twisterp2pbittorrentblockchainnetworkipv6microbloggingdecentralizedsocial-networkdhttwister-coretwisterarmyp2p-networktwister-servertwister-ipv6
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
590 lines
17 KiB
590 lines
17 KiB
// Copyright (c) 2009-2010 Satoshi Nakamoto |
|
// Copyright (c) 2009-2012 The Bitcoin developers |
|
// Distributed under the MIT/X11 software license, see the accompanying |
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php. |
|
#ifndef BITCOIN_BIGNUM_H |
|
#define BITCOIN_BIGNUM_H |
|
|
|
#include <stdexcept> |
|
#include <vector> |
|
#include <openssl/bn.h> |
|
|
|
#include "util.h" // for uint64 |
|
|
|
/** Errors thrown by the bignum class */ |
|
class bignum_error : public std::runtime_error |
|
{ |
|
public: |
|
explicit bignum_error(const std::string& str) : std::runtime_error(str) {} |
|
}; |
|
|
|
|
|
/** RAII encapsulated BN_CTX (OpenSSL bignum context) */ |
|
class CAutoBN_CTX |
|
{ |
|
protected: |
|
BN_CTX* pctx; |
|
BN_CTX* operator=(BN_CTX* pnew) { return pctx = pnew; } |
|
|
|
public: |
|
CAutoBN_CTX() |
|
{ |
|
pctx = BN_CTX_new(); |
|
if (pctx == NULL) |
|
throw bignum_error("CAutoBN_CTX : BN_CTX_new() returned NULL"); |
|
} |
|
|
|
~CAutoBN_CTX() |
|
{ |
|
if (pctx != NULL) |
|
BN_CTX_free(pctx); |
|
} |
|
|
|
operator BN_CTX*() { return pctx; } |
|
BN_CTX& operator*() { return *pctx; } |
|
BN_CTX** operator&() { return &pctx; } |
|
bool operator!() { return (pctx == NULL); } |
|
}; |
|
|
|
|
|
/** C++ wrapper for BIGNUM (OpenSSL bignum) */ |
|
class CBigNum : public BIGNUM |
|
{ |
|
public: |
|
CBigNum() |
|
{ |
|
BN_init(this); |
|
} |
|
|
|
CBigNum(const CBigNum& b) |
|
{ |
|
BN_init(this); |
|
if (!BN_copy(this, &b)) |
|
{ |
|
BN_clear_free(this); |
|
throw bignum_error("CBigNum::CBigNum(const CBigNum&) : BN_copy failed"); |
|
} |
|
} |
|
|
|
CBigNum& operator=(const CBigNum& b) |
|
{ |
|
if (!BN_copy(this, &b)) |
|
throw bignum_error("CBigNum::operator= : BN_copy failed"); |
|
return (*this); |
|
} |
|
|
|
~CBigNum() |
|
{ |
|
BN_clear_free(this); |
|
} |
|
|
|
//CBigNum(char n) is not portable. Use 'signed char' or 'unsigned char'. |
|
CBigNum(signed char n) { BN_init(this); if (n >= 0) setulong(n); else setint64(n); } |
|
CBigNum(short n) { BN_init(this); if (n >= 0) setulong(n); else setint64(n); } |
|
CBigNum(int n) { BN_init(this); if (n >= 0) setulong(n); else setint64(n); } |
|
CBigNum(long n) { BN_init(this); if (n >= 0) setulong(n); else setint64(n); } |
|
CBigNum(int64 n) { BN_init(this); setint64(n); } |
|
CBigNum(unsigned char n) { BN_init(this); setulong(n); } |
|
CBigNum(unsigned short n) { BN_init(this); setulong(n); } |
|
CBigNum(unsigned int n) { BN_init(this); setulong(n); } |
|
CBigNum(unsigned long n) { BN_init(this); setulong(n); } |
|
CBigNum(uint64 n) { BN_init(this); setuint64(n); } |
|
explicit CBigNum(uint256 n) { BN_init(this); setuint256(n); } |
|
|
|
explicit CBigNum(const std::vector<unsigned char>& vch) |
|
{ |
|
BN_init(this); |
|
setvch(vch); |
|
} |
|
|
|
void setulong(unsigned long n) |
|
{ |
|
if (!BN_set_word(this, n)) |
|
throw bignum_error("CBigNum conversion from unsigned long : BN_set_word failed"); |
|
} |
|
|
|
unsigned long getulong() const |
|
{ |
|
return BN_get_word(this); |
|
} |
|
|
|
unsigned int getuint() const |
|
{ |
|
return BN_get_word(this); |
|
} |
|
|
|
int getint() const |
|
{ |
|
unsigned long n = BN_get_word(this); |
|
if (!BN_is_negative(this)) |
|
return (n > (unsigned long)std::numeric_limits<int>::max() ? std::numeric_limits<int>::max() : n); |
|
else |
|
return (n > (unsigned long)std::numeric_limits<int>::max() ? std::numeric_limits<int>::min() : -(int)n); |
|
} |
|
|
|
void setint64(int64 sn) |
|
{ |
|
unsigned char pch[sizeof(sn) + 6]; |
|
unsigned char* p = pch + 4; |
|
bool fNegative; |
|
uint64 n; |
|
|
|
if (sn < (int64)0) |
|
{ |
|
// Since the minimum signed integer cannot be represented as positive so long as its type is signed, |
|
// and it's not well-defined what happens if you make it unsigned before negating it, |
|
// we instead increment the negative integer by 1, convert it, then increment the (now positive) unsigned integer by 1 to compensate |
|
n = -(sn + 1); |
|
++n; |
|
fNegative = true; |
|
} else { |
|
n = sn; |
|
fNegative = false; |
|
} |
|
|
|
bool fLeadingZeroes = true; |
|
for (int i = 0; i < 8; i++) |
|
{ |
|
unsigned char c = (n >> 56) & 0xff; |
|
n <<= 8; |
|
if (fLeadingZeroes) |
|
{ |
|
if (c == 0) |
|
continue; |
|
if (c & 0x80) |
|
*p++ = (fNegative ? 0x80 : 0); |
|
else if (fNegative) |
|
c |= 0x80; |
|
fLeadingZeroes = false; |
|
} |
|
*p++ = c; |
|
} |
|
unsigned int nSize = p - (pch + 4); |
|
pch[0] = (nSize >> 24) & 0xff; |
|
pch[1] = (nSize >> 16) & 0xff; |
|
pch[2] = (nSize >> 8) & 0xff; |
|
pch[3] = (nSize) & 0xff; |
|
BN_mpi2bn(pch, p - pch, this); |
|
} |
|
|
|
void setuint64(uint64 n) |
|
{ |
|
unsigned char pch[sizeof(n) + 6]; |
|
unsigned char* p = pch + 4; |
|
bool fLeadingZeroes = true; |
|
for (int i = 0; i < 8; i++) |
|
{ |
|
unsigned char c = (n >> 56) & 0xff; |
|
n <<= 8; |
|
if (fLeadingZeroes) |
|
{ |
|
if (c == 0) |
|
continue; |
|
if (c & 0x80) |
|
*p++ = 0; |
|
fLeadingZeroes = false; |
|
} |
|
*p++ = c; |
|
} |
|
unsigned int nSize = p - (pch + 4); |
|
pch[0] = (nSize >> 24) & 0xff; |
|
pch[1] = (nSize >> 16) & 0xff; |
|
pch[2] = (nSize >> 8) & 0xff; |
|
pch[3] = (nSize) & 0xff; |
|
BN_mpi2bn(pch, p - pch, this); |
|
} |
|
|
|
void setuint256(uint256 n) |
|
{ |
|
unsigned char pch[sizeof(n) + 6]; |
|
unsigned char* p = pch + 4; |
|
bool fLeadingZeroes = true; |
|
unsigned char* pbegin = (unsigned char*)&n; |
|
unsigned char* psrc = pbegin + sizeof(n); |
|
while (psrc != pbegin) |
|
{ |
|
unsigned char c = *(--psrc); |
|
if (fLeadingZeroes) |
|
{ |
|
if (c == 0) |
|
continue; |
|
if (c & 0x80) |
|
*p++ = 0; |
|
fLeadingZeroes = false; |
|
} |
|
*p++ = c; |
|
} |
|
unsigned int nSize = p - (pch + 4); |
|
pch[0] = (nSize >> 24) & 0xff; |
|
pch[1] = (nSize >> 16) & 0xff; |
|
pch[2] = (nSize >> 8) & 0xff; |
|
pch[3] = (nSize >> 0) & 0xff; |
|
BN_mpi2bn(pch, p - pch, this); |
|
} |
|
|
|
uint256 getuint256() const |
|
{ |
|
unsigned int nSize = BN_bn2mpi(this, NULL); |
|
if (nSize < 4) |
|
return 0; |
|
std::vector<unsigned char> vch(nSize); |
|
BN_bn2mpi(this, &vch[0]); |
|
if (vch.size() > 4) |
|
vch[4] &= 0x7f; |
|
uint256 n = 0; |
|
for (unsigned int i = 0, j = vch.size()-1; i < sizeof(n) && j >= 4; i++, j--) |
|
((unsigned char*)&n)[i] = vch[j]; |
|
return n; |
|
} |
|
|
|
void setvch(const std::vector<unsigned char>& vch) |
|
{ |
|
std::vector<unsigned char> vch2(vch.size() + 4); |
|
unsigned int nSize = vch.size(); |
|
// BIGNUM's byte stream format expects 4 bytes of |
|
// big endian size data info at the front |
|
vch2[0] = (nSize >> 24) & 0xff; |
|
vch2[1] = (nSize >> 16) & 0xff; |
|
vch2[2] = (nSize >> 8) & 0xff; |
|
vch2[3] = (nSize >> 0) & 0xff; |
|
// swap data to big endian |
|
reverse_copy(vch.begin(), vch.end(), vch2.begin() + 4); |
|
BN_mpi2bn(&vch2[0], vch2.size(), this); |
|
} |
|
|
|
std::vector<unsigned char> getvch() const |
|
{ |
|
unsigned int nSize = BN_bn2mpi(this, NULL); |
|
if (nSize <= 4) |
|
return std::vector<unsigned char>(); |
|
std::vector<unsigned char> vch(nSize); |
|
BN_bn2mpi(this, &vch[0]); |
|
vch.erase(vch.begin(), vch.begin() + 4); |
|
reverse(vch.begin(), vch.end()); |
|
return vch; |
|
} |
|
|
|
// The "compact" format is a representation of a whole |
|
// number N using an unsigned 32bit number similar to a |
|
// floating point format. |
|
// The most significant 8 bits are the unsigned exponent of base 256. |
|
// This exponent can be thought of as "number of bytes of N". |
|
// The lower 23 bits are the mantissa. |
|
// Bit number 24 (0x800000) represents the sign of N. |
|
// N = (-1^sign) * mantissa * 256^(exponent-3) |
|
// |
|
// Satoshi's original implementation used BN_bn2mpi() and BN_mpi2bn(). |
|
// MPI uses the most significant bit of the first byte as sign. |
|
// Thus 0x1234560000 is compact (0x05123456) |
|
// and 0xc0de000000 is compact (0x0600c0de) |
|
// (0x05c0de00) would be -0x40de000000 |
|
// |
|
// Bitcoin only uses this "compact" format for encoding difficulty |
|
// targets, which are unsigned 256bit quantities. Thus, all the |
|
// complexities of the sign bit and using base 256 are probably an |
|
// implementation accident. |
|
// |
|
// This implementation directly uses shifts instead of going |
|
// through an intermediate MPI representation. |
|
CBigNum& SetCompact(unsigned int nCompact) |
|
{ |
|
unsigned int nSize = nCompact >> 24; |
|
bool fNegative =(nCompact & 0x00800000) != 0; |
|
unsigned int nWord = nCompact & 0x007fffff; |
|
if (nSize <= 3) |
|
{ |
|
nWord >>= 8*(3-nSize); |
|
BN_set_word(this, nWord); |
|
} |
|
else |
|
{ |
|
BN_set_word(this, nWord); |
|
BN_lshift(this, this, 8*(nSize-3)); |
|
} |
|
BN_set_negative(this, fNegative); |
|
return *this; |
|
} |
|
|
|
unsigned int GetCompact() const |
|
{ |
|
unsigned int nSize = BN_num_bytes(this); |
|
unsigned int nCompact = 0; |
|
if (nSize <= 3) |
|
nCompact = BN_get_word(this) << 8*(3-nSize); |
|
else |
|
{ |
|
CBigNum bn; |
|
BN_rshift(&bn, this, 8*(nSize-3)); |
|
nCompact = BN_get_word(&bn); |
|
} |
|
// The 0x00800000 bit denotes the sign. |
|
// Thus, if it is already set, divide the mantissa by 256 and increase the exponent. |
|
if (nCompact & 0x00800000) |
|
{ |
|
nCompact >>= 8; |
|
nSize++; |
|
} |
|
nCompact |= nSize << 24; |
|
nCompact |= (BN_is_negative(this) ? 0x00800000 : 0); |
|
return nCompact; |
|
} |
|
|
|
void SetHex(const std::string& str) |
|
{ |
|
// skip 0x |
|
const char* psz = str.c_str(); |
|
while (isspace(*psz)) |
|
psz++; |
|
bool fNegative = false; |
|
if (*psz == '-') |
|
{ |
|
fNegative = true; |
|
psz++; |
|
} |
|
if (psz[0] == '0' && tolower(psz[1]) == 'x') |
|
psz += 2; |
|
while (isspace(*psz)) |
|
psz++; |
|
|
|
// hex string to bignum |
|
static const signed char phexdigit[256] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,1,2,3,4,5,6,7,8,9,0,0,0,0,0,0, 0,0xa,0xb,0xc,0xd,0xe,0xf,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0xa,0xb,0xc,0xd,0xe,0xf,0,0,0,0,0,0,0,0,0 }; |
|
*this = 0; |
|
while (isxdigit(*psz)) |
|
{ |
|
*this <<= 4; |
|
int n = phexdigit[(unsigned char)*psz++]; |
|
*this += n; |
|
} |
|
if (fNegative) |
|
*this = 0 - *this; |
|
} |
|
|
|
std::string ToString(int nBase=10) const |
|
{ |
|
CAutoBN_CTX pctx; |
|
CBigNum bnBase = nBase; |
|
CBigNum bn0 = 0; |
|
std::string str; |
|
CBigNum bn = *this; |
|
BN_set_negative(&bn, false); |
|
CBigNum dv; |
|
CBigNum rem; |
|
if (BN_cmp(&bn, &bn0) == 0) |
|
return "0"; |
|
while (BN_cmp(&bn, &bn0) > 0) |
|
{ |
|
if (!BN_div(&dv, &rem, &bn, &bnBase, pctx)) |
|
throw bignum_error("CBigNum::ToString() : BN_div failed"); |
|
bn = dv; |
|
unsigned int c = rem.getulong(); |
|
str += "0123456789abcdef"[c]; |
|
} |
|
if (BN_is_negative(this)) |
|
str += "-"; |
|
reverse(str.begin(), str.end()); |
|
return str; |
|
} |
|
|
|
std::string GetHex() const |
|
{ |
|
return ToString(16); |
|
} |
|
|
|
unsigned int GetSerializeSize(int nType=0, int nVersion=PROTOCOL_VERSION) const |
|
{ |
|
return ::GetSerializeSize(getvch(), nType, nVersion); |
|
} |
|
|
|
template<typename Stream> |
|
void Serialize(Stream& s, int nType=0, int nVersion=PROTOCOL_VERSION) const |
|
{ |
|
::Serialize(s, getvch(), nType, nVersion); |
|
} |
|
|
|
template<typename Stream> |
|
void Unserialize(Stream& s, int nType=0, int nVersion=PROTOCOL_VERSION) |
|
{ |
|
std::vector<unsigned char> vch; |
|
::Unserialize(s, vch, nType, nVersion); |
|
setvch(vch); |
|
} |
|
|
|
|
|
bool operator!() const |
|
{ |
|
return BN_is_zero(this); |
|
} |
|
|
|
CBigNum& operator+=(const CBigNum& b) |
|
{ |
|
if (!BN_add(this, this, &b)) |
|
throw bignum_error("CBigNum::operator+= : BN_add failed"); |
|
return *this; |
|
} |
|
|
|
CBigNum& operator-=(const CBigNum& b) |
|
{ |
|
*this = *this - b; |
|
return *this; |
|
} |
|
|
|
CBigNum& operator*=(const CBigNum& b) |
|
{ |
|
CAutoBN_CTX pctx; |
|
if (!BN_mul(this, this, &b, pctx)) |
|
throw bignum_error("CBigNum::operator*= : BN_mul failed"); |
|
return *this; |
|
} |
|
|
|
CBigNum& operator/=(const CBigNum& b) |
|
{ |
|
*this = *this / b; |
|
return *this; |
|
} |
|
|
|
CBigNum& operator%=(const CBigNum& b) |
|
{ |
|
*this = *this % b; |
|
return *this; |
|
} |
|
|
|
CBigNum& operator<<=(unsigned int shift) |
|
{ |
|
if (!BN_lshift(this, this, shift)) |
|
throw bignum_error("CBigNum:operator<<= : BN_lshift failed"); |
|
return *this; |
|
} |
|
|
|
CBigNum& operator>>=(unsigned int shift) |
|
{ |
|
// Note: BN_rshift segfaults on 64-bit if 2^shift is greater than the number |
|
// if built on ubuntu 9.04 or 9.10, probably depends on version of OpenSSL |
|
CBigNum a = 1; |
|
a <<= shift; |
|
if (BN_cmp(&a, this) > 0) |
|
{ |
|
*this = 0; |
|
return *this; |
|
} |
|
|
|
if (!BN_rshift(this, this, shift)) |
|
throw bignum_error("CBigNum:operator>>= : BN_rshift failed"); |
|
return *this; |
|
} |
|
|
|
|
|
CBigNum& operator++() |
|
{ |
|
// prefix operator |
|
if (!BN_add(this, this, BN_value_one())) |
|
throw bignum_error("CBigNum::operator++ : BN_add failed"); |
|
return *this; |
|
} |
|
|
|
const CBigNum operator++(int) |
|
{ |
|
// postfix operator |
|
const CBigNum ret = *this; |
|
++(*this); |
|
return ret; |
|
} |
|
|
|
CBigNum& operator--() |
|
{ |
|
// prefix operator |
|
CBigNum r; |
|
if (!BN_sub(&r, this, BN_value_one())) |
|
throw bignum_error("CBigNum::operator-- : BN_sub failed"); |
|
*this = r; |
|
return *this; |
|
} |
|
|
|
const CBigNum operator--(int) |
|
{ |
|
// postfix operator |
|
const CBigNum ret = *this; |
|
--(*this); |
|
return ret; |
|
} |
|
|
|
|
|
friend inline const CBigNum operator-(const CBigNum& a, const CBigNum& b); |
|
friend inline const CBigNum operator/(const CBigNum& a, const CBigNum& b); |
|
friend inline const CBigNum operator%(const CBigNum& a, const CBigNum& b); |
|
}; |
|
|
|
|
|
|
|
inline const CBigNum operator+(const CBigNum& a, const CBigNum& b) |
|
{ |
|
CBigNum r; |
|
if (!BN_add(&r, &a, &b)) |
|
throw bignum_error("CBigNum::operator+ : BN_add failed"); |
|
return r; |
|
} |
|
|
|
inline const CBigNum operator-(const CBigNum& a, const CBigNum& b) |
|
{ |
|
CBigNum r; |
|
if (!BN_sub(&r, &a, &b)) |
|
throw bignum_error("CBigNum::operator- : BN_sub failed"); |
|
return r; |
|
} |
|
|
|
inline const CBigNum operator-(const CBigNum& a) |
|
{ |
|
CBigNum r(a); |
|
BN_set_negative(&r, !BN_is_negative(&r)); |
|
return r; |
|
} |
|
|
|
inline const CBigNum operator*(const CBigNum& a, const CBigNum& b) |
|
{ |
|
CAutoBN_CTX pctx; |
|
CBigNum r; |
|
if (!BN_mul(&r, &a, &b, pctx)) |
|
throw bignum_error("CBigNum::operator* : BN_mul failed"); |
|
return r; |
|
} |
|
|
|
inline const CBigNum operator/(const CBigNum& a, const CBigNum& b) |
|
{ |
|
CAutoBN_CTX pctx; |
|
CBigNum r; |
|
if (!BN_div(&r, NULL, &a, &b, pctx)) |
|
throw bignum_error("CBigNum::operator/ : BN_div failed"); |
|
return r; |
|
} |
|
|
|
inline const CBigNum operator%(const CBigNum& a, const CBigNum& b) |
|
{ |
|
CAutoBN_CTX pctx; |
|
CBigNum r; |
|
if (!BN_mod(&r, &a, &b, pctx)) |
|
throw bignum_error("CBigNum::operator% : BN_div failed"); |
|
return r; |
|
} |
|
|
|
inline const CBigNum operator<<(const CBigNum& a, unsigned int shift) |
|
{ |
|
CBigNum r; |
|
if (!BN_lshift(&r, &a, shift)) |
|
throw bignum_error("CBigNum:operator<< : BN_lshift failed"); |
|
return r; |
|
} |
|
|
|
inline const CBigNum operator>>(const CBigNum& a, unsigned int shift) |
|
{ |
|
CBigNum r = a; |
|
r >>= shift; |
|
return r; |
|
} |
|
|
|
inline bool operator==(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) == 0); } |
|
inline bool operator!=(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) != 0); } |
|
inline bool operator<=(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) <= 0); } |
|
inline bool operator>=(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) >= 0); } |
|
inline bool operator<(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) < 0); } |
|
inline bool operator>(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) > 0); } |
|
|
|
#endif
|
|
|