return to original lyra2 code

until i find the problem...
This commit is contained in:
Tanguy Pruvot 2015-08-18 09:21:11 +02:00
parent d4e191610e
commit c9a66b696f
4 changed files with 194 additions and 498 deletions

View File

@ -1,543 +1,223 @@
#include <stdio.h>
#include <memory.h>
#include "cuda_lyra2_vectors.h"
#define TPB 8
//
#if __CUDA_ARCH__ < 500
#define vectype ulonglong4
#define u64type uint64_t
#define memshift 4
#elif __CUDA_ARCH__ == 500
#define u64type uint2
#define vectype uint28
#define memshift 3
#else
#define u64type uint2
#define vectype uint28
#define memshift 4
#endif
#include "cuda_helper.h"
__device__ vectype *DMatrix;
#define TPB 160
static __constant__ uint2 blake2b_IV[8] = {
{ 0xf3bcc908, 0x6a09e667 },
{ 0x84caa73b, 0xbb67ae85 },
{ 0xfe94f82b, 0x3c6ef372 },
{ 0x5f1d36f1, 0xa54ff53a },
{ 0xade682d1, 0x510e527f },
{ 0x2b3e6c1f, 0x9b05688c },
{ 0xfb41bd6b, 0x1f83d9ab },
{ 0x137e2179, 0x5be0cd19 }
};
#define reduceDuplexRow(rowIn, rowInOut, rowOut) { \
for (int i = 0; i < 8; i++) { \
for (int j = 0; j < 12; j++) \
state[j] ^= Matrix[12 * i + j][rowIn] + Matrix[12 * i + j][rowInOut]; \
round_lyra(state); \
for (int j = 0; j < 12; j++) \
Matrix[j + 12 * i][rowOut] ^= state[j]; \
Matrix[0 + 12 * i][rowInOut] ^= state[11]; \
Matrix[1 + 12 * i][rowInOut] ^= state[0]; \
Matrix[2 + 12 * i][rowInOut] ^= state[1]; \
Matrix[3 + 12 * i][rowInOut] ^= state[2]; \
Matrix[4 + 12 * i][rowInOut] ^= state[3]; \
Matrix[5 + 12 * i][rowInOut] ^= state[4]; \
Matrix[6 + 12 * i][rowInOut] ^= state[5]; \
Matrix[7 + 12 * i][rowInOut] ^= state[6]; \
Matrix[8 + 12 * i][rowInOut] ^= state[7]; \
Matrix[9 + 12 * i][rowInOut] ^= state[8]; \
Matrix[10+ 12 * i][rowInOut] ^= state[9]; \
Matrix[11+ 12 * i][rowInOut] ^= state[10]; \
} \
}
#define absorbblock(in) { \
state[0] ^= Matrix[0][in]; \
state[1] ^= Matrix[1][in]; \
state[2] ^= Matrix[2][in]; \
state[3] ^= Matrix[3][in]; \
state[4] ^= Matrix[4][in]; \
state[5] ^= Matrix[5][in]; \
state[6] ^= Matrix[6][in]; \
state[7] ^= Matrix[7][in]; \
state[8] ^= Matrix[8][in]; \
state[9] ^= Matrix[9][in]; \
state[10] ^= Matrix[10][in]; \
state[11] ^= Matrix[11][in]; \
round_lyra(state); \
round_lyra(state); \
round_lyra(state); \
round_lyra(state); \
round_lyra(state); \
round_lyra(state); \
round_lyra(state); \
round_lyra(state); \
round_lyra(state); \
round_lyra(state); \
round_lyra(state); \
round_lyra(state); \
}
#ifdef __CUDA_ARCH__
static __device__ __forceinline__
void Gfunc_v35(uint2 &a, uint2 &b, uint2 &c, uint2 &d)
void Gfunc(uint2 & a, uint2 &b, uint2 &c, uint2 &d)
{
a += b; d ^= a; d = SWAPUINT2(d);
c += d; b ^= c; b = ROR24(b);
a += b; d ^= a; d = ROR16(d);
c += d; b ^= c; b = ROR2(b, 24);
a += b; d ^= a; d = ROR2(d, 16);
c += d; b ^= c; b = ROR2(b, 63);
}
#if __CUDA_ARCH__ < 500
static __device__ __forceinline__
void Gfunc_v35(unsigned long long &a, unsigned long long &b, unsigned long long &c, unsigned long long &d)
__device__ __forceinline__
static void round_lyra(uint2 *s)
{
a += b; d ^= a; d = ROTR64(d, 32);
c += d; b ^= c; b = ROTR64(b, 24);
a += b; d ^= a; d = ROTR64(d, 16);
c += d; b ^= c; b = ROTR64(b, 63);
Gfunc(s[0], s[4], s[8], s[12]);
Gfunc(s[1], s[5], s[9], s[13]);
Gfunc(s[2], s[6], s[10], s[14]);
Gfunc(s[3], s[7], s[11], s[15]);
Gfunc(s[0], s[5], s[10], s[15]);
Gfunc(s[1], s[6], s[11], s[12]);
Gfunc(s[2], s[7], s[8], s[13]);
Gfunc(s[3], s[4], s[9], s[14]);
}
__device__ __forceinline__
void reduceDuplexRowSetup(const int rowIn, const int rowInOut, const int rowOut, uint2 state[16], uint2 Matrix[96][8])
{
#if __CUDA_ARCH__ > 500
#pragma unroll
#endif
static __device__ __forceinline__
void round_lyra_v35(vectype* s)
{
Gfunc_v35(s[0].x, s[1].x, s[2].x, s[3].x);
Gfunc_v35(s[0].y, s[1].y, s[2].y, s[3].y);
Gfunc_v35(s[0].z, s[1].z, s[2].z, s[3].z);
Gfunc_v35(s[0].w, s[1].w, s[2].w, s[3].w);
Gfunc_v35(s[0].x, s[1].y, s[2].z, s[3].w);
Gfunc_v35(s[0].y, s[1].z, s[2].w, s[3].x);
Gfunc_v35(s[0].z, s[1].w, s[2].x, s[3].y);
Gfunc_v35(s[0].w, s[1].x, s[2].y, s[3].z);
}
#else
#define round_lyra_v35(s) {}
#endif
static __device__ __forceinline__
void reduceDuplex(vectype state[4], uint32_t thread)
{
vectype state1[3];
uint32_t ps1 = (256 * thread);
uint32_t ps2 = (memshift * 7 + memshift * 8 + 256 * thread);
#pragma unroll 4
for (int i = 0; i < 8; i++)
{
uint32_t s1 = ps1 + i*memshift;
uint32_t s2 = ps2 - i*memshift;
#pragma unroll
for (int j = 0; j < 12; j++)
state[j] ^= Matrix[12 * i + j][rowIn] + Matrix[12 * i + j][rowInOut];
for (int j = 0; j < 3; j++)
state1[j] = __ldg4(&(DMatrix+s1)[j]);
round_lyra(state);
for (int j = 0; j < 3; j++)
state[j] ^= state1[j];
#pragma unroll
for (int j = 0; j < 12; j++)
Matrix[j + 84 - 12 * i][rowOut] = Matrix[12 * i + j][rowIn] ^ state[j];
round_lyra_v35(state);
for (int j = 0; j < 3; j++)
state1[j] ^= state[j];
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state1[j];
Matrix[0 + 12 * i][rowInOut] ^= state[11];
Matrix[1 + 12 * i][rowInOut] ^= state[0];
Matrix[2 + 12 * i][rowInOut] ^= state[1];
Matrix[3 + 12 * i][rowInOut] ^= state[2];
Matrix[4 + 12 * i][rowInOut] ^= state[3];
Matrix[5 + 12 * i][rowInOut] ^= state[4];
Matrix[6 + 12 * i][rowInOut] ^= state[5];
Matrix[7 + 12 * i][rowInOut] ^= state[6];
Matrix[8 + 12 * i][rowInOut] ^= state[7];
Matrix[9 + 12 * i][rowInOut] ^= state[8];
Matrix[10 + 12 * i][rowInOut] ^= state[9];
Matrix[11 + 12 * i][rowInOut] ^= state[10];
}
}
static __device__ __forceinline__
void reduceDuplexV3(vectype state[4], uint32_t thread)
{
vectype state1[3];
uint32_t ps1 = (256 * thread);
// colomn row
uint32_t ps2 = (memshift * 7 * 8 + memshift * 1 + 64 * memshift * thread);
#pragma unroll 4
for (int i = 0; i < 8; i++)
{
uint32_t s1 = ps1 + 8 * i *memshift;
uint32_t s2 = ps2 - 8 * i *memshift;
for (int j = 0; j < 3; j++)
state1[j] = __ldg4(&(DMatrix + s1)[j]);
for (int j = 0; j < 3; j++)
state[j] ^= state1[j];
round_lyra_v35(state);
for (int j = 0; j < 3; j++)
state1[j] ^= state[j];
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state1[j];
}
}
static __device__ __forceinline__
void reduceDuplexRowSetupV2(const int rowIn, const int rowInOut, const int rowOut, vectype state[4], uint32_t thread)
{
vectype state2[3],state1[3];
uint32_t ps1 = ( memshift * 8 * rowIn + 256 * thread);
uint32_t ps2 = ( memshift * 8 * rowInOut + 256 * thread);
uint32_t ps3 = (memshift*7 + memshift * 8 * rowOut + 256 * thread);
#pragma unroll 1
for (int i = 0; i < 8; i++)
{
uint32_t s1 = ps1 + i*memshift;
uint32_t s2 = ps2 + i*memshift;
uint32_t s3 = ps3 - i*memshift;
for (int j = 0; j < 3; j++)
state1[j]= __ldg4(&(DMatrix + s1)[j]);
for (int j = 0; j < 3; j++)
state2[j]= __ldg4(&(DMatrix + s2)[j]);
for (int j = 0; j < 3; j++) {
vectype tmp = state1[j] + state2[j];
state[j] ^= tmp;
}
round_lyra_v35(state);
for (int j = 0; j < 3; j++) {
state1[j] ^= state[j];
(DMatrix + s3)[j] = state1[j];
}
((uint2*)state2)[0] ^= ((uint2*)state)[11];
for (int j = 0; j < 11; j++)
((uint2*)state2)[j+1] ^= ((uint2*)state)[j];
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state2[j];
}
}
static __device__ __forceinline__
void reduceDuplexRowSetupV3(const int rowIn, const int rowInOut, const int rowOut, vectype state[4], uint32_t thread)
{
vectype state2[3], state1[3];
uint32_t ps1 = ( memshift * rowIn + 64 * memshift * thread);
uint32_t ps2 = (memshift * rowInOut + 64 * memshift* thread);
uint32_t ps3 = (8 * memshift * 7 + memshift * rowOut + 64 * memshift * thread);
/*
uint32_t ps1 = (256 * thread);
uint32_t ps2 = (256 * thread);
uint32_t ps3 = (256 * thread);
*/
#pragma nounroll
for (int i = 0; i < 8; i++)
{
uint32_t s1 = ps1 + 8*i*memshift;
uint32_t s2 = ps2 + 8*i*memshift;
uint32_t s3 = ps3 - 8*i*memshift;
for (int j = 0; j < 3; j++)
state1[j] = __ldg4(&(DMatrix + s1 )[j]);
for (int j = 0; j < 3; j++)
state2[j] = __ldg4(&(DMatrix + s2 )[j]);
for (int j = 0; j < 3; j++) {
vectype tmp = state1[j] + state2[j];
state[j] ^= tmp;
}
round_lyra_v35(state);
for (int j = 0; j < 3; j++) {
state1[j] ^= state[j];
(DMatrix + s3)[j] = state1[j];
}
((uint2*)state2)[0] ^= ((uint2*)state)[11];
for (int j = 0; j < 11; j++)
((uint2*)state2)[j + 1] ^= ((uint2*)state)[j];
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state2[j];
}
}
static __device__ __forceinline__
void reduceDuplexRowtV2(const int rowIn, const int rowInOut, const int rowOut, vectype* state, uint32_t thread)
{
vectype state1[3], state2[3];
uint32_t ps1 = (memshift * 8 * rowIn + 256 * thread);
uint32_t ps2 = (memshift * 8 * rowInOut + 256 * thread);
uint32_t ps3 = (memshift * 8 * rowOut + 256 * thread);
#pragma unroll 1
for (int i = 0; i < 8; i++)
{
uint32_t s1 = ps1 + i*memshift;
uint32_t s2 = ps2 + i*memshift;
uint32_t s3 = ps3 + i*memshift;
for (int j = 0; j < 3; j++)
state1[j] = __ldg4(&(DMatrix + s1)[j]);
for (int j = 0; j < 3; j++)
state2[j] = __ldg4(&(DMatrix + s2)[j]);
for (int j = 0; j < 3; j++)
state1[j] += state2[j];
for (int j = 0; j < 3; j++)
state[j] ^= state1[j];
round_lyra_v35(state);
((uint2*)state2)[0] ^= ((uint2*)state)[11];
for (int j = 0; j < 11; j++)
((uint2*)state2)[j + 1] ^= ((uint2*)state)[j];
if (rowInOut != rowOut) {
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state2[j];
for (int j = 0; j < 3; j++)
(DMatrix + s3)[j] ^= state[j];
} else {
for (int j = 0; j < 3; j++)
state2[j] ^= state[j];
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j]=state2[j];
}
}
}
static __device__ __forceinline__
void reduceDuplexRowtV3(const int rowIn, const int rowInOut, const int rowOut, vectype* state, uint32_t thread)
{
vectype state1[3], state2[3];
uint32_t ps1 = (memshift * rowIn + 64 * memshift * thread);
uint32_t ps2 = (memshift * rowInOut + 64 * memshift * thread);
uint32_t ps3 = (memshift * rowOut + 64 *memshift * thread);
#pragma nounroll
for (int i = 0; i < 8; i++)
{
uint32_t s1 = ps1 + 8 * i*memshift;
uint32_t s2 = ps2 + 8 * i*memshift;
uint32_t s3 = ps3 + 8 * i*memshift;
for (int j = 0; j < 3; j++)
state1[j] = __ldg4(&(DMatrix + s1)[j]);
for (int j = 0; j < 3; j++)
state2[j] = __ldg4(&(DMatrix + s2)[j]);
for (int j = 0; j < 3; j++)
state1[j] += state2[j];
for (int j = 0; j < 3; j++)
state[j] ^= state1[j];
round_lyra_v35(state);
((uint2*)state2)[0] ^= ((uint2*)state)[11];
for (int j = 0; j < 11; j++)
((uint2*)state2)[j + 1] ^= ((uint2*)state)[j];
if (rowInOut != rowOut) {
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state2[j];
for (int j = 0; j < 3; j++)
(DMatrix + s3)[j] ^= state[j];
}
else {
for (int j = 0; j < 3; j++)
state2[j] ^= state[j];
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state2[j];
}
}
}
#if __CUDA_ARCH__ < 500
__global__ __launch_bounds__(48, 1)
#elif __CUDA_ARCH__ == 500
__global__ __launch_bounds__(16, 1)
#else
__global__ __launch_bounds__(TPB, 1)
#endif
void lyra2_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint2 *outputHash)
__global__ __launch_bounds__(TPB, 1)
void lyra2_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint64_t *outputHash)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
vectype state[4];
#if __CUDA_ARCH__ > 350
const uint28 blake2b_IV[2] = {
{{ 0xf3bcc908, 0x6a09e667 }, { 0x84caa73b, 0xbb67ae85 }, { 0xfe94f82b, 0x3c6ef372 }, { 0x5f1d36f1, 0xa54ff53a }},
{{ 0xade682d1, 0x510e527f }, { 0x2b3e6c1f, 0x9b05688c }, { 0xfb41bd6b, 0x1f83d9ab }, { 0x137e2179, 0x5be0cd19 }}
};
#else
const ulonglong4 blake2b_IV[2] = {
{ 0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1 },
{ 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179 }
};
#endif
#if __CUDA_ARCH__ == 350
if (thread < threads)
#endif
{
((uint2*)state)[0] = __ldg(&outputHash[thread]);
((uint2*)state)[1] = __ldg(&outputHash[thread + threads]);
((uint2*)state)[2] = __ldg(&outputHash[thread + 2 * threads]);
((uint2*)state)[3] = __ldg(&outputHash[thread + 3 * threads]);
// state[0] = __ldg4(&((vectype*)outputHash)[thread]);
state[1] = state[0];
state[2] = ((vectype*)blake2b_IV)[0];
state[3] = ((vectype*)blake2b_IV)[1];
uint2 state[16];
#pragma unroll
for (int i = 0; i<4; i++) {
LOHI(state[i].x, state[i].y, outputHash[threads*i + thread]);
} //password
for (int i = 0; i<24; i++) { //because 12 is not enough
round_lyra_v35(state);
#pragma unroll
for (int i = 0; i<4; i++) {
state[i + 4] = state[i];
} //salt
#pragma unroll
for (int i = 0; i<8; i++) {
state[i + 8] = blake2b_IV[i];
}
uint32_t ps1 = (memshift * 7 + 256 * thread);
// blake2blyra x2
//#pragma unroll 24
for (int i = 0; i<24; i++) {
round_lyra(state);
} //because 12 is not enough
uint2 Matrix[96][8]; // not cool
// reducedSqueezeRow0
#pragma unroll 8
for (int i = 0; i < 8; i++)
{
uint32_t s1 = ps1 - memshift * i;
for (int j = 0; j < 3; j++)
(DMatrix + s1)[j] = (state)[j];
round_lyra_v35(state);
#pragma unroll 12
for (int j = 0; j<12; j++) {
Matrix[j + 84 - 12 * i][0] = state[j];
}
round_lyra(state);
}
reduceDuplex(state, thread);
reduceDuplexRowSetupV2(1, 0, 2, state, thread);
reduceDuplexRowSetupV2(2, 1, 3, state, thread);
reduceDuplexRowSetupV2(3, 0, 4, state, thread);
reduceDuplexRowSetupV2(4, 3, 5, state, thread);
reduceDuplexRowSetupV2(5, 2, 6, state, thread);
reduceDuplexRowSetupV2(6, 1, 7, state, thread);
uint32_t rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV2(7, rowa, 0, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV2(0, rowa, 3, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV2(3, rowa, 6, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV2(6, rowa, 1, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV2(1, rowa, 4, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV2(4, rowa, 7, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV2(7, rowa, 2, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV2(2, rowa, 5, state, thread);
uint32_t shift = (memshift * 8 * rowa + 256 * thread);
for (int j = 0; j < 3; j++)
state[j] ^= __ldg4(&(DMatrix + shift)[j]);
for (int i = 0; i < 12; i++)
round_lyra_v35(state);
outputHash[thread]= ((uint2*)state)[0];
outputHash[thread + threads] = ((uint2*)state)[1];
outputHash[thread + 2 * threads] = ((uint2*)state)[2];
outputHash[thread + 3 * threads] = ((uint2*)state)[3];
// ((vectype*)outputHash)[thread] = state[0];
} //thread
}
#if __CUDA_ARCH__ < 500
__global__ __launch_bounds__(48, 1)
#elif __CUDA_ARCH__ == 500
__global__ __launch_bounds__(16, 1)
#else
__global__ __launch_bounds__(TPB, 1)
#endif
void lyra2_gpu_hash_32_v3(uint32_t threads, uint32_t startNounce, uint2 *outputHash)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
vectype state[4];
#if __CUDA_ARCH__ > 350
const uint28 blake2b_IV[2] = {
{ { 0xf3bcc908, 0x6a09e667 }, { 0x84caa73b, 0xbb67ae85 }, { 0xfe94f82b, 0x3c6ef372 }, { 0x5f1d36f1, 0xa54ff53a } },
{ { 0xade682d1, 0x510e527f }, { 0x2b3e6c1f, 0x9b05688c }, { 0xfb41bd6b, 0x1f83d9ab }, { 0x137e2179, 0x5be0cd19 } }
};
#else
const ulonglong4 blake2b_IV[2] = {
{ 0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1 },
{ 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179 }
};
#endif
#if __CUDA_ARCH__ == 350
if (thread < threads)
#endif
{
((uint2*)state)[0] = __ldg(&outputHash[thread]);
((uint2*)state)[1] = __ldg(&outputHash[thread + threads]);
((uint2*)state)[2] = __ldg(&outputHash[thread + 2 * threads]);
((uint2*)state)[3] = __ldg(&outputHash[thread + 3 * threads]);
state[1] = state[0];
state[2] = ((vectype*)blake2b_IV)[0];
state[3] = ((vectype*)blake2b_IV)[1];
for (int i = 0; i<24; i++)
round_lyra_v35(state); //because 12 is not enough
uint32_t ps1 = (8 * memshift * 7 + 64 * memshift * thread);
// reducedSqueezeRow1
#pragma unroll 8
for (int i = 0; i < 8; i++)
{
uint32_t s1 = ps1 - 8 * memshift * i;
for (int j = 0; j < 3; j++)
(DMatrix + s1)[j] = (state)[j];
round_lyra_v35(state);
#pragma unroll 12
for (int j = 0; j<12; j++) {
state[j] ^= Matrix[j + 12 * i][0];
}
round_lyra(state);
#pragma unroll 12
for (int j = 0; j<12; j++) {
Matrix[j + 84 - 12 * i][1] = Matrix[j + 12 * i][0] ^ state[j];
}
}
reduceDuplexRowSetup(1, 0, 2,state, Matrix);
reduceDuplexRowSetup(2, 1, 3, state, Matrix);
reduceDuplexRowSetup(3, 0, 4, state, Matrix);
reduceDuplexRowSetup(4, 3, 5, state, Matrix);
reduceDuplexRowSetup(5, 2, 6, state, Matrix);
reduceDuplexRowSetup(6, 1, 7, state, Matrix);
reduceDuplexV3(state, thread);
uint32_t rowa;
rowa = state[0].x & 7;
reduceDuplexRow(7, rowa, 0);
rowa = state[0].x & 7;
reduceDuplexRow(0, rowa, 3);
rowa = state[0].x & 7;
reduceDuplexRow(3, rowa, 6);
rowa = state[0].x & 7;
reduceDuplexRow(6, rowa, 1);
rowa = state[0].x & 7;
reduceDuplexRow(1, rowa, 4);
rowa = state[0].x & 7;
reduceDuplexRow(4, rowa, 7);
rowa = state[0].x & 7;
reduceDuplexRow(7, rowa, 2);
rowa = state[0].x & 7;
reduceDuplexRow(2, rowa, 5);
reduceDuplexRowSetupV3(1, 0, 2, state, thread);
reduceDuplexRowSetupV3(2, 1, 3, state, thread);
reduceDuplexRowSetupV3(3, 0, 4, state, thread);
reduceDuplexRowSetupV3(4, 3, 5, state, thread);
reduceDuplexRowSetupV3(5, 2, 6, state, thread);
reduceDuplexRowSetupV3(6, 1, 7, state, thread);
uint32_t rowa = ((uint2*)state)[0].x & 7;
absorbblock(rowa);
reduceDuplexRowtV3(7, rowa, 0, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV3(0, rowa, 3, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV3(3, rowa, 6, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV3(6, rowa, 1, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV3(1, rowa, 4, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV3(4, rowa, 7, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV3(7, rowa, 2, state, thread);
rowa = ((uint2*)state)[0].x & 7;
reduceDuplexRowtV3(2, rowa, 5, state, thread);
uint32_t shift = (memshift * rowa + 64 * memshift * thread);
for (int j = 0; j < 3; j++)
state[j] ^= __ldg4(&(DMatrix + shift)[j]);
for (int i = 0; i < 12; i++)
round_lyra_v35(state);
outputHash[thread] = ((uint2*)state)[0];
outputHash[thread + threads] = ((uint2*)state)[1];
outputHash[thread + 2 * threads] = ((uint2*)state)[2];
outputHash[thread + 3 * threads] = ((uint2*)state)[3];
#pragma unroll
for (int i = 0; i<4; i++) {
outputHash[threads*i + thread] = devectorize(state[i]);
} //password
} //thread
}
__host__
void lyra2_cpu_init(int thr_id, uint32_t threads, uint64_t *hash)
{
cudaMemcpyToSymbol(DMatrix, &hash, sizeof(hash), 0, cudaMemcpyHostToDevice);
}
void lyra2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_outputHash, int order)
{
uint32_t tpb;
if (device_sm[device_map[thr_id]]<500)
tpb = 48;
else if (device_sm[device_map[thr_id]]==500)
tpb = 16;
else
tpb = TPB;
const uint32_t threadsperblock = TPB;
dim3 grid((threads + tpb - 1) / tpb);
dim3 block(tpb);
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
if (device_sm[device_map[thr_id]] == 500)
lyra2_gpu_hash_32 <<< grid, block >>> (threads, startNounce, (uint2*)d_outputHash);
else
lyra2_gpu_hash_32_v3 <<< grid, block >>> (threads, startNounce, (uint2*)d_outputHash);
MyStreamSynchronize(NULL, order, thr_id);
lyra2_gpu_hash_32 <<<grid, block>>> (threads, startNounce, d_outputHash);
}

View File

@ -10,7 +10,7 @@ extern "C" {
#include "cuda_helper.h"
static uint64_t* d_hash[MAX_GPUS];
static uint64_t* d_hash2[MAX_GPUS];
//static uint64_t* d_hash2[MAX_GPUS];
extern void blake256_cpu_init(int thr_id, uint32_t threads);
extern void blake256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, uint64_t *Hash, int order);
@ -20,7 +20,7 @@ extern void keccak256_cpu_init(int thr_id, uint32_t threads);
extern void skein256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order);
extern void skein256_cpu_init(int thr_id, uint32_t threads);
extern void lyra2_cpu_init(int thr_id, uint32_t threads, uint64_t *hash);
//extern void lyra2_cpu_init(int thr_id, uint32_t threads, uint64_t *hash);
extern void lyra2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order);
extern void groestl256_cpu_init(int thr_id, uint32_t threads);
@ -28,6 +28,21 @@ extern void groestl256_setTarget(const void *ptarget);
extern uint32_t groestl256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_outputHash, int order);
extern uint32_t groestl256_getSecNonce(int thr_id, int num);
#ifdef _DEBUG
#define TRACE(algo) { \
if (max_nonce == 1 && pdata[19] <= 1) { \
uint32_t* debugbuf = NULL; \
cudaMallocHost(&debugbuf, 8*sizeof(uint32_t)); \
cudaMemcpy(debugbuf, d_hash[thr_id], 8*sizeof(uint32_t), cudaMemcpyDeviceToHost); \
printf("lyra %s %08x %08x %08x %08x...\n", algo, swab32(debugbuf[0]), swab32(debugbuf[1]), \
swab32(debugbuf[2]), swab32(debugbuf[3])); \
cudaFreeHost(debugbuf); \
} \
}
#else
#define TRACE(algo) {}
#endif
extern "C" void lyra2re_hash(void *state, const void *input)
{
sph_blake256_context ctx_blake;
@ -70,7 +85,7 @@ extern "C" int scanhash_lyra2(int thr_id, uint32_t *pdata,
throughput = min(throughput, max_nonce - first_nonce);
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x0000ff;
((uint32_t*)ptarget)[7] = 0x00ff;
if (!init[thr_id])
{
@ -82,8 +97,8 @@ extern "C" int scanhash_lyra2(int thr_id, uint32_t *pdata,
groestl256_cpu_init(thr_id, throughput);
// DMatrix
cudaMalloc(&d_hash2[thr_id], (size_t)16 * 8 * 8 * sizeof(uint64_t) * throughput);
lyra2_cpu_init(thr_id, throughput, d_hash2[thr_id]);
// cudaMalloc(&d_hash2[thr_id], (size_t)16 * 8 * 8 * sizeof(uint64_t) * throughput);
// lyra2_cpu_init(thr_id, throughput, d_hash2[thr_id]);
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t)32 * throughput));
@ -107,6 +122,7 @@ extern "C" int scanhash_lyra2(int thr_id, uint32_t *pdata,
keccak256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
lyra2_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
skein256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
TRACE("S")
foundNonce = groestl256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
if (foundNonce != UINT32_MAX)

View File

@ -87,7 +87,7 @@ extern "C" int scanhash_lyra2v2(int thr_id, uint32_t *pdata,
if (!init[thr_id])
{
cudaSetDevice(device_map[thr_id]);
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
//cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
//if (opt_n_gputhreads == 1)
// cudaDeviceSetCacheConfig(cudaFuncCachePreferL1);
blake256_cpu_init(thr_id, throughput);

View File

@ -1775,7 +1775,7 @@ void do_gpu_tests(void)
//scanhash_scrypt_jane(0, (uint32_t*)buf, tgt, NULL, 1, &done, &tv, &tv);
memset(buf, 0, sizeof buf);
scanhash_x11(0, (uint32_t*)buf, tgt, 1, &done);
scanhash_lyra2(0, (uint32_t*)buf, tgt, 1, &done);
//memset(buf, 0, sizeof buf);
// buf[0] = 1; buf[64] = 2; // for endian tests