)DMatrix)[threads * 0 + thread]);
state[1] = __ldg4(&((uint2x4*)DMatrix)[threads * 1 + thread]);
state[2] = __ldg4(&((uint2x4*)DMatrix)[threads * 2 + thread]);
state[3] = __ldg4(&((uint2x4*)DMatrix)[threads * 3 + thread]);
for (int i = 0; i < 12; i++)
round_lyra(state);
2016-08-10 14:23:18 +02:00
g_hash[thread + threads * 0] = state[0].x;
g_hash[thread + threads * 1] = state[0].y;
g_hash[thread + threads * 2] = state[0].z;
g_hash[thread + threads * 3] = state[0].w;
} //thread
}
#else
2016-08-10 14:23:18 +02:00
#if __CUDA_ARCH__ < 500
/* for unsupported SM arch */
__device__ void* DMatrix;
2016-08-10 14:23:18 +02:00
#endif
__global__ void lyra2_gpu_hash_32_1(uint32_t threads, uint32_t startNounce, uint2 *g_hash) {}
__global__ void lyra2_gpu_hash_32_2(uint32_t threads, uint32_t startNounce, uint64_t *g_hash) {}
__global__ void lyra2_gpu_hash_32_3(uint32_t threads, uint32_t startNounce, uint2 *g_hash) {}
#endif
__host__
2016-08-10 14:23:18 +02:00
void lyra2_cpu_init(int thr_id, uint32_t threads, uint64_t *d_matrix)
{
2016-08-10 14:23:18 +02:00
// just assign the device pointer allocated in main loop
cudaMemcpyToSymbol(DMatrix, &d_matrix, sizeof(uint64_t*), 0, cudaMemcpyHostToDevice);
}
__host__
2016-08-10 14:23:18 +02:00
void lyra2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_hash, bool gtx750ti)
{
int dev_id = device_map[thr_id % MAX_GPUS];
2016-08-10 14:23:18 +02:00
uint32_t tpb = TPB52;
2016-08-10 14:23:18 +02:00
if (cuda_arch[dev_id] >= 520) tpb = TPB52;
else if (cuda_arch[dev_id] >= 500) tpb = TPB50;
else if (cuda_arch[dev_id] >= 200) tpb = TPB20;
2016-08-10 14:23:18 +02:00
dim3 grid1((threads * 4 + tpb - 1) / tpb);
dim3 block1(4, tpb >> 2);
dim3 grid2((threads + 64 - 1) / 64);
dim3 block2(64);
2016-08-10 14:23:18 +02:00
dim3 grid3((threads + tpb - 1) / tpb);
dim3 block3(tpb);
if (cuda_arch[dev_id] >= 520)
{
lyra2_gpu_hash_32_1 <<< grid2, block2 >>> (threads, startNounce, (uint2*)d_hash);
lyra2_gpu_hash_32_2 <<< grid1, block1, 24 * (8 - 0) * sizeof(uint2) * tpb >>> (threads, startNounce, d_hash);
lyra2_gpu_hash_32_3 <<< grid2, block2 >>> (threads, startNounce, (uint2*)d_hash);
}
else if (cuda_arch[dev_id] >= 500)
{
size_t shared_mem = 0;
if (gtx750ti)
// 8Warpに調整のため、8192バイト確保する
shared_mem = 8192;
else
// 10Warpに調整のため、6144バイト確保する
shared_mem = 6144;
lyra2_gpu_hash_32_1_sm5 <<< grid2, block2 >>> (threads, startNounce, (uint2*)d_hash);
lyra2_gpu_hash_32_2_sm5 <<< grid1, block1, shared_mem >>> (threads, startNounce, (uint2*)d_hash);
lyra2_gpu_hash_32_3_sm5 <<< grid2, block2 >>> (threads, startNounce, (uint2*)d_hash);
}
else
lyra2_gpu_hash_32_sm2 <<< grid3, block3 >>> (threads, startNounce, d_hash);
}