twister-core/net.cpp
2009-08-30 03:46:39 +00:00

1101 lines
33 KiB
C++

// Copyright (c) 2009 Satoshi Nakamoto
// Distributed under the MIT/X11 software license, see the accompanying
// file license.txt or http://www.opensource.org/licenses/mit-license.php.
#include "headers.h"
#include <winsock2.h>
void ThreadMessageHandler2(void* parg);
void ThreadSocketHandler2(void* parg);
void ThreadOpenConnections2(void* parg);
//
// Global state variables
//
bool fClient = false;
uint64 nLocalServices = (fClient ? 0 : NODE_NETWORK);
CAddress addrLocalHost(0, DEFAULT_PORT, nLocalServices);
CNode nodeLocalHost(INVALID_SOCKET, CAddress("127.0.0.1", nLocalServices));
CNode* pnodeLocalHost = &nodeLocalHost;
bool fShutdown = false;
array<bool, 10> vfThreadRunning;
vector<CNode*> vNodes;
CCriticalSection cs_vNodes;
map<vector<unsigned char>, CAddress> mapAddresses;
CCriticalSection cs_mapAddresses;
map<CInv, CDataStream> mapRelay;
deque<pair<int64, CInv> > vRelayExpiration;
CCriticalSection cs_mapRelay;
map<CInv, int64> mapAlreadyAskedFor;
CAddress addrProxy;
bool ConnectSocket(const CAddress& addrConnect, SOCKET& hSocketRet)
{
hSocketRet = INVALID_SOCKET;
SOCKET hSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (hSocket == INVALID_SOCKET)
return false;
bool fRoutable = !(addrConnect.GetByte(3) == 10 || (addrConnect.GetByte(3) == 192 && addrConnect.GetByte(2) == 168));
bool fProxy = (addrProxy.ip && fRoutable);
struct sockaddr_in sockaddr = (fProxy ? addrProxy.GetSockAddr() : addrConnect.GetSockAddr());
if (connect(hSocket, (struct sockaddr*)&sockaddr, sizeof(sockaddr)) == SOCKET_ERROR)
{
closesocket(hSocket);
return false;
}
if (fProxy)
{
printf("Proxy connecting to %s\n", addrConnect.ToString().c_str());
char pszSocks4IP[] = "\4\1\0\0\0\0\0\0user";
memcpy(pszSocks4IP + 2, &addrConnect.port, 2);
memcpy(pszSocks4IP + 4, &addrConnect.ip, 4);
char* pszSocks4 = pszSocks4IP;
int nSize = sizeof(pszSocks4IP);
int ret = send(hSocket, pszSocks4, nSize, 0);
if (ret != nSize)
{
closesocket(hSocket);
return error("Error sending to proxy\n");
}
char pchRet[8];
if (recv(hSocket, pchRet, 8, 0) != 8)
{
closesocket(hSocket);
return error("Error reading proxy response\n");
}
if (pchRet[1] != 0x5a)
{
closesocket(hSocket);
return error("Proxy returned error %d\n", pchRet[1]);
}
printf("Proxy connection established %s\n", addrConnect.ToString().c_str());
}
hSocketRet = hSocket;
return true;
}
bool GetMyExternalIP2(const CAddress& addrConnect, const char* pszGet, const char* pszKeyword, unsigned int& ipRet)
{
SOCKET hSocket;
if (!ConnectSocket(addrConnect, hSocket))
return error("GetMyExternalIP() : connection to %s failed\n", addrConnect.ToString().c_str());
send(hSocket, pszGet, strlen(pszGet), 0);
string strLine;
while (RecvLine(hSocket, strLine))
{
if (strLine.empty())
{
loop
{
if (!RecvLine(hSocket, strLine))
{
closesocket(hSocket);
return false;
}
if (strLine.find(pszKeyword) != -1)
{
strLine = strLine.substr(strLine.find(pszKeyword) + strlen(pszKeyword));
break;
}
}
closesocket(hSocket);
if (strLine.find("<"))
strLine = strLine.substr(0, strLine.find("<"));
strLine = strLine.substr(strspn(strLine.c_str(), " \t\n\r"));
strLine = wxString(strLine).Trim();
CAddress addr(strLine.c_str());
printf("GetMyExternalIP() received [%s] %s\n", strLine.c_str(), addr.ToString().c_str());
if (addr.ip == 0 || !addr.IsRoutable())
return false;
ipRet = addr.ip;
return true;
}
}
closesocket(hSocket);
return error("GetMyExternalIP() : connection closed\n");
}
bool GetMyExternalIP(unsigned int& ipRet)
{
CAddress addrConnect;
char* pszGet;
char* pszKeyword;
for (int nLookup = 0; nLookup <= 1; nLookup++)
for (int nHost = 1; nHost <= 2; nHost++)
{
if (nHost == 1)
{
addrConnect = CAddress("70.86.96.218:80"); // www.ipaddressworld.com
if (nLookup == 1)
{
struct hostent* phostent = gethostbyname("www.ipaddressworld.com");
if (phostent && phostent->h_addr_list && phostent->h_addr_list[0])
addrConnect = CAddress(*(u_long*)phostent->h_addr_list[0], htons(80));
}
pszGet = "GET /ip.php HTTP/1.1\r\n"
"Host: www.ipaddressworld.com\r\n"
"User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)\r\n"
"Connection: close\r\n"
"\r\n";
pszKeyword = "IP:";
}
else if (nHost == 2)
{
addrConnect = CAddress("208.78.68.70:80"); // checkip.dyndns.org
if (nLookup == 1)
{
struct hostent* phostent = gethostbyname("checkip.dyndns.org");
if (phostent && phostent->h_addr_list && phostent->h_addr_list[0])
addrConnect = CAddress(*(u_long*)phostent->h_addr_list[0], htons(80));
}
pszGet = "GET / HTTP/1.1\r\n"
"Host: checkip.dyndns.org\r\n"
"User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)\r\n"
"Connection: close\r\n"
"\r\n";
pszKeyword = "Address:";
}
if (GetMyExternalIP2(addrConnect, pszGet, pszKeyword, ipRet))
return true;
}
return false;
}
bool AddAddress(CAddrDB& addrdb, const CAddress& addr)
{
if (!addr.IsRoutable())
return false;
if (addr.ip == addrLocalHost.ip)
return false;
CRITICAL_BLOCK(cs_mapAddresses)
{
map<vector<unsigned char>, CAddress>::iterator it = mapAddresses.find(addr.GetKey());
if (it == mapAddresses.end())
{
// New address
mapAddresses.insert(make_pair(addr.GetKey(), addr));
addrdb.WriteAddress(addr);
return true;
}
else
{
CAddress& addrFound = (*it).second;
if ((addrFound.nServices | addr.nServices) != addrFound.nServices)
{
// Services have been added
addrFound.nServices |= addr.nServices;
addrdb.WriteAddress(addrFound);
return true;
}
}
}
return false;
}
void AbandonRequests(void (*fn)(void*, CDataStream&), void* param1)
{
// If the dialog might get closed before the reply comes back,
// call this in the destructor so it doesn't get called after it's deleted.
CRITICAL_BLOCK(cs_vNodes)
{
foreach(CNode* pnode, vNodes)
{
CRITICAL_BLOCK(pnode->cs_mapRequests)
{
for (map<uint256, CRequestTracker>::iterator mi = pnode->mapRequests.begin(); mi != pnode->mapRequests.end();)
{
CRequestTracker& tracker = (*mi).second;
if (tracker.fn == fn && tracker.param1 == param1)
pnode->mapRequests.erase(mi++);
else
mi++;
}
}
}
}
}
//
// Subscription methods for the broadcast and subscription system.
// Channel numbers are message numbers, i.e. MSG_TABLE and MSG_PRODUCT.
//
// The subscription system uses a meet-in-the-middle strategy.
// With 100,000 nodes, if senders broadcast to 1000 random nodes and receivers
// subscribe to 1000 random nodes, 99.995% (1 - 0.99^1000) of messages will get through.
//
bool AnySubscribed(unsigned int nChannel)
{
if (pnodeLocalHost->IsSubscribed(nChannel))
return true;
CRITICAL_BLOCK(cs_vNodes)
foreach(CNode* pnode, vNodes)
if (pnode->IsSubscribed(nChannel))
return true;
return false;
}
bool CNode::IsSubscribed(unsigned int nChannel)
{
if (nChannel >= vfSubscribe.size())
return false;
return vfSubscribe[nChannel];
}
void CNode::Subscribe(unsigned int nChannel, unsigned int nHops)
{
if (nChannel >= vfSubscribe.size())
return;
if (!AnySubscribed(nChannel))
{
// Relay subscribe
CRITICAL_BLOCK(cs_vNodes)
foreach(CNode* pnode, vNodes)
if (pnode != this)
pnode->PushMessage("subscribe", nChannel, nHops);
}
vfSubscribe[nChannel] = true;
}
void CNode::CancelSubscribe(unsigned int nChannel)
{
if (nChannel >= vfSubscribe.size())
return;
// Prevent from relaying cancel if wasn't subscribed
if (!vfSubscribe[nChannel])
return;
vfSubscribe[nChannel] = false;
if (!AnySubscribed(nChannel))
{
// Relay subscription cancel
CRITICAL_BLOCK(cs_vNodes)
foreach(CNode* pnode, vNodes)
if (pnode != this)
pnode->PushMessage("sub-cancel", nChannel);
// Clear memory, no longer subscribed
if (nChannel == MSG_PRODUCT)
CRITICAL_BLOCK(cs_mapProducts)
mapProducts.clear();
}
}
CNode* FindNode(unsigned int ip)
{
CRITICAL_BLOCK(cs_vNodes)
{
foreach(CNode* pnode, vNodes)
if (pnode->addr.ip == ip)
return (pnode);
}
return NULL;
}
CNode* FindNode(CAddress addr)
{
CRITICAL_BLOCK(cs_vNodes)
{
foreach(CNode* pnode, vNodes)
if (pnode->addr == addr)
return (pnode);
}
return NULL;
}
CNode* ConnectNode(CAddress addrConnect, int64 nTimeout)
{
if (addrConnect.ip == addrLocalHost.ip)
return NULL;
// Look for an existing connection
CNode* pnode = FindNode(addrConnect.ip);
if (pnode)
{
if (nTimeout != 0)
pnode->AddRef(nTimeout);
else
pnode->AddRef();
return pnode;
}
/// debug print
printf("trying %s\n", addrConnect.ToString().c_str());
// Connect
SOCKET hSocket;
if (ConnectSocket(addrConnect, hSocket))
{
/// debug print
printf("connected %s\n", addrConnect.ToString().c_str());
// Set to nonblocking
u_long nOne = 1;
if (ioctlsocket(hSocket, FIONBIO, &nOne) == SOCKET_ERROR)
printf("ConnectSocket() : ioctlsocket nonblocking setting failed, error %d\n", WSAGetLastError());
// Add node
CNode* pnode = new CNode(hSocket, addrConnect, false);
if (nTimeout != 0)
pnode->AddRef(nTimeout);
else
pnode->AddRef();
CRITICAL_BLOCK(cs_vNodes)
vNodes.push_back(pnode);
CRITICAL_BLOCK(cs_mapAddresses)
mapAddresses[addrConnect.GetKey()].nLastFailed = 0;
return pnode;
}
else
{
CRITICAL_BLOCK(cs_mapAddresses)
mapAddresses[addrConnect.GetKey()].nLastFailed = GetTime();
return NULL;
}
}
void CNode::Disconnect()
{
printf("disconnecting node %s\n", addr.ToString().c_str());
closesocket(hSocket);
// If outbound and never got version message, mark address as failed
if (!fInbound && nVersion == 0)
CRITICAL_BLOCK(cs_mapAddresses)
mapAddresses[addr.GetKey()].nLastFailed = GetTime();
// All of a nodes broadcasts and subscriptions are automatically torn down
// when it goes down, so a node has to stay up to keep its broadcast going.
CRITICAL_BLOCK(cs_mapProducts)
for (map<uint256, CProduct>::iterator mi = mapProducts.begin(); mi != mapProducts.end();)
AdvertRemoveSource(this, MSG_PRODUCT, 0, (*(mi++)).second);
// Cancel subscriptions
for (unsigned int nChannel = 0; nChannel < vfSubscribe.size(); nChannel++)
if (vfSubscribe[nChannel])
CancelSubscribe(nChannel);
}
void ThreadSocketHandler(void* parg)
{
IMPLEMENT_RANDOMIZE_STACK(ThreadSocketHandler(parg));
loop
{
vfThreadRunning[0] = true;
CheckForShutdown(0);
try
{
ThreadSocketHandler2(parg);
}
CATCH_PRINT_EXCEPTION("ThreadSocketHandler()")
vfThreadRunning[0] = false;
Sleep(5000);
}
}
void ThreadSocketHandler2(void* parg)
{
printf("ThreadSocketHandler started\n");
SOCKET hListenSocket = *(SOCKET*)parg;
list<CNode*> vNodesDisconnected;
int nPrevNodeCount = 0;
loop
{
//
// Disconnect nodes
//
CRITICAL_BLOCK(cs_vNodes)
{
// Disconnect unused nodes
vector<CNode*> vNodesCopy = vNodes;
foreach(CNode* pnode, vNodesCopy)
{
if (pnode->ReadyToDisconnect() && pnode->vRecv.empty() && pnode->vSend.empty())
{
// remove from vNodes
vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode), vNodes.end());
pnode->Disconnect();
// hold in disconnected pool until all refs are released
pnode->nReleaseTime = max(pnode->nReleaseTime, GetTime() + 5 * 60);
if (pnode->fNetworkNode)
pnode->Release();
vNodesDisconnected.push_back(pnode);
}
}
// Delete disconnected nodes
list<CNode*> vNodesDisconnectedCopy = vNodesDisconnected;
foreach(CNode* pnode, vNodesDisconnectedCopy)
{
// wait until threads are done using it
if (pnode->GetRefCount() <= 0)
{
bool fDelete = false;
TRY_CRITICAL_BLOCK(pnode->cs_vSend)
TRY_CRITICAL_BLOCK(pnode->cs_vRecv)
TRY_CRITICAL_BLOCK(pnode->cs_mapRequests)
TRY_CRITICAL_BLOCK(pnode->cs_inventory)
fDelete = true;
if (fDelete)
{
vNodesDisconnected.remove(pnode);
delete pnode;
}
}
}
}
if (vNodes.size() != nPrevNodeCount)
{
nPrevNodeCount = vNodes.size();
MainFrameRepaint();
}
//
// Find which sockets have data to receive
//
struct timeval timeout;
timeout.tv_sec = 0;
timeout.tv_usec = 50000; // frequency to poll pnode->vSend
struct fd_set fdsetRecv;
struct fd_set fdsetSend;
FD_ZERO(&fdsetRecv);
FD_ZERO(&fdsetSend);
SOCKET hSocketMax = 0;
FD_SET(hListenSocket, &fdsetRecv);
hSocketMax = max(hSocketMax, hListenSocket);
CRITICAL_BLOCK(cs_vNodes)
{
foreach(CNode* pnode, vNodes)
{
FD_SET(pnode->hSocket, &fdsetRecv);
hSocketMax = max(hSocketMax, pnode->hSocket);
TRY_CRITICAL_BLOCK(pnode->cs_vSend)
if (!pnode->vSend.empty())
FD_SET(pnode->hSocket, &fdsetSend);
}
}
vfThreadRunning[0] = false;
int nSelect = select(hSocketMax + 1, &fdsetRecv, &fdsetSend, NULL, &timeout);
vfThreadRunning[0] = true;
CheckForShutdown(0);
if (nSelect == SOCKET_ERROR)
{
int nErr = WSAGetLastError();
printf("select failed: %d\n", nErr);
for (int i = 0; i <= hSocketMax; i++)
{
FD_SET(i, &fdsetRecv);
FD_SET(i, &fdsetSend);
}
Sleep(timeout.tv_usec/1000);
}
RandAddSeed();
//// debug print
//foreach(CNode* pnode, vNodes)
//{
// printf("vRecv = %-5d ", pnode->vRecv.size());
// printf("vSend = %-5d ", pnode->vSend.size());
//}
//printf("\n");
//
// Accept new connections
//
if (FD_ISSET(hListenSocket, &fdsetRecv))
{
struct sockaddr_in sockaddr;
int len = sizeof(sockaddr);
SOCKET hSocket = accept(hListenSocket, (struct sockaddr*)&sockaddr, &len);
CAddress addr(sockaddr);
if (hSocket == INVALID_SOCKET)
{
if (WSAGetLastError() != WSAEWOULDBLOCK)
printf("ERROR ThreadSocketHandler accept failed: %d\n", WSAGetLastError());
}
else
{
printf("accepted connection from %s\n", addr.ToString().c_str());
CNode* pnode = new CNode(hSocket, addr, true);
pnode->AddRef();
CRITICAL_BLOCK(cs_vNodes)
vNodes.push_back(pnode);
}
}
//
// Service each socket
//
vector<CNode*> vNodesCopy;
CRITICAL_BLOCK(cs_vNodes)
vNodesCopy = vNodes;
foreach(CNode* pnode, vNodesCopy)
{
CheckForShutdown(0);
SOCKET hSocket = pnode->hSocket;
//
// Receive
//
if (FD_ISSET(hSocket, &fdsetRecv))
{
TRY_CRITICAL_BLOCK(pnode->cs_vRecv)
{
CDataStream& vRecv = pnode->vRecv;
unsigned int nPos = vRecv.size();
// typical socket buffer is 8K-64K
const unsigned int nBufSize = 0x10000;
vRecv.resize(nPos + nBufSize);
int nBytes = recv(hSocket, &vRecv[nPos], nBufSize, 0);
vRecv.resize(nPos + max(nBytes, 0));
if (nBytes == 0)
{
// socket closed gracefully
if (!pnode->fDisconnect)
printf("recv: socket closed\n");
pnode->fDisconnect = true;
}
else if (nBytes < 0)
{
// socket error
int nErr = WSAGetLastError();
if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
{
if (!pnode->fDisconnect)
printf("recv failed: %d\n", nErr);
pnode->fDisconnect = true;
}
}
}
}
//
// Send
//
if (FD_ISSET(hSocket, &fdsetSend))
{
TRY_CRITICAL_BLOCK(pnode->cs_vSend)
{
CDataStream& vSend = pnode->vSend;
if (!vSend.empty())
{
int nBytes = send(hSocket, &vSend[0], vSend.size(), 0);
if (nBytes > 0)
{
vSend.erase(vSend.begin(), vSend.begin() + nBytes);
}
else if (nBytes == 0)
{
if (pnode->ReadyToDisconnect())
pnode->vSend.clear();
}
else
{
printf("send error %d\n", nBytes);
if (pnode->ReadyToDisconnect())
pnode->vSend.clear();
}
}
}
}
}
Sleep(10);
}
}
void ThreadOpenConnections(void* parg)
{
IMPLEMENT_RANDOMIZE_STACK(ThreadOpenConnections(parg));
loop
{
vfThreadRunning[1] = true;
CheckForShutdown(1);
try
{
ThreadOpenConnections2(parg);
}
CATCH_PRINT_EXCEPTION("ThreadOpenConnections()")
vfThreadRunning[1] = false;
Sleep(5000);
}
}
void ThreadOpenConnections2(void* parg)
{
printf("ThreadOpenConnections started\n");
// Initiate network connections
int nTry = 0;
bool fIRCOnly = false;
const int nMaxConnections = 15;
loop
{
// Wait
vfThreadRunning[1] = false;
Sleep(500);
while (vNodes.size() >= nMaxConnections || vNodes.size() >= mapAddresses.size())
{
CheckForShutdown(1);
Sleep(2000);
}
vfThreadRunning[1] = true;
CheckForShutdown(1);
//
// The IP selection process is designed to limit vulnerability to address flooding.
// Any class C (a.b.c.?) has an equal chance of being chosen, then an IP is
// chosen within the class C. An attacker may be able to allocate many IPs, but
// they would normally be concentrated in blocks of class C's. They can hog the
// attention within their class C, but not the whole IP address space overall.
// A lone node in a class C will get as much attention as someone holding all 255
// IPs in another class C.
//
// Every other try is with IRC addresses only
fIRCOnly = !fIRCOnly;
if (mapIRCAddresses.empty())
fIRCOnly = false;
else if (nTry++ < 30 && vNodes.size() < nMaxConnections/2)
fIRCOnly = true;
// Make a list of unique class C's
unsigned char pchIPCMask[4] = { 0xff, 0xff, 0xff, 0x00 };
unsigned int nIPCMask = *(unsigned int*)pchIPCMask;
vector<unsigned int> vIPC;
CRITICAL_BLOCK(cs_mapIRCAddresses)
CRITICAL_BLOCK(cs_mapAddresses)
{
vIPC.reserve(mapAddresses.size());
unsigned int nPrev = 0;
foreach(const PAIRTYPE(vector<unsigned char>, CAddress)& item, mapAddresses)
{
const CAddress& addr = item.second;
if (!addr.IsIPv4())
continue;
if (fIRCOnly && !mapIRCAddresses.count(item.first))
continue;
// Taking advantage of mapAddresses being in sorted order,
// with IPs of the same class C grouped together.
unsigned int ipC = addr.ip & nIPCMask;
if (ipC != nPrev)
vIPC.push_back(nPrev = ipC);
}
}
if (vIPC.empty())
continue;
// Choose a random class C
unsigned int ipC = vIPC[GetRand(vIPC.size())];
// Organize all addresses in the class C by IP
map<unsigned int, vector<CAddress> > mapIP;
CRITICAL_BLOCK(cs_mapIRCAddresses)
CRITICAL_BLOCK(cs_mapAddresses)
{
int64 nDelay = ((30 * 60) << vNodes.size());
if (!fIRCOnly)
{
nDelay *= 2;
if (vNodes.size() >= 3)
nDelay *= 4;
if (!mapIRCAddresses.empty())
nDelay *= 100;
}
for (map<vector<unsigned char>, CAddress>::iterator mi = mapAddresses.lower_bound(CAddress(ipC, 0).GetKey());
mi != mapAddresses.upper_bound(CAddress(ipC | ~nIPCMask, 0xffff).GetKey());
++mi)
{
const CAddress& addr = (*mi).second;
if (fIRCOnly && !mapIRCAddresses.count((*mi).first))
continue;
int64 nRandomizer = (addr.nLastFailed * addr.ip * 7777U) % 20000;
if (GetTime() - addr.nLastFailed > nDelay * nRandomizer / 10000)
mapIP[addr.ip].push_back(addr);
}
}
if (mapIP.empty())
continue;
// Choose a random IP in the class C
map<unsigned int, vector<CAddress> >::iterator mi = mapIP.begin();
advance(mi, GetRand(mapIP.size()));
// Once we've chosen an IP, we'll try every given port before moving on
foreach(const CAddress& addrConnect, (*mi).second)
{
//
// Initiate outbound network connection
//
CheckForShutdown(1);
if (addrConnect.ip == addrLocalHost.ip || !addrConnect.IsIPv4() || FindNode(addrConnect.ip))
continue;
vfThreadRunning[1] = false;
CNode* pnode = ConnectNode(addrConnect);
vfThreadRunning[1] = true;
CheckForShutdown(1);
if (!pnode)
continue;
pnode->fNetworkNode = true;
if (addrLocalHost.IsRoutable())
{
// Advertise our address
vector<CAddress> vAddrToSend;
vAddrToSend.push_back(addrLocalHost);
pnode->PushMessage("addr", vAddrToSend);
}
// Get as many addresses as we can
pnode->PushMessage("getaddr");
////// should the one on the receiving end do this too?
// Subscribe our local subscription list
const unsigned int nHops = 0;
for (unsigned int nChannel = 0; nChannel < pnodeLocalHost->vfSubscribe.size(); nChannel++)
if (pnodeLocalHost->vfSubscribe[nChannel])
pnode->PushMessage("subscribe", nChannel, nHops);
break;
}
}
}
void ThreadMessageHandler(void* parg)
{
IMPLEMENT_RANDOMIZE_STACK(ThreadMessageHandler(parg));
loop
{
vfThreadRunning[2] = true;
CheckForShutdown(2);
try
{
ThreadMessageHandler2(parg);
}
CATCH_PRINT_EXCEPTION("ThreadMessageHandler()")
vfThreadRunning[2] = false;
Sleep(5000);
}
}
void ThreadMessageHandler2(void* parg)
{
printf("ThreadMessageHandler started\n");
SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_BELOW_NORMAL);
loop
{
// Poll the connected nodes for messages
vector<CNode*> vNodesCopy;
CRITICAL_BLOCK(cs_vNodes)
vNodesCopy = vNodes;
foreach(CNode* pnode, vNodesCopy)
{
pnode->AddRef();
// Receive messages
TRY_CRITICAL_BLOCK(pnode->cs_vRecv)
ProcessMessages(pnode);
// Send messages
TRY_CRITICAL_BLOCK(pnode->cs_vSend)
SendMessages(pnode);
pnode->Release();
}
// Wait and allow messages to bunch up
vfThreadRunning[2] = false;
Sleep(100);
vfThreadRunning[2] = true;
CheckForShutdown(2);
}
}
//// todo: start one thread per processor, use getenv("NUMBER_OF_PROCESSORS")
void ThreadBitcoinMiner(void* parg)
{
vfThreadRunning[3] = true;
CheckForShutdown(3);
try
{
bool fRet = BitcoinMiner();
printf("BitcoinMiner returned %s\n\n\n", fRet ? "true" : "false");
}
CATCH_PRINT_EXCEPTION("BitcoinMiner()")
vfThreadRunning[3] = false;
}
bool StartNode(string& strError)
{
strError = "";
// Sockets startup
WSADATA wsadata;
int ret = WSAStartup(MAKEWORD(2,2), &wsadata);
if (ret != NO_ERROR)
{
strError = strprintf("Error: TCP/IP socket library failed to start (WSAStartup returned error %d)", ret);
printf("%s\n", strError.c_str());
return false;
}
// Get local host ip
char pszHostName[255];
if (gethostname(pszHostName, 255) == SOCKET_ERROR)
{
strError = strprintf("Error: Unable to get IP address of this computer (gethostname returned error %d)", WSAGetLastError());
printf("%s\n", strError.c_str());
return false;
}
struct hostent* phostent = gethostbyname(pszHostName);
if (!phostent)
{
strError = strprintf("Error: Unable to get IP address of this computer (gethostbyname returned error %d)", WSAGetLastError());
printf("%s\n", strError.c_str());
return false;
}
addrLocalHost = CAddress(*(long*)(phostent->h_addr_list[0]),
DEFAULT_PORT,
nLocalServices);
printf("addrLocalHost = %s\n", addrLocalHost.ToString().c_str());
// Create socket for listening for incoming connections
SOCKET hListenSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (hListenSocket == INVALID_SOCKET)
{
strError = strprintf("Error: Couldn't open socket for incoming connections (socket returned error %d)", WSAGetLastError());
printf("%s\n", strError.c_str());
return false;
}
// Set to nonblocking, incoming connections will also inherit this
u_long nOne = 1;
if (ioctlsocket(hListenSocket, FIONBIO, &nOne) == SOCKET_ERROR)
{
strError = strprintf("Error: Couldn't set properties on socket for incoming connections (ioctlsocket returned error %d)", WSAGetLastError());
printf("%s\n", strError.c_str());
return false;
}
// The sockaddr_in structure specifies the address family,
// IP address, and port for the socket that is being bound
int nRetryLimit = 15;
struct sockaddr_in sockaddr = addrLocalHost.GetSockAddr();
if (bind(hListenSocket, (struct sockaddr*)&sockaddr, sizeof(sockaddr)) == SOCKET_ERROR)
{
int nErr = WSAGetLastError();
if (nErr == WSAEADDRINUSE)
strError = strprintf("Error: Unable to bind to port %s on this computer. The program is probably already running.", addrLocalHost.ToString().c_str());
else
strError = strprintf("Error: Unable to bind to port %s on this computer (bind returned error %d)", addrLocalHost.ToString().c_str(), nErr);
printf("%s\n", strError.c_str());
return false;
}
printf("bound to addrLocalHost = %s\n\n", addrLocalHost.ToString().c_str());
// Listen for incoming connections
if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR)
{
strError = strprintf("Error: Listening for incoming connections failed (listen returned error %d)", WSAGetLastError());
printf("%s\n", strError.c_str());
return false;
}
// Get our external IP address for incoming connections
if (addrIncoming.ip)
addrLocalHost.ip = addrIncoming.ip;
if (GetMyExternalIP(addrLocalHost.ip))
{
addrIncoming = addrLocalHost;
CWalletDB().WriteSetting("addrIncoming", addrIncoming);
}
// Get addresses from IRC and advertise ours
if (_beginthread(ThreadIRCSeed, 0, NULL) == -1)
printf("Error: _beginthread(ThreadIRCSeed) failed\n");
//
// Start threads
//
if (_beginthread(ThreadSocketHandler, 0, new SOCKET(hListenSocket)) == -1)
{
strError = "Error: _beginthread(ThreadSocketHandler) failed";
printf("%s\n", strError.c_str());
return false;
}
if (_beginthread(ThreadOpenConnections, 0, NULL) == -1)
{
strError = "Error: _beginthread(ThreadOpenConnections) failed";
printf("%s\n", strError.c_str());
return false;
}
if (_beginthread(ThreadMessageHandler, 0, NULL) == -1)
{
strError = "Error: _beginthread(ThreadMessageHandler) failed";
printf("%s\n", strError.c_str());
return false;
}
return true;
}
bool StopNode()
{
printf("StopNode()\n");
fShutdown = true;
nTransactionsUpdated++;
int64 nStart = GetTime();
while (vfThreadRunning[0] || vfThreadRunning[2] || vfThreadRunning[3])
{
if (GetTime() - nStart > 15)
break;
Sleep(20);
}
if (vfThreadRunning[0]) printf("ThreadSocketHandler still running\n");
if (vfThreadRunning[1]) printf("ThreadOpenConnections still running\n");
if (vfThreadRunning[2]) printf("ThreadMessageHandler still running\n");
if (vfThreadRunning[3]) printf("ThreadBitcoinMiner still running\n");
while (vfThreadRunning[2])
Sleep(20);
Sleep(50);
// Sockets shutdown
WSACleanup();
return true;
}
void CheckForShutdown(int n)
{
if (fShutdown)
{
if (n != -1)
vfThreadRunning[n] = false;
if (n == 0)
foreach(CNode* pnode, vNodes)
closesocket(pnode->hSocket);
_endthread();
}
}