twisterp2pblockchainnetworkbittorrentipv6microbloggingsocial-networkdhtdecentralizedtwister-coretwisterarmyp2p-networktwister-servertwister-ipv6
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
160 lines
5.6 KiB
160 lines
5.6 KiB
// Copyright (c) 2012 The Bitcoin developers |
|
// Distributed under the MIT/X11 software license, see the accompanying |
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php. |
|
#include <math.h> |
|
#include <stdlib.h> |
|
|
|
#include "bloom.h" |
|
#include "core.h" |
|
#include "script.h" |
|
|
|
#define LN2SQUARED 0.4804530139182014246671025263266649717305529515945455 |
|
#define LN2 0.6931471805599453094172321214581765680755001343602552 |
|
|
|
using namespace std; |
|
|
|
static const unsigned char bit_mask[8] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80}; |
|
|
|
CBloomFilter::CBloomFilter(unsigned int nElements, double nFPRate, unsigned int nTweakIn, unsigned char nFlagsIn) : |
|
// The ideal size for a bloom filter with a given number of elements and false positive rate is: |
|
// - nElements * log(fp rate) / ln(2)^2 |
|
// We ignore filter parameters which will create a bloom filter larger than the protocol limits |
|
vData(min((unsigned int)(-1 / LN2SQUARED * nElements * log(nFPRate)), MAX_BLOOM_FILTER_SIZE * 8) / 8), |
|
// The ideal number of hash functions is filter size * ln(2) / number of elements |
|
// Again, we ignore filter parameters which will create a bloom filter with more hash functions than the protocol limits |
|
// See http://en.wikipedia.org/wiki/Bloom_filter for an explanation of these formulas |
|
nHashFuncs(min((unsigned int)(vData.size() * 8 / nElements * LN2), MAX_HASH_FUNCS)), |
|
nTweak(nTweakIn), |
|
nFlags(nFlagsIn) |
|
{ |
|
} |
|
|
|
inline unsigned int CBloomFilter::Hash(unsigned int nHashNum, const std::vector<unsigned char>& vDataToHash) const |
|
{ |
|
// 0xFBA4C795 chosen as it guarantees a reasonable bit difference between nHashNum values. |
|
return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash) % (vData.size() * 8); |
|
} |
|
|
|
void CBloomFilter::insert(const vector<unsigned char>& vKey) |
|
{ |
|
if (vData.size() == 1 && vData[0] == 0xff) |
|
return; |
|
for (unsigned int i = 0; i < nHashFuncs; i++) |
|
{ |
|
unsigned int nIndex = Hash(i, vKey); |
|
// Sets bit nIndex of vData |
|
vData[nIndex >> 3] |= bit_mask[7 & nIndex]; |
|
} |
|
} |
|
|
|
void CBloomFilter::insert(const COutPoint& outpoint) |
|
{ |
|
CDataStream stream(SER_NETWORK, PROTOCOL_VERSION); |
|
stream << outpoint; |
|
vector<unsigned char> data(stream.begin(), stream.end()); |
|
insert(data); |
|
} |
|
|
|
void CBloomFilter::insert(const uint256& hash) |
|
{ |
|
vector<unsigned char> data(hash.begin(), hash.end()); |
|
insert(data); |
|
} |
|
|
|
bool CBloomFilter::contains(const vector<unsigned char>& vKey) const |
|
{ |
|
if (vData.size() == 1 && vData[0] == 0xff) |
|
return true; |
|
for (unsigned int i = 0; i < nHashFuncs; i++) |
|
{ |
|
unsigned int nIndex = Hash(i, vKey); |
|
// Checks bit nIndex of vData |
|
if (!(vData[nIndex >> 3] & bit_mask[7 & nIndex])) |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
bool CBloomFilter::contains(const COutPoint& outpoint) const |
|
{ |
|
CDataStream stream(SER_NETWORK, PROTOCOL_VERSION); |
|
stream << outpoint; |
|
vector<unsigned char> data(stream.begin(), stream.end()); |
|
return contains(data); |
|
} |
|
|
|
bool CBloomFilter::contains(const uint256& hash) const |
|
{ |
|
vector<unsigned char> data(hash.begin(), hash.end()); |
|
return contains(data); |
|
} |
|
|
|
bool CBloomFilter::IsWithinSizeConstraints() const |
|
{ |
|
return vData.size() <= MAX_BLOOM_FILTER_SIZE && nHashFuncs <= MAX_HASH_FUNCS; |
|
} |
|
|
|
bool CBloomFilter::IsRelevantAndUpdate(const CTransaction& tx, const uint256& hash) |
|
{ |
|
bool fFound = false; |
|
// Match if the filter contains the hash of tx |
|
// for finding tx when they appear in a block |
|
if (contains(hash)) |
|
fFound = true; |
|
/* |
|
for (unsigned int i = 0; i < tx.vout.size(); i++) |
|
{ |
|
const CTxOut& txout = tx.vout[i]; |
|
// Match if the filter contains any arbitrary script data element in any scriptPubKey in tx |
|
// If this matches, also add the specific output that was matched. |
|
// This means clients don't have to update the filter themselves when a new relevant tx |
|
// is discovered in order to find spending transactions, which avoids round-tripping and race conditions. |
|
CScript::const_iterator pc = txout.scriptPubKey.begin(); |
|
vector<unsigned char> data; |
|
while (pc < txout.scriptPubKey.end()) |
|
{ |
|
opcodetype opcode; |
|
if (!txout.scriptPubKey.GetOp(pc, opcode, data)) |
|
break; |
|
if (data.size() != 0 && contains(data)) |
|
{ |
|
fFound = true; |
|
if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_ALL) |
|
insert(COutPoint(hash, i)); |
|
else if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_P2PUBKEY_ONLY) |
|
{ |
|
txnouttype type; |
|
vector<vector<unsigned char> > vSolutions; |
|
if (Solver(txout.scriptPubKey, type, vSolutions) && |
|
(type == TX_PUBKEY || type == TX_MULTISIG)) |
|
insert(COutPoint(hash, i)); |
|
} |
|
break; |
|
} |
|
} |
|
} |
|
*/ |
|
if (fFound) |
|
return true; |
|
/* |
|
BOOST_FOREACH(const CTxIn& txin, tx.vin) |
|
{ |
|
// Match if the filter contains an outpoint tx spends |
|
if (contains(txin.prevout)) |
|
return true; |
|
|
|
// Match if the filter contains any arbitrary script data element in any scriptSig in tx |
|
CScript::const_iterator pc = txin.scriptSig.begin(); |
|
vector<unsigned char> data; |
|
while (pc < txin.scriptSig.end()) |
|
{ |
|
opcodetype opcode; |
|
if (!txin.scriptSig.GetOp(pc, opcode, data)) |
|
break; |
|
if (data.size() != 0 && contains(data)) |
|
return true; |
|
} |
|
} |
|
*/ |
|
return false; |
|
}
|
|
|