// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2011 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file license.txt or http://www.opensource.org/licenses/mit-license.php. #define BSD_SOURCE #include #include #include #include "netbase.h" #include "util.h" #ifndef WIN32 #include #endif using namespace std; string strprintf(const std::string &format, ...) { char buffer[50000]; char* p = buffer; int limit = sizeof(buffer); int ret; loop { va_list arg_ptr; va_start(arg_ptr, format); ret = vsnprintf(p, limit, format.c_str(), arg_ptr); va_end(arg_ptr); if (ret >= 0 && ret < limit) break; if (p != buffer) delete[] p; limit *= 2; p = new char[limit]; if (p == NULL) throw std::bad_alloc(); } string str(p, p+ret); if (p != buffer) delete[] p; return str; } int nConnectTimeout = 5000; static const unsigned char pchIPv4[12] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff }; bool static LookupIntern(const char *pszName, std::vector& vIP, int nMaxSolutions, bool fAllowLookup) { vIP.clear(); struct addrinfo aiHint = {}; aiHint.ai_socktype = SOCK_STREAM; aiHint.ai_protocol = IPPROTO_TCP; #ifdef WIN32 # ifdef USE_IPV6 aiHint.ai_family = AF_UNSPEC; aiHint.ai_flags = fAllowLookup ? 0 : AI_NUMERICHOST; # else aiHint.ai_family = AF_INET; aiHint.ai_flags = fAllowLookup ? 0 : AI_NUMERICHOST; # endif #else # ifdef USE_IPV6 aiHint.ai_family = AF_UNSPEC; aiHint.ai_flags = AI_ADDRCONFIG | (fAllowLookup ? 0 : AI_NUMERICHOST); # else aiHint.ai_family = AF_INET; aiHint.ai_flags = AI_ADDRCONFIG | (fAllowLookup ? 0 : AI_NUMERICHOST); # endif #endif struct addrinfo *aiRes = NULL; int nErr = getaddrinfo(pszName, NULL, &aiHint, &aiRes); if (nErr) return false; struct addrinfo *aiTrav = aiRes; while (aiTrav != NULL && (nMaxSolutions == 0 || vIP.size() < nMaxSolutions)) { if (aiTrav->ai_family == AF_INET) { assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in)); vIP.push_back(CIP(((struct sockaddr_in*)(aiTrav->ai_addr))->sin_addr)); } #ifdef USE_IPV6 if (aiTrav->ai_family == AF_INET6) { assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in6)); vIP.push_back(CIP(((struct sockaddr_in6*)(aiTrav->ai_addr))->sin6_addr)); } #endif aiTrav = aiTrav->ai_next; } freeaddrinfo(aiRes); return (vIP.size() > 0); } bool LookupHost(const char *pszName, std::vector& vIP, int nMaxSolutions, bool fAllowLookup) { if (pszName[0] == 0) return false; char psz[256]; char *pszHost = psz; strncpy(psz, pszName, sizeof(psz)-1); psz[255] = 0; if (psz[0] == '[' && psz[strlen(psz)-1] == ']') { pszHost = psz+1; psz[strlen(psz)-1] = 0; } return LookupIntern(pszHost, vIP, nMaxSolutions, fAllowLookup); } bool LookupHostNumeric(const char *pszName, std::vector& vIP, int nMaxSolutions) { return LookupHost(pszName, vIP, nMaxSolutions, false); } bool Lookup(const char *pszName, CIPPort& addr, int portDefault, bool fAllowLookup) { if (pszName[0] == 0) return false; int port = portDefault; char psz[256]; char *pszHost = psz; strncpy(psz, pszName, sizeof(psz)-1); psz[255] = 0; char* pszColon = strrchr(psz+1,':'); char *pszPortEnd = NULL; int portParsed = pszColon ? strtoul(pszColon+1, &pszPortEnd, 10) : 0; if (pszColon && pszPortEnd && pszPortEnd[0] == 0) { if (psz[0] == '[' && pszColon[-1] == ']') { pszHost = psz+1; pszColon[-1] = 0; } else pszColon[0] = 0; if (port >= 0 && port <= USHRT_MAX) port = portParsed; } else { if (psz[0] == '[' && psz[strlen(psz)-1] == ']') { pszHost = psz+1; psz[strlen(psz)-1] = 0; } } std::vector vIP; bool fRet = LookupIntern(pszHost, vIP, 1, fAllowLookup); if (!fRet) return false; addr = CIPPort(vIP[0], port); return true; } bool LookupNumeric(const char *pszName, CIPPort& addr, int portDefault) { return Lookup(pszName, addr, portDefault, false); } bool CIPPort::ConnectSocket(SOCKET& hSocketRet, int nTimeout) const { hSocketRet = INVALID_SOCKET; SOCKET hSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (hSocket == INVALID_SOCKET) { printf("Failed to create socket: %s\n", strerror(errno)); return false; } #ifdef SO_NOSIGPIPE int set = 1; setsockopt(hSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&set, sizeof(int)); #endif struct sockaddr_in sockaddr; GetSockAddr(&sockaddr); #ifdef WIN32 u_long fNonblock = 1; if (ioctlsocket(hSocket, FIONBIO, &fNonblock) == SOCKET_ERROR) #else int fFlags = fcntl(hSocket, F_GETFL, 0); if (fcntl(hSocket, F_SETFL, fFlags | O_NONBLOCK) == -1) #endif { printf("Failed to set socket NONBLOCK\n"); closesocket(hSocket); } if (connect(hSocket, (struct sockaddr*)&sockaddr, sizeof(sockaddr)) == SOCKET_ERROR) { // WSAEINVAL is here because some legacy version of winsock uses it if (WSAGetLastError() == WSAEINPROGRESS || WSAGetLastError() == WSAEWOULDBLOCK || WSAGetLastError() == WSAEINVAL) { struct timeval timeout; timeout.tv_sec = nTimeout / 1000; timeout.tv_usec = (nTimeout % 1000) * 1000; fd_set fdset; FD_ZERO(&fdset); FD_SET(hSocket, &fdset); int nRet = select(hSocket + 1, NULL, &fdset, NULL, &timeout); if (nRet == 0) { printf("connection timeout\n"); closesocket(hSocket); return false; } if (nRet == SOCKET_ERROR) { printf("select() for connection failed: %i\n",WSAGetLastError()); closesocket(hSocket); return false; } socklen_t nRetSize = sizeof(nRet); #ifdef WIN32 if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, (char*)(&nRet), &nRetSize) == SOCKET_ERROR) #else if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, &nRet, &nRetSize) == SOCKET_ERROR) #endif { printf("getsockopt() for connection failed: %i\n",WSAGetLastError()); closesocket(hSocket); return false; } if (nRet != 0) { printf("connect() failed after select(): %s\n",strerror(nRet)); closesocket(hSocket); return false; } } #ifdef WIN32 else if (WSAGetLastError() != WSAEISCONN) #else else #endif { printf("connect() failed: %i\n",WSAGetLastError()); closesocket(hSocket); return false; } } // this isn't even strictly necessary // CNode::ConnectNode immediately turns the socket back to non-blocking // but we'll turn it back to blocking just in case #ifdef WIN32 fNonblock = 0; if (ioctlsocket(hSocket, FIONBIO, &fNonblock) == SOCKET_ERROR) #else fFlags = fcntl(hSocket, F_GETFL, 0); if (fcntl(hSocket, F_SETFL, fFlags & !O_NONBLOCK) == SOCKET_ERROR) #endif { printf("Failed to set socket blocking\n"); closesocket(hSocket); return false; } printf("%s: connected\n", ToString().c_str()); hSocketRet = hSocket; return true; } void CIP::Init() { memset(ip, 0, 16); } void CIP::SetIP(const CIP& ipIn) { memcpy(ip, ipIn.ip, sizeof(ip)); } CIP::CIP() { Init(); } CIP::CIP(const struct in_addr& ipv4Addr) { memcpy(ip, pchIPv4, 12); memcpy(ip+12, &ipv4Addr, 4); } #ifdef USE_IPV6 CIP::CIP(const struct in6_addr& ipv6Addr) { memcpy(ip, &ipv6Addr, 16); } #endif CIP::CIP(const char *pszIp, bool fAllowLookup) { Init(); std::vector vIP; if (LookupHost(pszIp, vIP, 1, fAllowLookup)) *this = vIP[0]; } CIP::CIP(const std::string &strIp, bool fAllowLookup) { Init(); std::vector vIP; if (LookupHost(strIp.c_str(), vIP, 1, fAllowLookup)) *this = vIP[0]; } int CIP::GetByte(int n) const { return ip[15-n]; } bool CIP::IsIPv4() const { return (memcmp(ip, pchIPv4, sizeof(pchIPv4)) == 0); } bool CIP::IsRFC1918() const { return IsIPv4() && ( GetByte(3) == 10 || (GetByte(3) == 192 && GetByte(2) == 168) || (GetByte(3) == 172 && (GetByte(2) >= 16 && GetByte(2) <= 31))); } bool CIP::IsRFC3927() const { return IsIPv4() && (GetByte(3) == 169 && GetByte(2) == 254); } bool CIP::IsRFC3849() const { return GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x0D && GetByte(12) == 0xB8; } bool CIP::IsRFC3964() const { return (GetByte(15) == 0x20 && GetByte(14) == 0x02); } bool CIP::IsRFC6052() const { static const unsigned char pchRFC6052[] = {0,0x64,0xFF,0x9B,0,0,0,0,0,0,0,0}; return (memcmp(ip, pchRFC6052, sizeof(pchRFC6052)) == 0); } bool CIP::IsRFC4380() const { return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0 && GetByte(12) == 0); } bool CIP::IsRFC4862() const { static const unsigned char pchRFC4862[] = {0xFE,0x80,0,0,0,0,0,0}; return (memcmp(ip, pchRFC4862, sizeof(pchRFC4862)) == 0); } bool CIP::IsRFC4193() const { return ((GetByte(15) & 0xFE) == 0xFC); } bool CIP::IsRFC6145() const { static const unsigned char pchRFC6145[] = {0,0,0,0,0,0,0,0,0xFF,0xFF,0,0}; return (memcmp(ip, pchRFC6145, sizeof(pchRFC6145)) == 0); } bool CIP::IsRFC4843() const { return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x00 && GetByte(12) & 0xF0 == 0x10); } bool CIP::IsLocal() const { // IPv4 loopback if (IsIPv4() && (GetByte(3) == 127 || GetByte(3) == 0)) return true; // IPv6 loopback (::1/128) static const unsigned char pchLocal[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; if (memcmp(ip, pchLocal, 16) == 0) return true; return false; } bool CIP::IsMulticast() const { return (IsIPv4() && (GetByte(3) & 0xF0) == 0xE0) || (GetByte(15) == 0xFF); } bool CIP::IsValid() const { // Clean up 3-byte shifted addresses caused by garbage in size field // of addr messages from versions before 0.2.9 checksum. // Two consecutive addr messages look like this: // header20 vectorlen3 addr26 addr26 addr26 header20 vectorlen3 addr26 addr26 addr26... // so if the first length field is garbled, it reads the second batch // of addr misaligned by 3 bytes. if (memcmp(ip, pchIPv4+3, sizeof(pchIPv4)-3) == 0) return false; // unspecified IPv6 address (::/128) unsigned char ipNone[16] = {}; if (memcmp(ip, ipNone, 16) == 0) return false; // documentation IPv6 address if (IsRFC3849()) return false; if (IsIPv4()) { // INADDR_NONE uint32_t ipNone = INADDR_NONE; if (memcmp(ip+12, &ipNone, 4) == 0) return false; // 0 ipNone = 0; if (memcmp(ip+12, &ipNone, 4) == 0) return false; } return true; } bool CIP::IsRoutable() const { return IsValid() && !(IsRFC1918() || IsRFC3927() || IsRFC4862() || IsRFC4193() || IsRFC4843() || IsLocal()); } std::string CIP::ToString() const { if (IsIPv4()) return strprintf("%u.%u.%u.%u", GetByte(3), GetByte(2), GetByte(1), GetByte(0)); else return strprintf("%x:%x:%x:%x:%x:%x:%x:%x", GetByte(15) << 8 | GetByte(14), GetByte(13) << 8 | GetByte(12), GetByte(11) << 8 | GetByte(10), GetByte(9) << 8 | GetByte(8), GetByte(7) << 8 | GetByte(6), GetByte(5) << 8 | GetByte(4), GetByte(3) << 8 | GetByte(2), GetByte(1) << 8 | GetByte(0)); } bool operator==(const CIP& a, const CIP& b) { return (memcmp(a.ip, b.ip, 16) == 0); } bool operator!=(const CIP& a, const CIP& b) { return (memcmp(a.ip, b.ip, 16) != 0); } bool operator<(const CIP& a, const CIP& b) { return (memcmp(a.ip, b.ip, 16) < 0); } bool CIP::GetInAddr(struct in_addr* pipv4Addr) const { if (!IsIPv4()) return false; memcpy(pipv4Addr, ip+12, 4); return true; } #ifdef USE_IPV6 bool CIP::GetIn6Addr(struct in6_addr* pipv6Addr) const { memcpy(pipv6Addr, ip, 16); return true; } #endif // get canonical identifier of an address' group // no two connections will be attempted to addresses with the same group std::vector CIP::GetGroup() const { std::vector vchRet; int nClass = 0; // 0=IPv6, 1=IPv4, 255=unroutable int nStartByte = 0; int nBits = 16; // for unroutable addresses, each address is considered different if (!IsRoutable()) { nClass = 255; nBits = 128; } // for IPv4 addresses, '1' + the 16 higher-order bits of the IP // includes mapped IPv4, SIIT translated IPv4, and the well-known prefix else if (IsIPv4() || IsRFC6145() || IsRFC6052()) { nClass = 1; nStartByte = 12; } // for 6to4 tunneled addresses, use the encapsulated IPv4 address else if (IsRFC3964()) { nClass = 1; nStartByte = 2; } // for Teredo-tunneled IPv6 addresses, use the encapsulated IPv4 address else if (IsRFC4380()) { vchRet.push_back(1); vchRet.push_back(GetByte(3) ^ 0xFF); vchRet.push_back(GetByte(2) ^ 0xFF); return vchRet; } // for he.net, use /36 groups else if (GetByte(15) == 0x20 && GetByte(14) == 0x11 && GetByte(13) == 0x04 && GetByte(12) == 0x70) nBits = 36; // for the rest of the IPv6 network, use /32 groups else nBits = 32; vchRet.push_back(nClass); while (nBits >= 8) { vchRet.push_back(GetByte(15 - nStartByte)); nStartByte++; nBits -= 8; } if (nBits > 0) vchRet.push_back(GetByte(15 - nStartByte) | ((1 << nBits) - 1)); return vchRet; } int64 CIP::GetHash() const { if (IsIPv4()) { // reconstruct ip in reversed-byte order // (the original definition of the randomizer used network-order integers on little endian architecture) int64 ip = GetByte(0) << 24 + GetByte(1) << 16 + GetByte(2) << 8 + GetByte(3); return ip * 7789; } // for IPv6 addresses, use separate multipliers for each byte // these numbers are from the hexadecimal expansion of 3/Pi: static const int64 nByteMult[16] = {0xF4764525, 0x75661FBE, 0xFA3B03BA, 0xEFCF4CA1, 0x4913E065, 0xDA655862, 0xFD7A1581, 0xCE19A812, 0x92B6A557, 0x6374BC50, 0x096DC65F, 0x0EBA5B2B, 0x7D2CE0AB, 0x09BE7ADE, 0x5CC350EF, 0xC618E6C7}; int64 nRet = 0; for (int n=0; n<16; n++) nRet += nByteMult[n]*GetByte(n); return nRet; } void CIP::print() const { printf("CIP(%s)\n", ToString().c_str()); } void CIPPort::Init() { port = 0; } CIPPort::CIPPort() { Init(); } CIPPort::CIPPort(const CIP& cip, unsigned short portIn) : CIP(cip), port(portIn) { } CIPPort::CIPPort(const struct in_addr& ipv4Addr, unsigned short portIn) : CIP(ipv4Addr), port(portIn) { } #ifdef USE_IPV6 CIPPort::CIPPort(const struct in6_addr& ipv6Addr, unsigned short portIn) : CIP(ipv6Addr), port(portIn) { } #endif CIPPort::CIPPort(const struct sockaddr_in& addr) : CIP(addr.sin_addr), port(ntohs(addr.sin_port)) { assert(addr.sin_family == AF_INET); } #ifdef USE_IPV6 CIPPort::CIPPort(const struct sockaddr_in6 &addr) : CIP(addr.sin6_addr), port(ntohs(addr.sin6_port)) { assert(addr.sin6_family == AF_INET6); } #endif CIPPort::CIPPort(const char *pszIpPort, bool fAllowLookup) { Init(); CIPPort ip; if (Lookup(pszIpPort, ip, 0, fAllowLookup)) *this = ip; } CIPPort::CIPPort(const char *pszIp, int portIn, bool fAllowLookup) { std::vector ip; if (LookupHost(pszIp, ip, 1, fAllowLookup)) *this = CIPPort(ip[0], portIn); } CIPPort::CIPPort(const std::string &strIpPort, bool fAllowLookup) { Init(); CIPPort ip; if (Lookup(strIpPort.c_str(), ip, 0, fAllowLookup)) *this = ip; } CIPPort::CIPPort(const std::string &strIp, int portIn, bool fAllowLookup) { std::vector ip; if (LookupHost(strIp.c_str(), ip, 1, fAllowLookup)) *this = CIPPort(ip[0], portIn); } unsigned short CIPPort::GetPort() const { return port; } bool operator==(const CIPPort& a, const CIPPort& b) { return (operator==((CIP)a, (CIP)b) && a.port == b.port); } bool operator!=(const CIPPort& a, const CIPPort& b) { return (operator!=((CIP)a, (CIP)b) || a.port != b.port); } bool operator<(const CIPPort& a, const CIPPort& b) { return (operator<((CIP)a, (CIP)b) || (operator==((CIP)a, (CIP)b) && (a.port < b.port))); } bool CIPPort::GetSockAddr(struct sockaddr_in* paddr) const { if (!IsIPv4()) return false; memset(paddr, 0, sizeof(struct sockaddr_in)); if (!GetInAddr(&paddr->sin_addr)) return false; paddr->sin_family = AF_INET; paddr->sin_port = htons(port); } #ifdef USE_IPV6 bool CIPPort::GetSockAddr6(struct sockaddr_in6* paddr) const { memset(paddr, 0, sizeof(struct sockaddr_in6)); if (!GetIn6Addr(&paddr->sin6_addr)) return false; paddr->sin6_family = AF_INET6; paddr->sin6_port = htons(port); } #endif std::vector CIPPort::GetKey() const { std::vector vKey; vKey.resize(18); memcpy(&vKey[0], ip, 16); vKey[16] = port / 0x100; vKey[17] = port & 0x0FF; return vKey; } std::string CIPPort::ToString() const { return CIP::ToString() + strprintf(":%i", port); } void CIPPort::print() const { printf("CIPPort(%s)\n", ToString().c_str()); } void CIPPort::SetPort(unsigned short portIn) { port = portIn; }