twisterp2pnetworkbittorrentblockchainipv6microbloggingdecentralizedsocial-networkdhttwister-ipv6twister-coretwisterarmyp2p-networktwister-server
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2504 lines
73 KiB
2504 lines
73 KiB
/* |
|
|
|
Copyright (c) 2007-2012, Arvid Norberg |
|
All rights reserved. |
|
|
|
Redistribution and use in source and binary forms, with or without |
|
modification, are permitted provided that the following conditions |
|
are met: |
|
|
|
* Redistributions of source code must retain the above copyright |
|
notice, this list of conditions and the following disclaimer. |
|
* Redistributions in binary form must reproduce the above copyright |
|
notice, this list of conditions and the following disclaimer in |
|
the documentation and/or other materials provided with the distribution. |
|
* Neither the name of the author nor the names of its |
|
contributors may be used to endorse or promote products derived |
|
from this software without specific prior written permission. |
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
POSSIBILITY OF SUCH DAMAGE. |
|
|
|
*/ |
|
|
|
/* |
|
Disk queue elevator patch by Morten Husveit |
|
*/ |
|
|
|
#include "libtorrent/storage.hpp" |
|
#include "libtorrent/disk_io_thread.hpp" |
|
#include "libtorrent/disk_buffer_holder.hpp" |
|
#include "libtorrent/alloca.hpp" |
|
#include "libtorrent/invariant_check.hpp" |
|
#include "libtorrent/error_code.hpp" |
|
#include "libtorrent/error.hpp" |
|
#include "libtorrent/file_pool.hpp" |
|
#include <boost/scoped_array.hpp> |
|
#include <boost/bind.hpp> |
|
|
|
#include "libtorrent/time.hpp" |
|
|
|
#include "../../src/twister.h" |
|
|
|
#if TORRENT_USE_MLOCK && !defined TORRENT_WINDOWS |
|
#include <sys/mman.h> |
|
#endif |
|
|
|
#ifdef TORRENT_BSD |
|
#include <sys/sysctl.h> |
|
#endif |
|
|
|
#if TORRENT_USE_RLIMIT |
|
#include <sys/resource.h> |
|
#endif |
|
|
|
#ifdef TORRENT_LINUX |
|
#include <linux/unistd.h> |
|
#endif |
|
|
|
namespace libtorrent |
|
{ |
|
bool should_cancel_on_abort(disk_io_job const& j); |
|
bool is_read_operation(disk_io_job const& j); |
|
bool operation_has_buffer(disk_io_job const& j); |
|
|
|
// ------- disk_io_thread ------ |
|
|
|
disk_io_thread::disk_io_thread(io_service& ios |
|
, boost::function<void()> const& queue_callback |
|
, file_pool& fp |
|
, int block_size) |
|
: disk_buffer_pool(block_size) |
|
, m_abort(false) |
|
, m_waiting_to_shutdown(false) |
|
, m_queue_buffer_size(0) |
|
, m_last_file_check(time_now_hires()) |
|
, m_last_stats_flip(time_now()) |
|
, m_physical_ram(0) |
|
, m_exceeded_write_queue(false) |
|
, m_ios(ios) |
|
, m_queue_callback(queue_callback) |
|
, m_work(io_service::work(m_ios)) |
|
, m_file_pool(fp) |
|
, m_disk_io_thread(boost::bind(&disk_io_thread::thread_fun, this)) |
|
{ |
|
// don't do anything in here. Essentially all members |
|
// of this object are owned by the newly created thread. |
|
// initialize stuff in thread_fun(). |
|
} |
|
|
|
disk_io_thread::~disk_io_thread() |
|
{ |
|
TORRENT_ASSERT(m_abort == true); |
|
} |
|
|
|
void disk_io_thread::abort() |
|
{ |
|
mutex::scoped_lock l(m_queue_mutex); |
|
disk_io_job j; |
|
m_waiting_to_shutdown = true; |
|
j.action = disk_io_job::abort_thread; |
|
j.start_time = time_now_hires(); |
|
m_jobs.insert(m_jobs.begin(), j); |
|
m_signal.signal(l); |
|
} |
|
|
|
void disk_io_thread::join() |
|
{ |
|
m_disk_io_thread.join(); |
|
mutex::scoped_lock l(m_queue_mutex); |
|
TORRENT_ASSERT(m_abort == true); |
|
m_jobs.clear(); |
|
} |
|
|
|
bool disk_io_thread::can_write() const |
|
{ |
|
mutex::scoped_lock l(m_queue_mutex); |
|
return !m_exceeded_write_queue; |
|
} |
|
|
|
void disk_io_thread::flip_stats(ptime now) |
|
{ |
|
// calling mean() will actually reset the accumulators |
|
m_cache_stats.average_queue_time = m_queue_time.mean(); |
|
m_cache_stats.average_read_time = m_read_time.mean(); |
|
m_cache_stats.average_write_time = m_write_time.mean(); |
|
m_cache_stats.average_hash_time = m_hash_time.mean(); |
|
m_cache_stats.average_job_time = m_job_time.mean(); |
|
m_cache_stats.average_sort_time = m_sort_time.mean(); |
|
|
|
m_last_stats_flip = now; |
|
} |
|
|
|
void disk_io_thread::get_cache_info(sha1_hash const& ih, std::vector<cached_piece_info>& ret) const |
|
{ |
|
mutex::scoped_lock l(m_piece_mutex); |
|
ret.clear(); |
|
ret.reserve(m_pieces.size()); |
|
for (cache_t::const_iterator i = m_pieces.begin() |
|
, end(m_pieces.end()); i != end; ++i) |
|
{ |
|
torrent_info const& ti = *i->storage->info(); |
|
if (ti.info_hash() != ih) continue; |
|
cached_piece_info info; |
|
info.next_to_hash = i->next_block_to_hash; |
|
info.piece = i->piece; |
|
info.last_use = i->expire; |
|
info.kind = cached_piece_info::write_cache; |
|
int blocks_in_piece = (ti.piece_size(i->piece) + (m_block_size) - 1) / m_block_size; |
|
info.blocks.resize(blocks_in_piece); |
|
for (int b = 0; b < blocks_in_piece; ++b) |
|
if (i->blocks[b].buf) info.blocks[b] = true; |
|
ret.push_back(info); |
|
} |
|
for (cache_t::const_iterator i = m_read_pieces.begin() |
|
, end(m_read_pieces.end()); i != end; ++i) |
|
{ |
|
torrent_info const& ti = *i->storage->info(); |
|
if (ti.info_hash() != ih) continue; |
|
cached_piece_info info; |
|
info.next_to_hash = i->next_block_to_hash; |
|
info.piece = i->piece; |
|
info.last_use = i->expire; |
|
info.kind = cached_piece_info::read_cache; |
|
int blocks_in_piece = (ti.piece_size(i->piece) + (m_block_size) - 1) / m_block_size; |
|
info.blocks.resize(blocks_in_piece); |
|
for (int b = 0; b < blocks_in_piece; ++b) |
|
if (i->blocks[b].buf) info.blocks[b] = true; |
|
ret.push_back(info); |
|
} |
|
} |
|
|
|
cache_status disk_io_thread::status() const |
|
{ |
|
mutex::scoped_lock l(m_piece_mutex); |
|
m_cache_stats.total_used_buffers = in_use(); |
|
m_cache_stats.queued_bytes = m_queue_buffer_size; |
|
|
|
cache_status ret = m_cache_stats; |
|
|
|
ret.job_queue_length = m_jobs.size() + m_sorted_read_jobs.size(); |
|
ret.read_queue_size = m_sorted_read_jobs.size(); |
|
|
|
return ret; |
|
} |
|
|
|
// aborts read operations |
|
void disk_io_thread::stop(boost::intrusive_ptr<piece_manager> s) |
|
{ |
|
mutex::scoped_lock l(m_queue_mutex); |
|
// read jobs are aborted, write and move jobs are syncronized |
|
for (std::deque<disk_io_job>::iterator i = m_jobs.begin(); |
|
i != m_jobs.end();) |
|
{ |
|
if (i->storage != s) |
|
{ |
|
++i; |
|
continue; |
|
} |
|
if (should_cancel_on_abort(*i)) |
|
{ |
|
if (i->action == disk_io_job::write) |
|
{ |
|
TORRENT_ASSERT(m_queue_buffer_size >= i->buffer_size); |
|
m_queue_buffer_size -= i->buffer_size; |
|
} |
|
post_callback(*i, -3); |
|
i = m_jobs.erase(i); |
|
continue; |
|
} |
|
++i; |
|
} |
|
disk_io_job j; |
|
j.action = disk_io_job::abort_torrent; |
|
j.storage = s; |
|
add_job(j, l); |
|
} |
|
|
|
struct update_last_use |
|
{ |
|
update_last_use(int exp): expire(exp) {} |
|
void operator()(disk_io_thread::cached_piece_entry& p) |
|
{ |
|
TORRENT_ASSERT(p.storage); |
|
p.expire = time_now() + seconds(expire); |
|
} |
|
int expire; |
|
}; |
|
|
|
disk_io_thread::cache_piece_index_t::iterator disk_io_thread::find_cached_piece( |
|
disk_io_thread::cache_t& cache |
|
, disk_io_job const& j, mutex::scoped_lock& l) |
|
{ |
|
cache_piece_index_t& idx = cache.get<0>(); |
|
cache_piece_index_t::iterator i |
|
= idx.find(std::pair<void*, int>(j.storage.get(), j.piece)); |
|
TORRENT_ASSERT(i == idx.end() || (i->storage == j.storage && i->piece == j.piece)); |
|
return i; |
|
} |
|
|
|
void disk_io_thread::flush_expired_pieces() |
|
{ |
|
ptime now = time_now(); |
|
|
|
mutex::scoped_lock l(m_piece_mutex); |
|
|
|
INVARIANT_CHECK; |
|
// flush write cache |
|
cache_lru_index_t& widx = m_pieces.get<1>(); |
|
cache_lru_index_t::iterator i = widx.begin(); |
|
time_duration cut_off = seconds(m_settings.cache_expiry); |
|
while (i != widx.end() && now - i->expire > cut_off) |
|
{ |
|
TORRENT_ASSERT(i->storage); |
|
flush_range(const_cast<cached_piece_entry&>(*i), 0, INT_MAX, l); |
|
TORRENT_ASSERT(i->num_blocks == 0); |
|
|
|
// we want to keep the piece in here to have an accurate |
|
// number for next_block_to_hash, if we're in avoid_readback mode |
|
|
|
bool erase = m_settings.disk_cache_algorithm != session_settings::avoid_readback; |
|
if (!erase) |
|
{ |
|
// however, if we've already hashed the whole piece, in-order |
|
// there's no need to keep it around |
|
int piece_size = i->storage->info()->piece_size(i->piece); |
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; |
|
erase = i->next_block_to_hash == blocks_in_piece; |
|
} |
|
|
|
if (erase) widx.erase(i++); |
|
else ++i; |
|
} |
|
|
|
if (m_settings.explicit_read_cache) return; |
|
|
|
// flush read cache |
|
std::vector<char*> bufs; |
|
cache_lru_index_t& ridx = m_read_pieces.get<1>(); |
|
i = ridx.begin(); |
|
while (i != ridx.end() && now - i->expire > cut_off) |
|
{ |
|
drain_piece_bufs(const_cast<cached_piece_entry&>(*i), bufs, l); |
|
ridx.erase(i++); |
|
} |
|
if (!bufs.empty()) free_multiple_buffers(&bufs[0], bufs.size()); |
|
} |
|
|
|
int disk_io_thread::drain_piece_bufs(cached_piece_entry& p, std::vector<char*>& buf |
|
, mutex::scoped_lock& l) |
|
{ |
|
int piece_size = p.storage->info()->piece_size(p.piece); |
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; |
|
int ret = 0; |
|
|
|
for (int i = 0; i < blocks_in_piece; ++i) |
|
{ |
|
if (p.blocks[i].buf == 0) continue; |
|
buf.push_back(p.blocks[i].buf); |
|
++ret; |
|
p.blocks[i].buf = 0; |
|
--p.num_blocks; |
|
--m_cache_stats.cache_size; |
|
--m_cache_stats.read_cache_size; |
|
} |
|
return ret; |
|
} |
|
|
|
// returns the number of blocks that were freed |
|
int disk_io_thread::free_piece(cached_piece_entry& p, mutex::scoped_lock& l) |
|
{ |
|
int piece_size = p.storage->info()->piece_size(p.piece); |
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; |
|
int ret = 0; |
|
|
|
// build a vector of all the buffers we need to free |
|
// and free them all in one go |
|
std::vector<char*> buffers; |
|
for (int i = 0; i < blocks_in_piece; ++i) |
|
{ |
|
if (p.blocks[i].buf == 0) continue; |
|
buffers.push_back(p.blocks[i].buf); |
|
++ret; |
|
p.blocks[i].buf = 0; |
|
--p.num_blocks; |
|
--m_cache_stats.cache_size; |
|
--m_cache_stats.read_cache_size; |
|
} |
|
if (!buffers.empty()) free_multiple_buffers(&buffers[0], buffers.size()); |
|
return ret; |
|
} |
|
|
|
// returns the number of blocks that were freed |
|
int disk_io_thread::clear_oldest_read_piece( |
|
int num_blocks, ignore_t ignore, mutex::scoped_lock& l) |
|
{ |
|
INVARIANT_CHECK; |
|
|
|
cache_lru_index_t& idx = m_read_pieces.get<1>(); |
|
if (idx.empty()) return 0; |
|
|
|
cache_lru_index_t::iterator i = idx.begin(); |
|
if (i->piece == ignore.piece && i->storage == ignore.storage) |
|
{ |
|
++i; |
|
if (i == idx.end()) return 0; |
|
} |
|
|
|
// don't replace an entry that hasn't expired yet |
|
if (time_now() < i->expire) return 0; |
|
int blocks = 0; |
|
|
|
// build a vector of all the buffers we need to free |
|
// and free them all in one go |
|
std::vector<char*> buffers; |
|
if (num_blocks >= i->num_blocks) |
|
{ |
|
blocks = drain_piece_bufs(const_cast<cached_piece_entry&>(*i), buffers, l); |
|
} |
|
else |
|
{ |
|
// delete blocks from the start and from the end |
|
// until num_blocks have been freed |
|
int end = (i->storage->info()->piece_size(i->piece) + m_block_size - 1) / m_block_size - 1; |
|
int start = 0; |
|
|
|
while (num_blocks) |
|
{ |
|
// if we have a volatile read cache, only clear |
|
// from the end, since we're already clearing |
|
// from the start as blocks are read |
|
if (!m_settings.volatile_read_cache) |
|
{ |
|
while (i->blocks[start].buf == 0 && start <= end) ++start; |
|
if (start > end) break; |
|
buffers.push_back(i->blocks[start].buf); |
|
i->blocks[start].buf = 0; |
|
++blocks; |
|
--const_cast<cached_piece_entry&>(*i).num_blocks; |
|
--m_cache_stats.cache_size; |
|
--m_cache_stats.read_cache_size; |
|
--num_blocks; |
|
if (!num_blocks) break; |
|
} |
|
|
|
while (i->blocks[end].buf == 0 && start <= end) --end; |
|
if (start > end) break; |
|
buffers.push_back(i->blocks[end].buf); |
|
i->blocks[end].buf = 0; |
|
++blocks; |
|
--const_cast<cached_piece_entry&>(*i).num_blocks; |
|
--m_cache_stats.cache_size; |
|
--m_cache_stats.read_cache_size; |
|
--num_blocks; |
|
} |
|
} |
|
if (i->num_blocks == 0) idx.erase(i); |
|
|
|
if (!buffers.empty()) free_multiple_buffers(&buffers[0], buffers.size()); |
|
return blocks; |
|
} |
|
|
|
int contiguous_blocks(disk_io_thread::cached_piece_entry const& b) |
|
{ |
|
int ret = 0; |
|
int current = 0; |
|
int blocks_in_piece = (b.storage->info()->piece_size(b.piece) + 16 * 1024 - 1) / (16 * 1024); |
|
for (int i = 0; i < blocks_in_piece; ++i) |
|
{ |
|
if (b.blocks[i].buf) ++current; |
|
else |
|
{ |
|
if (current > ret) ret = current; |
|
current = 0; |
|
} |
|
} |
|
if (current > ret) ret = current; |
|
return ret; |
|
} |
|
|
|
int disk_io_thread::flush_contiguous_blocks(cached_piece_entry& p |
|
, mutex::scoped_lock& l, int lower_limit, bool avoid_readback) |
|
{ |
|
// first find the largest range of contiguous blocks |
|
int len = 0; |
|
int current = 0; |
|
int pos = 0; |
|
int start = 0; |
|
int blocks_in_piece = (p.storage->info()->piece_size(p.piece) |
|
+ m_block_size - 1) / m_block_size; |
|
|
|
if (avoid_readback) |
|
{ |
|
start = p.next_block_to_hash; |
|
for (int i = p.next_block_to_hash; i < blocks_in_piece; ++i) |
|
{ |
|
if (p.blocks[i].buf) ++current; |
|
else break; |
|
} |
|
} |
|
else |
|
{ |
|
for (int i = 0; i < blocks_in_piece; ++i) |
|
{ |
|
if (p.blocks[i].buf) ++current; |
|
else |
|
{ |
|
if (current > len) |
|
{ |
|
len = current; |
|
pos = start; |
|
} |
|
current = 0; |
|
start = i + 1; |
|
} |
|
} |
|
} |
|
if (current > len) |
|
{ |
|
len = current; |
|
pos = start; |
|
} |
|
|
|
if (len < lower_limit || len <= 0) return 0; |
|
len = flush_range(p, pos, pos + len, l); |
|
return len; |
|
} |
|
|
|
bool cmp_contiguous(disk_io_thread::cached_piece_entry const& lhs |
|
, disk_io_thread::cached_piece_entry const& rhs) |
|
{ |
|
return lhs.num_contiguous_blocks < rhs.num_contiguous_blocks; |
|
} |
|
|
|
// flushes 'blocks' blocks from the cache |
|
int disk_io_thread::flush_cache_blocks(mutex::scoped_lock& l |
|
, int blocks, ignore_t ignore, int options) |
|
{ |
|
// first look if there are any read cache entries that can |
|
// be cleared |
|
int ret = 0; |
|
int tmp = 0; |
|
do { |
|
tmp = clear_oldest_read_piece(blocks, ignore, l); |
|
blocks -= tmp; |
|
ret += tmp; |
|
} while (tmp > 0 && blocks > 0); |
|
|
|
if (blocks == 0) return ret; |
|
|
|
if (options & dont_flush_write_blocks) return ret; |
|
|
|
// if we don't have any blocks in the cache, no need to go look for any |
|
if (m_cache_stats.cache_size == 0) return ret; |
|
|
|
if (m_settings.disk_cache_algorithm == session_settings::lru) |
|
{ |
|
cache_lru_index_t& idx = m_pieces.get<1>(); |
|
while (blocks > 0) |
|
{ |
|
cache_lru_index_t::iterator i = idx.begin(); |
|
if (i == idx.end()) return ret; |
|
tmp = flush_range(const_cast<cached_piece_entry&>(*i), 0, INT_MAX, l); |
|
idx.erase(i); |
|
blocks -= tmp; |
|
ret += tmp; |
|
} |
|
} |
|
else if (m_settings.disk_cache_algorithm == session_settings::largest_contiguous) |
|
{ |
|
cache_lru_index_t& idx = m_pieces.get<1>(); |
|
while (blocks > 0) |
|
{ |
|
cache_lru_index_t::iterator i = std::max_element(idx.begin(), idx.end(), &cmp_contiguous); |
|
if (i == idx.end()) return ret; |
|
tmp = flush_contiguous_blocks(const_cast<cached_piece_entry&>(*i), l); |
|
if (i->num_blocks == 0) idx.erase(i); |
|
blocks -= tmp; |
|
ret += tmp; |
|
} |
|
} |
|
else if (m_settings.disk_cache_algorithm == session_settings::avoid_readback) |
|
{ |
|
cache_lru_index_t& idx = m_pieces.get<1>(); |
|
for (cache_lru_index_t::iterator i = idx.begin(); i != idx.end();) |
|
{ |
|
cached_piece_entry& p = const_cast<cached_piece_entry&>(*i); |
|
cache_lru_index_t::iterator piece = i; |
|
++i; |
|
|
|
if (!piece->blocks[p.next_block_to_hash].buf) continue; |
|
int piece_size = p.storage->info()->piece_size(p.piece); |
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; |
|
int start = p.next_block_to_hash; |
|
int end = start + 1; |
|
while (end < blocks_in_piece && p.blocks[end].buf) ++end; |
|
tmp = flush_range(p, start, end, l); |
|
p.num_contiguous_blocks = contiguous_blocks(p); |
|
if (p.num_blocks == 0 && p.next_block_to_hash == blocks_in_piece) |
|
idx.erase(piece); |
|
blocks -= tmp; |
|
ret += tmp; |
|
if (blocks <= 0) break; |
|
} |
|
|
|
// if we still need to flush blocks, flush the largest contiguous blocks |
|
// regardless of if we'll have to read them back later |
|
while (blocks > 0) |
|
{ |
|
cache_lru_index_t::iterator i = std::max_element(idx.begin(), idx.end(), &cmp_contiguous); |
|
if (i == idx.end() || i->num_blocks == 0) return ret; |
|
tmp = flush_contiguous_blocks(const_cast<cached_piece_entry&>(*i), l); |
|
// at this point, we will for sure need a read-back for |
|
// this piece anyway. We might as well save some time looping |
|
// over the disk cache by deleting the entry |
|
if (i->num_blocks == 0) idx.erase(i); |
|
blocks -= tmp; |
|
ret += tmp; |
|
} |
|
} |
|
return ret; |
|
} |
|
|
|
int disk_io_thread::flush_range(cached_piece_entry& p |
|
, int start, int end, mutex::scoped_lock& l) |
|
{ |
|
INVARIANT_CHECK; |
|
|
|
TORRENT_ASSERT(start < end); |
|
|
|
int piece_size = p.storage->info()->piece_size(p.piece); |
|
#ifdef TORRENT_DISK_STATS |
|
m_log << log_time() << " flushing " << piece_size << std::endl; |
|
#endif |
|
TORRENT_ASSERT(piece_size > 0); |
|
|
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; |
|
int buffer_size = 0; |
|
int offset = 0; |
|
|
|
boost::scoped_array<char> buf; |
|
file::iovec_t* iov = 0; |
|
int iov_counter = 0; |
|
if (m_settings.coalesce_writes) buf.reset(new (std::nothrow) char[piece_size]); |
|
else iov = TORRENT_ALLOCA(file::iovec_t, blocks_in_piece); |
|
|
|
end = (std::min)(end, blocks_in_piece); |
|
int num_write_calls = 0; |
|
ptime write_start = time_now_hires(); |
|
for (int i = start; i <= end; ++i) |
|
{ |
|
if (i == end || p.blocks[i].buf == 0) |
|
{ |
|
if (buffer_size == 0) continue; |
|
|
|
TORRENT_ASSERT(buffer_size <= i * m_block_size); |
|
l.unlock(); |
|
if (iov) |
|
{ |
|
int ret = p.storage->write_impl(iov, p.piece, (std::min)( |
|
i * m_block_size, piece_size) - buffer_size, iov_counter); |
|
iov_counter = 0; |
|
if (ret > 0) ++num_write_calls; |
|
} |
|
else |
|
{ |
|
TORRENT_ASSERT(buf); |
|
file::iovec_t b = { buf.get(), buffer_size }; |
|
int ret = p.storage->write_impl(&b, p.piece, (std::min)( |
|
i * m_block_size, piece_size) - buffer_size, 1); |
|
if (ret > 0) ++num_write_calls; |
|
} |
|
l.lock(); |
|
++m_cache_stats.writes; |
|
// std::cerr << " flushing p: " << p.piece << " bytes: " << buffer_size << std::endl; |
|
buffer_size = 0; |
|
offset = 0; |
|
continue; |
|
} |
|
int block_size = (std::min)(piece_size - i * m_block_size, m_block_size); |
|
TORRENT_ASSERT(offset + block_size <= piece_size); |
|
TORRENT_ASSERT(offset + block_size > 0); |
|
if (iov) |
|
{ |
|
TORRENT_ASSERT(!buf); |
|
iov[iov_counter].iov_base = p.blocks[i].buf; |
|
iov[iov_counter].iov_len = block_size; |
|
++iov_counter; |
|
} |
|
else |
|
{ |
|
TORRENT_ASSERT(buf); |
|
TORRENT_ASSERT(iov == 0); |
|
std::memcpy(buf.get() + offset, p.blocks[i].buf, block_size); |
|
offset += m_block_size; |
|
} |
|
buffer_size += block_size; |
|
TORRENT_ASSERT(p.num_blocks > 0); |
|
--p.num_blocks; |
|
++m_cache_stats.blocks_written; |
|
--m_cache_stats.cache_size; |
|
if (i == p.next_block_to_hash) ++p.next_block_to_hash; |
|
} |
|
|
|
ptime done = time_now_hires(); |
|
|
|
int ret = 0; |
|
disk_io_job j; |
|
j.storage = p.storage; |
|
j.action = disk_io_job::write; |
|
j.buffer = 0; |
|
j.piece = p.piece; |
|
test_error(j); |
|
std::vector<char*> buffers; |
|
for (int i = start; i < end; ++i) |
|
{ |
|
if (p.blocks[i].buf == 0) continue; |
|
j.buffer_size = (std::min)(piece_size - i * m_block_size, m_block_size); |
|
int result = j.error ? -1 : j.buffer_size; |
|
j.offset = i * m_block_size; |
|
j.callback = p.blocks[i].callback; |
|
buffers.push_back(p.blocks[i].buf); |
|
post_callback(j, result); |
|
p.blocks[i].callback.clear(); |
|
p.blocks[i].buf = 0; |
|
++ret; |
|
} |
|
if (!buffers.empty()) free_multiple_buffers(&buffers[0], buffers.size()); |
|
|
|
if (num_write_calls > 0) |
|
{ |
|
m_write_time.add_sample(total_microseconds(done - write_start) / num_write_calls); |
|
m_cache_stats.cumulative_write_time += total_milliseconds(done - write_start); |
|
} |
|
if (ret > 0) |
|
p.num_contiguous_blocks = contiguous_blocks(p); |
|
|
|
TORRENT_ASSERT(buffer_size == 0); |
|
// std::cerr << " flushing p: " << p.piece << " cached_blocks: " << m_cache_stats.cache_size << std::endl; |
|
#ifdef TORRENT_DEBUG |
|
for (int i = start; i < end; ++i) |
|
TORRENT_ASSERT(p.blocks[i].buf == 0); |
|
#endif |
|
return ret; |
|
} |
|
|
|
// returns -1 on failure |
|
int disk_io_thread::cache_block(disk_io_job& j |
|
, boost::function<void(int,disk_io_job const&)>& handler |
|
, int cache_expire |
|
, mutex::scoped_lock& l) |
|
{ |
|
INVARIANT_CHECK; |
|
TORRENT_ASSERT(find_cached_piece(m_pieces, j, l) == m_pieces.end()); |
|
TORRENT_ASSERT((j.offset & (m_block_size-1)) == 0); |
|
TORRENT_ASSERT(j.cache_min_time >= 0); |
|
cached_piece_entry p; |
|
|
|
int piece_size = j.storage->info()->piece_size(j.piece); |
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; |
|
// there's no point in caching the piece if |
|
// there's only one block in it |
|
if (blocks_in_piece <= 1) return -1; |
|
|
|
#ifdef TORRENT_DISK_STATS |
|
rename_buffer(j.buffer, "write cache"); |
|
#endif |
|
|
|
p.piece = j.piece; |
|
p.storage = j.storage; |
|
p.expire = time_now() + seconds(j.cache_min_time); |
|
p.num_blocks = 1; |
|
p.num_contiguous_blocks = 1; |
|
p.next_block_to_hash = 0; |
|
p.blocks.reset(new (std::nothrow) cached_block_entry[blocks_in_piece]); |
|
if (!p.blocks) return -1; |
|
int block = j.offset / m_block_size; |
|
// std::cerr << " adding cache entry for p: " << j.piece << " block: " << block << " cached_blocks: " << m_cache_stats.cache_size << std::endl; |
|
p.blocks[block].buf = j.buffer; |
|
p.blocks[block].callback.swap(handler); |
|
++m_cache_stats.cache_size; |
|
cache_lru_index_t& idx = m_pieces.get<1>(); |
|
TORRENT_ASSERT(p.storage); |
|
idx.insert(p); |
|
return 0; |
|
} |
|
|
|
// fills a piece with data from disk, returns the total number of bytes |
|
// read or -1 if there was an error |
|
int disk_io_thread::read_into_piece(cached_piece_entry& p, int start_block |
|
, int options, int num_blocks, mutex::scoped_lock& l) |
|
{ |
|
TORRENT_ASSERT(num_blocks > 0); |
|
int piece_size = p.storage->info()->piece_size(p.piece); |
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; |
|
|
|
int end_block = start_block; |
|
int num_read = 0; |
|
|
|
int iov_counter = 0; |
|
file::iovec_t* iov = TORRENT_ALLOCA(file::iovec_t, (std::min)(blocks_in_piece - start_block, num_blocks)); |
|
|
|
int piece_offset = start_block * m_block_size; |
|
|
|
int ret = 0; |
|
|
|
boost::scoped_array<char> buf; |
|
for (int i = start_block; i < blocks_in_piece |
|
&& ((options & ignore_cache_size) |
|
|| in_use() < m_settings.cache_size); ++i) |
|
{ |
|
int block_size = (std::min)(piece_size - piece_offset, m_block_size); |
|
TORRENT_ASSERT(piece_offset <= piece_size); |
|
|
|
// this is a block that is already allocated |
|
// free it and allocate a new one |
|
if (p.blocks[i].buf) |
|
{ |
|
free_buffer(p.blocks[i].buf); |
|
--p.num_blocks; |
|
--m_cache_stats.cache_size; |
|
--m_cache_stats.read_cache_size; |
|
} |
|
p.blocks[i].buf = allocate_buffer("read cache"); |
|
|
|
// the allocation failed, break |
|
if (p.blocks[i].buf == 0) |
|
{ |
|
free_piece(p, l); |
|
return -1; |
|
} |
|
++p.num_blocks; |
|
++m_cache_stats.cache_size; |
|
++m_cache_stats.read_cache_size; |
|
++end_block; |
|
++num_read; |
|
iov[iov_counter].iov_base = p.blocks[i].buf; |
|
iov[iov_counter].iov_len = block_size; |
|
++iov_counter; |
|
piece_offset += m_block_size; |
|
if (num_read >= num_blocks) break; |
|
} |
|
|
|
if (end_block == start_block) |
|
{ |
|
// something failed. Free all buffers |
|
// we just allocated |
|
free_piece(p, l); |
|
return -2; |
|
} |
|
|
|
TORRENT_ASSERT(iov_counter <= (std::min)(blocks_in_piece - start_block, num_blocks)); |
|
|
|
// the buffer_size is the size of the buffer we need to read |
|
// all these blocks. |
|
const int buffer_size = (std::min)((end_block - start_block) * m_block_size |
|
, piece_size - start_block * m_block_size); |
|
TORRENT_ASSERT(buffer_size > 0); |
|
TORRENT_ASSERT(buffer_size <= piece_size); |
|
TORRENT_ASSERT(buffer_size + start_block * m_block_size <= piece_size); |
|
|
|
if (m_settings.coalesce_reads) |
|
buf.reset(new (std::nothrow) char[buffer_size]); |
|
|
|
if (buf) |
|
{ |
|
l.unlock(); |
|
file::iovec_t b = { buf.get(), buffer_size }; |
|
ret = p.storage->read_impl(&b, p.piece, start_block * m_block_size, 1); |
|
l.lock(); |
|
++m_cache_stats.reads; |
|
if (p.storage->error()) |
|
{ |
|
free_piece(p, l); |
|
return -1; |
|
} |
|
|
|
if (ret < 0) |
|
{ |
|
// this means the file wasn't big enough for this read |
|
p.storage->get_storage_impl()->set_error("" |
|
, errors::file_too_short); |
|
free_piece(p, l); |
|
return -1; |
|
} |
|
p.piece_size = ret; |
|
|
|
int offset = 0; |
|
for (int i = 0; i < iov_counter; ++i) |
|
{ |
|
TORRENT_ASSERT(iov[i].iov_base); |
|
TORRENT_ASSERT(iov[i].iov_len > 0); |
|
TORRENT_ASSERT(int(offset + iov[i].iov_len) <= buffer_size); |
|
std::memcpy(iov[i].iov_base, buf.get() + offset, iov[i].iov_len); |
|
offset += iov[i].iov_len; |
|
} |
|
} |
|
else |
|
{ |
|
l.unlock(); |
|
ret = p.storage->read_impl(iov, p.piece, start_block * m_block_size, iov_counter); |
|
l.lock(); |
|
++m_cache_stats.reads; |
|
if (p.storage->error()) |
|
{ |
|
free_piece(p, l); |
|
return -1; |
|
} |
|
|
|
if (ret < 0) |
|
{ |
|
// this means the file wasn't big enough for this read |
|
p.storage->get_storage_impl()->set_error("" |
|
, errors::file_too_short); |
|
free_piece(p, l); |
|
return -1; |
|
} |
|
p.piece_size = ret; |
|
} |
|
|
|
TORRENT_ASSERT(ret <= buffer_size); |
|
return ret; |
|
} |
|
|
|
// returns -1 on read error, -2 if there isn't any space in the cache |
|
// or the number of bytes read |
|
int disk_io_thread::cache_read_block(disk_io_job const& j, mutex::scoped_lock& l) |
|
{ |
|
INVARIANT_CHECK; |
|
|
|
TORRENT_ASSERT(j.cache_min_time >= 0); |
|
|
|
// this function will create a new cached_piece_entry |
|
// and requires that it doesn't already exist |
|
cache_piece_index_t& idx = m_read_pieces.get<0>(); |
|
TORRENT_ASSERT(find_cached_piece(m_read_pieces, j, l) == idx.end()); |
|
|
|
int piece_size = j.storage->info()->piece_size(j.piece); |
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; |
|
|
|
int start_block = j.offset / m_block_size; |
|
|
|
int blocks_to_read = blocks_in_piece - start_block; |
|
blocks_to_read = (std::min)(blocks_to_read, (std::max)((m_settings.cache_size |
|
+ m_cache_stats.read_cache_size - in_use())/2, 3)); |
|
blocks_to_read = (std::min)(blocks_to_read, m_settings.read_cache_line_size); |
|
if (j.max_cache_line > 0) blocks_to_read = (std::min)(blocks_to_read, j.max_cache_line); |
|
|
|
if (in_use() + blocks_to_read > m_settings.cache_size) |
|
{ |
|
int clear = in_use() + blocks_to_read - m_settings.cache_size; |
|
if (flush_cache_blocks(l, clear, ignore_t(j.piece, j.storage.get()) |
|
, dont_flush_write_blocks) < clear) |
|
return -2; |
|
} |
|
|
|
cached_piece_entry p; |
|
p.piece = j.piece; |
|
p.storage = j.storage; |
|
p.expire = time_now() + seconds(j.cache_min_time); |
|
p.num_blocks = 0; |
|
p.num_contiguous_blocks = 0; |
|
p.next_block_to_hash = 0; |
|
p.blocks.reset(new (std::nothrow) cached_block_entry[blocks_in_piece]); |
|
if (!p.blocks) return -1; |
|
|
|
int ret = read_into_piece(p, start_block, 0, blocks_to_read, l); |
|
|
|
TORRENT_ASSERT(p.storage); |
|
if (ret >= 0) idx.insert(p); |
|
|
|
return ret; |
|
} |
|
|
|
#if defined TORRENT_DEBUG && !defined TORRENT_DISABLE_INVARIANT_CHECKS |
|
void disk_io_thread::check_invariant() const |
|
{ |
|
int cached_write_blocks = 0; |
|
cache_piece_index_t const& idx = m_pieces.get<0>(); |
|
for (cache_piece_index_t::const_iterator i = idx.begin() |
|
, end(idx.end()); i != end; ++i) |
|
{ |
|
cached_piece_entry const& p = *i; |
|
TORRENT_ASSERT(p.blocks); |
|
// TORRENT_ASSERT(p.num_contiguous_blocks == contiguous_blocks(p)); |
|
|
|
TORRENT_ASSERT(p.storage); |
|
int piece_size = p.storage->info()->piece_size(p.piece); |
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; |
|
int blocks = 0; |
|
for (int k = 0; k < blocks_in_piece; ++k) |
|
{ |
|
if (p.blocks[k].buf) |
|
{ |
|
#if !defined TORRENT_DISABLE_POOL_ALLOCATOR && defined TORRENT_EXPENSIVE_INVARIANT_CHECKS |
|
TORRENT_ASSERT(is_disk_buffer(p.blocks[k].buf)); |
|
#endif |
|
++blocks; |
|
} |
|
} |
|
// TORRENT_ASSERT(blocks == p.num_blocks); |
|
cached_write_blocks += blocks; |
|
} |
|
|
|
int cached_read_blocks = 0; |
|
for (cache_t::const_iterator i = m_read_pieces.begin() |
|
, end(m_read_pieces.end()); i != end; ++i) |
|
{ |
|
cached_piece_entry const& p = *i; |
|
TORRENT_ASSERT(p.blocks); |
|
|
|
int piece_size = p.storage->info()->piece_size(p.piece); |
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; |
|
int blocks = 0; |
|
for (int k = 0; k < blocks_in_piece; ++k) |
|
{ |
|
if (p.blocks[k].buf) |
|
{ |
|
#if !defined TORRENT_DISABLE_POOL_ALLOCATOR && defined TORRENT_EXPENSIVE_INVARIANT_CHECKS |
|
TORRENT_ASSERT(is_disk_buffer(p.blocks[k].buf)); |
|
#endif |
|
++blocks; |
|
} |
|
} |
|
// TORRENT_ASSERT(blocks == p.num_blocks); |
|
cached_read_blocks += blocks; |
|
} |
|
|
|
TORRENT_ASSERT(cached_read_blocks == m_cache_stats.read_cache_size); |
|
TORRENT_ASSERT(cached_read_blocks + cached_write_blocks == m_cache_stats.cache_size); |
|
|
|
#ifdef TORRENT_DISK_STATS |
|
int read_allocs = m_categories.find(std::string("read cache"))->second; |
|
int write_allocs = m_categories.find(std::string("write cache"))->second; |
|
TORRENT_ASSERT(cached_read_blocks == read_allocs); |
|
TORRENT_ASSERT(cached_write_blocks == write_allocs); |
|
#endif |
|
|
|
// when writing, there may be a one block difference, right before an old piece |
|
// is flushed |
|
TORRENT_ASSERT(m_cache_stats.cache_size <= m_settings.cache_size + 1); |
|
} |
|
#endif |
|
|
|
// reads the full piece specified by j into the read cache |
|
// returns the iterator to it and whether or not it already |
|
// was in the cache (hit). |
|
int disk_io_thread::cache_piece(disk_io_job const& j, cache_piece_index_t::iterator& p |
|
, bool& hit, int options, mutex::scoped_lock& l) |
|
{ |
|
INVARIANT_CHECK; |
|
|
|
TORRENT_ASSERT(j.cache_min_time >= 0); |
|
|
|
cache_piece_index_t& idx = m_read_pieces.get<0>(); |
|
p = find_cached_piece(m_read_pieces, j, l); |
|
|
|
hit = true; |
|
int ret = 0; |
|
|
|
int piece_size = j.storage->info()->piece_size(j.piece); |
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; |
|
|
|
if (p != m_read_pieces.end() && p->num_blocks != blocks_in_piece) |
|
{ |
|
INVARIANT_CHECK; |
|
// we have the piece in the cache, but not all of the blocks |
|
ret = read_into_piece(const_cast<cached_piece_entry&>(*p), 0 |
|
, options, blocks_in_piece, l); |
|
hit = false; |
|
if (ret < 0) return ret; |
|
idx.modify(p, update_last_use(j.cache_min_time)); |
|
} |
|
else if (p == m_read_pieces.end()) |
|
{ |
|
INVARIANT_CHECK; |
|
// if the piece cannot be found in the cache, |
|
// read the whole piece starting at the block |
|
// we got a request for. |
|
|
|
cached_piece_entry pe; |
|
pe.piece = j.piece; |
|
pe.storage = j.storage; |
|
pe.expire = time_now() + seconds(j.cache_min_time); |
|
pe.num_blocks = 0; |
|
pe.num_contiguous_blocks = 0; |
|
pe.next_block_to_hash = 0; |
|
pe.blocks.reset(new (std::nothrow) cached_block_entry[blocks_in_piece]); |
|
if (!pe.blocks) return -1; |
|
ret = read_into_piece(pe, 0, options, INT_MAX, l); |
|
|
|
hit = false; |
|
if (ret < 0) return ret; |
|
TORRENT_ASSERT(pe.storage); |
|
p = idx.insert(pe).first; |
|
} |
|
else |
|
{ |
|
idx.modify(p, update_last_use(j.cache_min_time)); |
|
} |
|
TORRENT_ASSERT(!m_read_pieces.empty()); |
|
TORRENT_ASSERT(p->piece == j.piece); |
|
TORRENT_ASSERT(p->storage == j.storage); |
|
return ret; |
|
} |
|
|
|
// cache the entire piece and hash it |
|
int disk_io_thread::read_piece_from_cache_and_hash(disk_io_job & j, bool *hash_ok) |
|
{ |
|
TORRENT_ASSERT(j.buffer); |
|
|
|
TORRENT_ASSERT(j.cache_min_time >= 0); |
|
|
|
mutex::scoped_lock l(m_piece_mutex); |
|
|
|
int piece_size = j.storage->info()->piece_size(j.piece); |
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; |
|
|
|
if (in_use() + blocks_in_piece >= m_settings.cache_size) |
|
{ |
|
flush_cache_blocks(l, in_use() - m_settings.cache_size + blocks_in_piece); |
|
} |
|
|
|
cache_piece_index_t::iterator p; |
|
bool hit; |
|
int ret = cache_piece(j, p, hit, ignore_cache_size, l); |
|
if (ret < 0) return ret; |
|
piece_size = p->piece_size; |
|
|
|
if (!m_settings.disable_hash_checks) |
|
{ |
|
std::string errmsg; |
|
*hash_ok = acceptSignedPost((char const*)p->blocks[0].buf, piece_size, |
|
j.storage->info()->name(), j.piece, errmsg, &j.post_flags); |
|
} |
|
|
|
ret = copy_from_piece(const_cast<cached_piece_entry&>(*p), hit, j, l); |
|
TORRENT_ASSERT(ret > 0); |
|
if (ret < 0) return ret; |
|
cache_piece_index_t& idx = m_read_pieces.get<0>(); |
|
if (p->num_blocks == 0) idx.erase(p); |
|
else idx.modify(p, update_last_use(j.cache_min_time)); |
|
|
|
// if read cache is disabled or we exceeded the |
|
// limit, remove this piece from the cache |
|
// also, if the piece wasn't in the cache when |
|
// the function was called, and we're using an |
|
// explicit read cache, remove it again |
|
if (in_use() >= m_settings.cache_size |
|
|| !m_settings.use_read_cache |
|
|| (m_settings.explicit_read_cache && !hit)) |
|
{ |
|
TORRENT_ASSERT(!m_read_pieces.empty()); |
|
TORRENT_ASSERT(p->piece == j.piece); |
|
TORRENT_ASSERT(p->storage == j.storage); |
|
if (p != m_read_pieces.end()) |
|
{ |
|
free_piece(const_cast<cached_piece_entry&>(*p), l); |
|
m_read_pieces.erase(p); |
|
} |
|
} |
|
|
|
ret = j.buffer_size; |
|
++m_cache_stats.blocks_read; |
|
if (hit) ++m_cache_stats.blocks_read_hit; |
|
return ret; |
|
} |
|
|
|
// this doesn't modify the read cache, it only |
|
// checks to see if the given read request can |
|
// be fully satisfied from the given cached piece |
|
// this is similar to copy_from_piece() but it |
|
// doesn't do anything but determining if it's a |
|
// cache hit or not |
|
bool disk_io_thread::is_cache_hit(cached_piece_entry& p |
|
, disk_io_job const& j, mutex::scoped_lock& l) |
|
{ |
|
int block = j.offset / m_block_size; |
|
int block_offset = j.offset & (m_block_size-1); |
|
int size = j.buffer_size; |
|
int min_blocks_to_read = block_offset > 0 && (size > m_block_size - block_offset) ? 2 : 1; |
|
TORRENT_ASSERT(size <= m_block_size); |
|
int start_block = block; |
|
// if we have to read more than one block, and |
|
// the first block is there, make sure we test |
|
// for the second block |
|
if (p.blocks[start_block].buf != 0 && min_blocks_to_read > 1) |
|
++start_block; |
|
|
|
#ifdef TORRENT_DEBUG |
|
int piece_size = j.storage->info()->piece_size(j.piece); |
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; |
|
TORRENT_ASSERT(start_block < blocks_in_piece); |
|
#endif |
|
|
|
return p.blocks[start_block].buf != 0; |
|
} |
|
|
|
int disk_io_thread::copy_from_piece(cached_piece_entry& p, bool& hit |
|
, disk_io_job & j, mutex::scoped_lock& l) |
|
{ |
|
TORRENT_ASSERT(j.buffer); |
|
|
|
// copy from the cache and update the last use timestamp |
|
int block = j.offset / m_block_size; |
|
int block_offset = j.offset & (m_block_size-1); |
|
int buffer_offset = 0; |
|
int size = j.buffer_size; |
|
int min_blocks_to_read = block_offset > 0 && (size > m_block_size - block_offset) ? 2 : 1; |
|
TORRENT_ASSERT(size <= m_block_size); |
|
int start_block = block; |
|
if (p.blocks[start_block].buf != 0 && min_blocks_to_read > 1) |
|
++start_block; |
|
|
|
int piece_size = p.piece_size; |
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; |
|
TORRENT_ASSERT(start_block < blocks_in_piece); |
|
|
|
// if block_offset > 0, we need to read two blocks, and then |
|
// copy parts of both, because it's not aligned to the block |
|
// boundaries |
|
if (p.blocks[start_block].buf == 0) |
|
{ |
|
// if we use an explicit read cache, pretend there's no |
|
// space to force hitting disk without caching anything |
|
if (m_settings.explicit_read_cache) return -2; |
|
|
|
int end_block = start_block; |
|
while (end_block < blocks_in_piece && p.blocks[end_block].buf == 0) ++end_block; |
|
|
|
int blocks_to_read = end_block - block; |
|
blocks_to_read = (std::min)(blocks_to_read, (std::max)((m_settings.cache_size |
|
+ m_cache_stats.read_cache_size - in_use())/2, 3)); |
|
blocks_to_read = (std::min)(blocks_to_read, m_settings.read_cache_line_size); |
|
blocks_to_read = (std::max)(blocks_to_read, min_blocks_to_read); |
|
if (j.max_cache_line > 0) blocks_to_read = (std::min)(blocks_to_read, j.max_cache_line); |
|
|
|
// if we don't have enough space for the new piece, try flushing something else |
|
if (in_use() + blocks_to_read > m_settings.cache_size) |
|
{ |
|
int clear = in_use() + blocks_to_read - m_settings.cache_size; |
|
if (flush_cache_blocks(l, clear, ignore_t(p.piece, p.storage.get()) |
|
, dont_flush_write_blocks) < clear) |
|
return -2; |
|
} |
|
|
|
int ret = read_into_piece(p, block, 0, blocks_to_read, l); |
|
hit = false; |
|
if (ret < 0) return ret; |
|
//[MF] |
|
TORRENT_ASSERT(ret == p.piece_size); |
|
piece_size = ret; |
|
//if (ret < size + block_offset) return -2; |
|
TORRENT_ASSERT(p.blocks[block].buf); |
|
} |
|
|
|
//[MF] |
|
TORRENT_ASSERT(j.buffer_size >= piece_size); |
|
j.buffer_size = piece_size; |
|
size = piece_size; |
|
|
|
// build a vector of all the buffers we need to free |
|
// and free them all in one go |
|
std::vector<char*> buffers; |
|
while (size > 0) |
|
{ |
|
TORRENT_ASSERT(p.blocks[block].buf); |
|
int to_copy = (std::min)(m_block_size |
|
- block_offset, size); |
|
std::memcpy(j.buffer + buffer_offset |
|
, p.blocks[block].buf + block_offset |
|
, to_copy); |
|
size -= to_copy; |
|
block_offset = 0; |
|
buffer_offset += to_copy; |
|
if (m_settings.volatile_read_cache) |
|
{ |
|
// if volatile read cache is set, the assumption is |
|
// that no other peer is likely to request the same |
|
// piece. Therefore, for each request out of the cache |
|
// we clear the block that was requested and any blocks |
|
// the peer skipped |
|
for (int i = block; i >= 0 && p.blocks[i].buf; --i) |
|
{ |
|
buffers.push_back(p.blocks[i].buf); |
|
p.blocks[i].buf = 0; |
|
--p.num_blocks; |
|
--m_cache_stats.cache_size; |
|
--m_cache_stats.read_cache_size; |
|
} |
|
} |
|
++block; |
|
} |
|
if (!buffers.empty()) free_multiple_buffers(&buffers[0], buffers.size()); |
|
return j.buffer_size; |
|
} |
|
|
|
int disk_io_thread::try_read_from_cache(disk_io_job & j, bool& hit, int flags) |
|
{ |
|
TORRENT_ASSERT(j.buffer); |
|
TORRENT_ASSERT(j.cache_min_time >= 0); |
|
|
|
mutex::scoped_lock l(m_piece_mutex); |
|
if (!m_settings.use_read_cache) return -2; |
|
|
|
cache_piece_index_t& idx = m_read_pieces.get<0>(); |
|
cache_piece_index_t::iterator p |
|
= find_cached_piece(m_read_pieces, j, l); |
|
|
|
hit = true; |
|
int ret = 0; |
|
|
|
// if the piece cannot be found in the cache, |
|
// read the whole piece starting at the block |
|
// we got a request for. |
|
if (p == idx.end()) |
|
{ |
|
if (flags & cache_only) return -2; |
|
// if we use an explicit read cache and we |
|
// couldn't find the block in the cache, |
|
// pretend that there's not enough space |
|
// to cache it, to force the read operation |
|
// go go straight to disk |
|
if (m_settings.explicit_read_cache) return -2; |
|
|
|
ret = cache_read_block(j, l); |
|
hit = false; |
|
if (ret < 0) return ret; |
|
//[MF] |
|
j.buffer_size = ret; |
|
|
|
p = find_cached_piece(m_read_pieces, j, l); |
|
TORRENT_ASSERT(!m_read_pieces.empty()); |
|
TORRENT_ASSERT(p->piece == j.piece); |
|
TORRENT_ASSERT(p->storage == j.storage); |
|
} |
|
|
|
TORRENT_ASSERT(p != idx.end()); |
|
|
|
ret = copy_from_piece(const_cast<cached_piece_entry&>(*p), hit, j, l); |
|
if (ret < 0) return ret; |
|
if (p->num_blocks == 0) idx.erase(p); |
|
else idx.modify(p, update_last_use(j.cache_min_time)); |
|
|
|
ret = j.buffer_size; |
|
++m_cache_stats.blocks_read; |
|
if (hit) ++m_cache_stats.blocks_read_hit; |
|
return ret; |
|
} |
|
|
|
size_type disk_io_thread::queue_buffer_size() const |
|
{ |
|
mutex::scoped_lock l(m_queue_mutex); |
|
return m_queue_buffer_size; |
|
} |
|
|
|
typedef std::list<std::pair<disk_io_job, int> > job_queue_t; |
|
void completion_queue_handler(job_queue_t* completed_jobs) |
|
{ |
|
boost::shared_ptr<job_queue_t> holder(completed_jobs); |
|
|
|
for (job_queue_t::iterator i = completed_jobs->begin() |
|
, end(completed_jobs->end()); i != end; ++i) |
|
{ |
|
TORRENT_TRY |
|
{ |
|
i->first.callback(i->second, i->first); |
|
} |
|
TORRENT_CATCH(std::exception& e) |
|
{} |
|
} |
|
} |
|
|
|
int disk_io_thread::add_job(disk_io_job const& j |
|
, mutex::scoped_lock& l |
|
, boost::function<void(int, disk_io_job const&)> const& f) |
|
{ |
|
const_cast<disk_io_job&>(j).start_time = time_now_hires(); |
|
|
|
if (j.action == disk_io_job::write) |
|
{ |
|
m_queue_buffer_size += j.buffer_size; |
|
if (m_queue_buffer_size >= m_settings.max_queued_disk_bytes |
|
&& m_settings.max_queued_disk_bytes > 0) |
|
m_exceeded_write_queue = true; |
|
} |
|
/* |
|
else if (j.action == disk_io_job::read) |
|
{ |
|
// if this is a cache hit, return it right away! |
|
// this is OK because the cache is actually protected by |
|
// the m_piece_mutex |
|
bool hit = false; |
|
if (j.buffer == 0) |
|
{ |
|
// this is OK because the disk_buffer pool has its |
|
// own mutex to protect the pool allocator |
|
const_cast<disk_io_job&>(j).buffer = allocate_buffer("send buffer"); |
|
} |
|
int ret = try_read_from_cache(j, hit, cache_only); |
|
if (hit && ret >= 0) |
|
{ |
|
TORRENT_ASSERT(f); |
|
const_cast<disk_io_job&>(j).callback.swap( |
|
const_cast<boost::function<void(int, disk_io_job const&)>&>(f)); |
|
job_queue_t* q = new job_queue_t; |
|
q->push_back(std::make_pair(j, ret)); |
|
m_ios.post(boost::bind(completion_queue_handler, q)); |
|
return m_queue_buffer_size; |
|
} |
|
free_buffer(j.buffer); |
|
const_cast<disk_io_job&>(j).buffer = 0; |
|
} |
|
*/ |
|
m_jobs.push_back(j); |
|
m_jobs.back().callback.swap(const_cast<boost::function<void(int, disk_io_job const&)>&>(f)); |
|
|
|
m_signal.signal(l); |
|
return m_queue_buffer_size; |
|
} |
|
|
|
int disk_io_thread::add_job(disk_io_job const& j |
|
, boost::function<void(int, disk_io_job const&)> const& f) |
|
{ |
|
TORRENT_ASSERT(!m_abort); |
|
TORRENT_ASSERT(j.storage |
|
|| j.action == disk_io_job::abort_thread |
|
|| j.action == disk_io_job::update_settings); |
|
TORRENT_ASSERT(j.buffer_size <= m_block_size); |
|
mutex::scoped_lock l(m_queue_mutex); |
|
return add_job(j, l, f); |
|
} |
|
|
|
bool disk_io_thread::test_error(disk_io_job& j) |
|
{ |
|
TORRENT_ASSERT(j.storage); |
|
error_code const& ec = j.storage->error(); |
|
if (ec) |
|
{ |
|
j.buffer = 0; |
|
j.str.clear(); |
|
j.error = ec; |
|
j.error_file = j.storage->error_file(); |
|
#ifdef TORRENT_DEBUG |
|
printf("ERROR: '%s' in %s\n", ec.message().c_str(), j.error_file.c_str()); |
|
#endif |
|
j.storage->clear_error(); |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
void disk_io_thread::post_callback(disk_io_job const& j, int ret) |
|
{ |
|
if (!j.callback) return; |
|
m_queued_completions.push_back(std::make_pair(j, ret)); |
|
} |
|
|
|
enum action_flags_t |
|
{ |
|
read_operation = 1 |
|
, buffer_operation = 2 |
|
, cancel_on_abort = 4 |
|
}; |
|
|
|
static const boost::uint8_t action_flags[] = |
|
{ |
|
read_operation + buffer_operation + cancel_on_abort // read |
|
, buffer_operation // write |
|
, 0 // hash |
|
, 0 // move_storage |
|
, 0 // release_files |
|
, 0 // delete_files |
|
, 0 // check_fastresume |
|
, cancel_on_abort // check_files |
|
, 0 // save_resume_data |
|
, 0 // rename_file |
|
, 0 // abort_thread |
|
, 0 // clear_read_cache |
|
, 0 // abort_torrent |
|
, cancel_on_abort // update_settings |
|
, read_operation + cancel_on_abort // read_and_hash |
|
, read_operation + cancel_on_abort // cache_piece |
|
#ifndef TORRENT_NO_DEPRECATE |
|
, 0 // finalize_file |
|
#endif |
|
}; |
|
|
|
bool should_cancel_on_abort(disk_io_job const& j) |
|
{ |
|
TORRENT_ASSERT(j.action >= 0 && j.action < int(sizeof(action_flags))); |
|
return action_flags[j.action] & cancel_on_abort; |
|
} |
|
|
|
bool is_read_operation(disk_io_job const& j) |
|
{ |
|
TORRENT_ASSERT(j.action >= 0 && j.action < int(sizeof(action_flags))); |
|
return action_flags[j.action] & read_operation; |
|
} |
|
|
|
bool operation_has_buffer(disk_io_job const& j) |
|
{ |
|
TORRENT_ASSERT(j.action >= 0 && j.action < int(sizeof(action_flags))); |
|
return action_flags[j.action] & buffer_operation; |
|
} |
|
|
|
void disk_io_thread::thread_fun() |
|
{ |
|
#ifdef TORRENT_DISK_STATS |
|
m_log.open("disk_io_thread.log", std::ios::trunc); |
|
#endif |
|
|
|
// figure out how much physical RAM there is in |
|
// this machine. This is used for automatically |
|
// sizing the disk cache size when it's set to |
|
// automatic. |
|
#ifdef TORRENT_BSD |
|
#ifdef HW_MEMSIZE |
|
int mib[2] = { CTL_HW, HW_MEMSIZE }; |
|
#else |
|
// not entirely sure this sysctl supports 64 |
|
// bit return values, but it's probably better |
|
// than not building |
|
int mib[2] = { CTL_HW, HW_PHYSMEM }; |
|
#endif |
|
size_t len = sizeof(m_physical_ram); |
|
if (sysctl(mib, 2, &m_physical_ram, &len, NULL, 0) != 0) |
|
m_physical_ram = 0; |
|
#elif defined TORRENT_WINDOWS |
|
MEMORYSTATUSEX ms; |
|
ms.dwLength = sizeof(MEMORYSTATUSEX); |
|
if (GlobalMemoryStatusEx(&ms)) |
|
m_physical_ram = ms.ullTotalPhys; |
|
else |
|
m_physical_ram = 0; |
|
#elif defined TORRENT_LINUX |
|
m_physical_ram = sysconf(_SC_PHYS_PAGES); |
|
m_physical_ram *= sysconf(_SC_PAGESIZE); |
|
#elif defined TORRENT_AMIGA |
|
m_physical_ram = AvailMem(MEMF_PUBLIC); |
|
#endif |
|
|
|
#if TORRENT_USE_RLIMIT |
|
if (m_physical_ram > 0) |
|
{ |
|
struct rlimit r; |
|
if (getrlimit(RLIMIT_AS, &r) == 0 && r.rlim_cur != RLIM_INFINITY) |
|
{ |
|
if (m_physical_ram > r.rlim_cur) |
|
m_physical_ram = r.rlim_cur; |
|
} |
|
} |
|
#endif |
|
// 1 = forward in list, -1 = backwards in list |
|
int elevator_direction = 1; |
|
|
|
read_jobs_t::iterator elevator_job_pos = m_sorted_read_jobs.begin(); |
|
size_type last_elevator_pos = 0; |
|
bool need_update_elevator_pos = false; |
|
int immediate_jobs_in_row = 0; |
|
|
|
for (;;) |
|
{ |
|
#ifdef TORRENT_DISK_STATS |
|
m_log << log_time() << " idle" << std::endl; |
|
#endif |
|
|
|
|
|
mutex::scoped_lock jl(m_queue_mutex); |
|
|
|
if (m_queued_completions.size() >= 30 || (m_jobs.empty() && !m_queued_completions.empty())) |
|
{ |
|
job_queue_t* q = new job_queue_t; |
|
q->swap(m_queued_completions); |
|
m_ios.post(boost::bind(completion_queue_handler, q)); |
|
} |
|
|
|
|
|
ptime job_start; |
|
while (m_jobs.empty() && m_sorted_read_jobs.empty() && !m_abort) |
|
{ |
|
// if there hasn't been an event in one second |
|
// see if we should flush the cache |
|
// if (!m_signal.timed_wait(jl, boost::posix_time::seconds(1))) |
|
// flush_expired_pieces(); |
|
m_signal.wait(jl); |
|
m_signal.clear(jl); |
|
|
|
job_start = time_now(); |
|
if (job_start >= m_last_stats_flip + seconds(1)) flip_stats(job_start); |
|
} |
|
|
|
if (m_abort && m_jobs.empty()) |
|
{ |
|
jl.unlock(); |
|
|
|
mutex::scoped_lock l(m_piece_mutex); |
|
// flush all disk caches |
|
cache_piece_index_t& widx = m_pieces.get<0>(); |
|
for (cache_piece_index_t::iterator i = widx.begin() |
|
, end(widx.end()); i != end; ++i) |
|
flush_range(const_cast<cached_piece_entry&>(*i), 0, INT_MAX, l); |
|
|
|
#ifdef TORRENT_DISABLE_POOL_ALLOCATOR |
|
// since we're aborting the thread, we don't actually |
|
// need to free all the blocks individually. We can just |
|
// clear the piece list and the memory will be freed when we |
|
// destruct the m_pool. If we're not using a pool, we actually |
|
// have to free everything individually though |
|
cache_piece_index_t& idx = m_read_pieces.get<0>(); |
|
for (cache_piece_index_t::iterator i = idx.begin() |
|
, end(idx.end()); i != end; ++i) |
|
free_piece(const_cast<cached_piece_entry&>(*i), l); |
|
#endif |
|
|
|
m_pieces.clear(); |
|
m_read_pieces.clear(); |
|
// release the io_service to allow the run() call to return |
|
// we do this once we stop posting new callbacks to it. |
|
m_work.reset(); |
|
return; |
|
} |
|
|
|
disk_io_job j; |
|
|
|
ptime now = time_now_hires(); |
|
ptime operation_start = now; |
|
|
|
// make sure we don't starve out the read queue by just issuing |
|
// write jobs constantly, mix in a read job every now and then |
|
// with a configurable ratio |
|
// this rate must increase to every other jobs if the queued |
|
// up read jobs increases too far. |
|
int read_job_every = m_settings.read_job_every; |
|
|
|
int unchoke_limit = m_settings.unchoke_slots_limit; |
|
if (unchoke_limit < 0) unchoke_limit = 100; |
|
|
|
if (m_sorted_read_jobs.size() > unchoke_limit * 2) |
|
{ |
|
int range = unchoke_limit; |
|
int exceed = m_sorted_read_jobs.size() - range * 2; |
|
read_job_every = (exceed * 1 + (range - exceed) * read_job_every) / 2; |
|
if (read_job_every < 1) read_job_every = 1; |
|
} |
|
|
|
bool pick_read_job = m_jobs.empty() |
|
|| (immediate_jobs_in_row >= read_job_every |
|
&& !m_sorted_read_jobs.empty()); |
|
|
|
if (!pick_read_job) |
|
{ |
|
// we have a job in the job queue. If it's |
|
// a read operation and we are allowed to |
|
// reorder jobs, sort it into the read job |
|
// list and continue, otherwise just pop it |
|
// and use it later |
|
j = m_jobs.front(); |
|
m_jobs.pop_front(); |
|
if (j.action == disk_io_job::write) |
|
{ |
|
TORRENT_ASSERT(m_queue_buffer_size >= j.buffer_size); |
|
m_queue_buffer_size -= j.buffer_size; |
|
|
|
if (m_exceeded_write_queue) |
|
{ |
|
int low_watermark = m_settings.max_queued_disk_bytes_low_watermark == 0 |
|
|| m_settings.max_queued_disk_bytes_low_watermark >= m_settings.max_queued_disk_bytes |
|
? size_type(m_settings.max_queued_disk_bytes) * 7 / 8 |
|
: m_settings.max_queued_disk_bytes_low_watermark; |
|
|
|
if (m_queue_buffer_size < low_watermark |
|
|| m_settings.max_queued_disk_bytes == 0) |
|
{ |
|
m_exceeded_write_queue = false; |
|
// we just dropped below the high watermark of number of bytes |
|
// queued for writing to the disk. Notify the session so that it |
|
// can trigger all the connections waiting for this event |
|
if (m_queue_callback) m_ios.post(m_queue_callback); |
|
} |
|
} |
|
} |
|
|
|
jl.unlock(); |
|
|
|
bool defer = false; |
|
|
|
if (is_read_operation(j)) |
|
{ |
|
defer = true; |
|
|
|
// at this point the operation we're looking |
|
// at is a read operation. If this read operation |
|
// can be fully satisfied by the read cache, handle |
|
// it immediately |
|
if (m_settings.use_read_cache) |
|
{ |
|
#ifdef TORRENT_DISK_STATS |
|
m_log << log_time() << " check_cache_hit" << std::endl; |
|
#endif |
|
// unfortunately we need to lock the cache |
|
// if the cache querying function would be |
|
// made asyncronous, this would not be |
|
// necessary anymore |
|
mutex::scoped_lock l(m_piece_mutex); |
|
cache_piece_index_t::iterator p |
|
= find_cached_piece(m_read_pieces, j, l); |
|
|
|
cache_piece_index_t& idx = m_read_pieces.get<0>(); |
|
// if it's a cache hit, process the job immediately |
|
if (p != idx.end() && is_cache_hit(const_cast<cached_piece_entry&>(*p), j, l)) |
|
defer = false; |
|
} |
|
} |
|
|
|
if (m_settings.use_disk_read_ahead && defer) |
|
{ |
|
j.storage->hint_read_impl(j.piece, j.offset, j.buffer_size); |
|
} |
|
|
|
TORRENT_ASSERT(j.offset >= 0); |
|
if (m_settings.allow_reordered_disk_operations && defer) |
|
{ |
|
#ifdef TORRENT_DISK_STATS |
|
m_log << log_time() << " sorting_job" << std::endl; |
|
#endif |
|
ptime sort_start = time_now_hires(); |
|
|
|
size_type phys_off = j.storage->physical_offset(j.piece, j.offset); |
|
need_update_elevator_pos = need_update_elevator_pos || m_sorted_read_jobs.empty(); |
|
m_sorted_read_jobs.insert(std::pair<size_type, disk_io_job>(phys_off, j)); |
|
|
|
ptime now = time_now_hires(); |
|
m_sort_time.add_sample(total_microseconds(now - sort_start)); |
|
m_job_time.add_sample(total_microseconds(now - operation_start)); |
|
m_cache_stats.cumulative_sort_time += total_milliseconds(now - sort_start); |
|
m_cache_stats.cumulative_job_time += total_milliseconds(now - operation_start); |
|
continue; |
|
} |
|
|
|
++immediate_jobs_in_row; |
|
} |
|
else |
|
{ |
|
// the job queue is empty, pick the next read job |
|
// from the sorted job list. So we don't need the |
|
// job queue lock anymore |
|
jl.unlock(); |
|
|
|
immediate_jobs_in_row = 0; |
|
|
|
TORRENT_ASSERT(!m_sorted_read_jobs.empty()); |
|
|
|
// if m_sorted_read_jobs used to be empty, |
|
// we need to update the elevator position |
|
if (need_update_elevator_pos) |
|
{ |
|
elevator_job_pos = m_sorted_read_jobs.lower_bound(last_elevator_pos); |
|
need_update_elevator_pos = false; |
|
} |
|
|
|
// if we've reached the end, change the elevator direction |
|
if (elevator_job_pos == m_sorted_read_jobs.end()) |
|
{ |
|
elevator_direction = -1; |
|
--elevator_job_pos; |
|
} |
|
TORRENT_ASSERT(!m_sorted_read_jobs.empty()); |
|
|
|
TORRENT_ASSERT(elevator_job_pos != m_sorted_read_jobs.end()); |
|
j = elevator_job_pos->second; |
|
read_jobs_t::iterator to_erase = elevator_job_pos; |
|
|
|
// if we've reached the begining of the sorted list, |
|
// change the elvator direction |
|
if (elevator_job_pos == m_sorted_read_jobs.begin()) |
|
elevator_direction = 1; |
|
|
|
// move the elevator before erasing the job we're processing |
|
// to keep the iterator valid |
|
if (elevator_direction > 0) ++elevator_job_pos; |
|
else --elevator_job_pos; |
|
|
|
TORRENT_ASSERT(to_erase != elevator_job_pos); |
|
last_elevator_pos = to_erase->first; |
|
m_sorted_read_jobs.erase(to_erase); |
|
} |
|
|
|
m_queue_time.add_sample(total_microseconds(now - j.start_time)); |
|
|
|
// if there's a buffer in this job, it will be freed |
|
// when this holder is destructed, unless it has been |
|
// released. |
|
disk_buffer_holder holder(*this |
|
, operation_has_buffer(j) ? j.buffer : 0); |
|
|
|
flush_expired_pieces(); |
|
|
|
int ret = 0; |
|
|
|
TORRENT_ASSERT(j.storage |
|
|| j.action == disk_io_job::abort_thread |
|
|| j.action == disk_io_job::update_settings); |
|
#ifdef TORRENT_DISK_STATS |
|
ptime start = time_now(); |
|
#endif |
|
|
|
if (j.cache_min_time < 0) |
|
j.cache_min_time = j.cache_min_time == 0 ? m_settings.default_cache_min_age |
|
: (std::max)(m_settings.default_cache_min_age, j.cache_min_time); |
|
|
|
TORRENT_TRY |
|
{ |
|
|
|
if (j.storage && j.storage->get_storage_impl()->m_settings == 0) |
|
j.storage->get_storage_impl()->m_settings = &m_settings; |
|
|
|
switch (j.action) |
|
{ |
|
case disk_io_job::update_settings: |
|
{ |
|
#ifdef TORRENT_DISK_STATS |
|
m_log << log_time() << " update_settings " << std::endl; |
|
#endif |
|
TORRENT_ASSERT(j.buffer); |
|
session_settings const* s = ((session_settings*)j.buffer); |
|
TORRENT_ASSERT(s->cache_size >= 0); |
|
TORRENT_ASSERT(s->cache_expiry > 0); |
|
|
|
#if defined TORRENT_WINDOWS |
|
if (m_settings.low_prio_disk != s->low_prio_disk) |
|
{ |
|
m_file_pool.set_low_prio_io(s->low_prio_disk); |
|
// we need to close all files, since the prio |
|
// only takes affect when files are opened |
|
m_file_pool.release(0); |
|
} |
|
#endif |
|
m_settings = session_settings(); |
|
m_settings = *s; |
|
delete s; |
|
|
|
m_file_pool.resize(m_settings.file_pool_size); |
|
#if defined __APPLE__ && defined __MACH__ && MAC_OS_X_VERSION_MIN_REQUIRED >= 1050 |
|
setiopolicy_np(IOPOL_TYPE_DISK, IOPOL_SCOPE_THREAD |
|
, m_settings.low_prio_disk ? IOPOL_THROTTLE : IOPOL_DEFAULT); |
|
#elif defined IOPRIO_WHO_PROCESS |
|
syscall(ioprio_set, IOPRIO_WHO_PROCESS, getpid(), IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE |
|
, m_settings.get_bool(settings_pack::low_prio_disk) ? 7: 0)); |
|
#endif |
|
if (m_settings.cache_size == -1) |
|
{ |
|
// the cache size is set to automatic. Make it |
|
// depend on the amount of physical RAM |
|
// if we don't know how much RAM we have, just set the |
|
// cache size to 16 MiB (1024 blocks) |
|
if (m_physical_ram == 0) |
|
m_settings.cache_size = 1024; |
|
else |
|
m_settings.cache_size = m_physical_ram / 8 / m_block_size; |
|
} |
|
break; |
|
} |
|
case disk_io_job::abort_torrent: |
|
{ |
|
#ifdef TORRENT_DISK_STATS |
|
m_log << log_time() << " abort_torrent " << std::endl; |
|
#endif |
|
mutex::scoped_lock jl(m_queue_mutex); |
|
for (std::deque<disk_io_job>::iterator i = m_jobs.begin(); |
|
i != m_jobs.end();) |
|
{ |
|
if (i->storage != j.storage) |
|
{ |
|
++i; |
|
continue; |
|
} |
|
if (should_cancel_on_abort(*i)) |
|
{ |
|
if (i->action == disk_io_job::write) |
|
{ |
|
TORRENT_ASSERT(m_queue_buffer_size >= i->buffer_size); |
|
m_queue_buffer_size -= i->buffer_size; |
|
} |
|
post_callback(*i, -3); |
|
i = m_jobs.erase(i); |
|
continue; |
|
} |
|
++i; |
|
} |
|
// now clear all the read jobs |
|
for (read_jobs_t::iterator i = m_sorted_read_jobs.begin(); |
|
i != m_sorted_read_jobs.end();) |
|
{ |
|
if (i->second.storage != j.storage) |
|
{ |
|
++i; |
|
continue; |
|
} |
|
post_callback(i->second, -3); |
|
if (elevator_job_pos == i) ++elevator_job_pos; |
|
m_sorted_read_jobs.erase(i++); |
|
} |
|
jl.unlock(); |
|
|
|
mutex::scoped_lock l(m_piece_mutex); |
|
|
|
// build a vector of all the buffers we need to free |
|
// and free them all in one go |
|
std::vector<char*> buffers; |
|
for (cache_t::iterator i = m_read_pieces.begin(); |
|
i != m_read_pieces.end();) |
|
{ |
|
if (i->storage == j.storage) |
|
{ |
|
drain_piece_bufs(const_cast<cached_piece_entry&>(*i), buffers, l); |
|
i = m_read_pieces.erase(i); |
|
} |
|
else |
|
{ |
|
++i; |
|
} |
|
} |
|
l.unlock(); |
|
if (!buffers.empty()) free_multiple_buffers(&buffers[0], buffers.size()); |
|
release_memory(); |
|
break; |
|
} |
|
case disk_io_job::abort_thread: |
|
{ |
|
#ifdef TORRENT_DISK_STATS |
|
m_log << log_time() << " abort_thread " << std::endl; |
|
#endif |
|
// clear all read jobs |
|
mutex::scoped_lock jl(m_queue_mutex); |
|
|
|
for (std::deque<disk_io_job>::iterator i = m_jobs.begin(); |
|
i != m_jobs.end();) |
|
{ |
|
if (should_cancel_on_abort(*i)) |
|
{ |
|
if (i->action == disk_io_job::write) |
|
{ |
|
TORRENT_ASSERT(m_queue_buffer_size >= i->buffer_size); |
|
m_queue_buffer_size -= i->buffer_size; |
|
} |
|
post_callback(*i, -3); |
|
i = m_jobs.erase(i); |
|
continue; |
|
} |
|
++i; |
|
} |
|
jl.unlock(); |
|
|
|
for (read_jobs_t::iterator i = m_sorted_read_jobs.begin(); |
|
i != m_sorted_read_jobs.end();) |
|
{ |
|
if (i->second.storage != j.storage) |
|
{ |
|
++i; |
|
continue; |
|
} |
|
post_callback(i->second, -3); |
|
if (elevator_job_pos == i) ++elevator_job_pos; |
|
m_sorted_read_jobs.erase(i++); |
|
} |
|
|
|
m_abort = true; |
|
break; |
|
} |
|
case disk_io_job::read_and_hash: |
|
{ |
|
#ifdef TORRENT_DISK_STATS |
|
m_log << log_time() << " read_and_hash " << j.buffer_size << std::endl; |
|
#endif |
|
INVARIANT_CHECK; |
|
TORRENT_ASSERT(j.buffer == 0); |
|
j.buffer = allocate_buffer("send buffer"); |
|
TORRENT_ASSERT(j.buffer_size <= m_block_size); |
|
if (j.buffer == 0) |
|
{ |
|
ret = -1; |
|
#if BOOST_VERSION == 103500 |
|
j.error = error_code(boost::system::posix_error::not_enough_memory |
|
, get_posix_category()); |
|
#elif BOOST_VERSION > 103500 |
|
j.error = error_code(boost::system::errc::not_enough_memory |
|
, get_posix_category()); |
|
#else |
|
j.error = error::no_memory; |
|
#endif |
|
j.str.clear(); |
|
break; |
|
} |
|
|
|
disk_buffer_holder read_holder(*this, j.buffer); |
|
|
|
// read the entire piece and verify the piece hash |
|
// since we need to check the hash, this function |
|
// will ignore the cache size limit (at least for |
|
// reading and hashing, not for keeping it around) |
|
bool hash_ok; |
|
ret = read_piece_from_cache_and_hash(j, &hash_ok); |
|
|
|
// -2 means there's no space in the read cache |
|
// or that the read cache is disabled |
|
if (ret == -1) |
|
{ |
|
test_error(j); |
|
break; |
|
} |
|
if (!m_settings.disable_hash_checks) |
|
ret = (hash_ok)?ret:-3; |
|
if (ret == -3) |
|
{ |
|
j.storage->mark_failed(j.piece); |
|
j.error = errors::failed_hash_check; |
|
j.str.clear(); |
|
j.buffer = 0; |
|
break; |
|
} |
|
|
|
TORRENT_ASSERT(j.buffer == read_holder.get()); |
|
read_holder.release(); |
|
#if TORRENT_DISK_STATS |
|
rename_buffer(j.buffer, "released send buffer"); |
|
#endif |
|
break; |
|
} |
|
#ifndef TORRENT_NO_DEPRECATE |
|
case disk_io_job::finalize_file: |
|
break; |
|
#endif |
|
case disk_io_job::read: |
|
{ |
|
if (test_error(j)) |
|
{ |
|
ret = -1; |
|
break; |
|
} |
|
#ifdef TORRENT_DISK_STATS |
|
m_log << log_time(); |
|
#endif |
|
INVARIANT_CHECK; |
|
if (j.buffer == 0) j.buffer = allocate_buffer("send buffer"); |
|
TORRENT_ASSERT(j.buffer_size <= m_block_size); |
|
if (j.buffer == 0) |
|
{ |
|
#ifdef TORRENT_DISK_STATS |
|
m_log << " read 0" << std::endl; |
|
#endif |
|
ret = -1; |
|
#if BOOST_VERSION == 103500 |
|
j.error = error_code(boost::system::posix_error::not_enough_memory |
|
, get_posix_category()); |
|
#elif BOOST_VERSION > 103500 |
|
j.error = error_code(boost::system::errc::not_enough_memory |
|
, get_posix_category()); |
|
#else |
|
j.error = error::no_memory; |
|
#endif |
|
j.str.clear(); |
|
break; |
|
} |
|
|
|
disk_buffer_holder read_holder(*this, j.buffer); |
|
|
|
bool hit; |
|
ret = try_read_from_cache(j, hit); |
|
|
|
#ifdef TORRENT_DISK_STATS |
|
m_log << (hit?" read-cache-hit ":" read ") << j.buffer_size << std::endl; |
|
#endif |
|
// -2 means there's no space in the read cache |
|
// or that the read cache is disabled |
|
if (ret == -1) |
|
{ |
|
j.buffer = 0; |
|
test_error(j); |
|
break; |
|
} |
|
else if (ret == -2) |
|
{ |
|
file::iovec_t b = { j.buffer, j.buffer_size }; |
|
ret = j.storage->read_impl(&b, j.piece, j.offset, 1); |
|
if (ret < 0) |
|
{ |
|
test_error(j); |
|
break; |
|
} |
|
//[MF] size is unknown beforehand |
|
j.buffer_size = ret; |
|
if (ret == 0) |
|
{ |
|
// this means the file wasn't big enough for this read |
|
j.buffer = 0; |
|
j.error = errors::file_too_short; |
|
j.error_file.clear(); |
|
j.str.clear(); |
|
ret = -1; |
|
break; |
|
} |
|
|
|
++m_cache_stats.blocks_read; |
|
hit = false; |
|
} |
|
if (!hit) |
|
{ |
|
ptime now = time_now_hires(); |
|
m_read_time.add_sample(total_microseconds(now - operation_start)); |
|
m_cache_stats.cumulative_read_time += total_milliseconds(now - operation_start); |
|
} |
|
TORRENT_ASSERT(j.buffer == read_holder.get()); |
|
read_holder.release(); |
|
#if TORRENT_DISK_STATS |
|
rename_buffer(j.buffer, "released send buffer"); |
|
#endif |
|
break; |
|
} |
|
case disk_io_job::write: |
|
{ |
|
#ifdef TORRENT_DISK_STATS |
|
m_log << log_time() << " write " << j.buffer_size << std::endl; |
|
#endif |
|
mutex::scoped_lock l(m_piece_mutex); |
|
INVARIANT_CHECK; |
|
|
|
TORRENT_ASSERT(!j.storage->error()); |
|
TORRENT_ASSERT(j.cache_min_time >= 0); |
|
|
|
if (in_use() >= m_settings.cache_size) |
|
{ |
|
flush_cache_blocks(l, in_use() - m_settings.cache_size + 1); |
|
if (test_error(j)) break; |
|
} |
|
TORRENT_ASSERT(!j.storage->error()); |
|
|
|
cache_piece_index_t& idx = m_pieces.get<0>(); |
|
cache_piece_index_t::iterator p = find_cached_piece(m_pieces, j, l); |
|
int block = j.offset / m_block_size; |
|
TORRENT_ASSERT(j.buffer); |
|
TORRENT_ASSERT(j.buffer_size <= m_block_size); |
|
int piece_size = j.storage->info()->piece_size(j.piece); |
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; |
|
if (p != idx.end()) |
|
{ |
|
bool recalc_contiguous = false; |
|
TORRENT_ASSERT(p->blocks[block].buf == 0); |
|
if (p->blocks[block].buf) |
|
{ |
|
free_buffer(p->blocks[block].buf); |
|
--m_cache_stats.cache_size; |
|
--const_cast<cached_piece_entry&>(*p).num_blocks; |
|
} |
|
else if ((block > 0 && p->blocks[block-1].buf) |
|
|| (block < blocks_in_piece-1 && p->blocks[block+1].buf) |
|
|| p->num_blocks == 0) |
|
{ |
|
// update the contiguous blocks counter for this piece. Only if it has |
|
// an adjacent block. If it doesn't, we already know it couldn't have |
|
// increased the largest contiguous block span in this piece |
|
recalc_contiguous = true; |
|
} |
|
p->blocks[block].buf = j.buffer; |
|
p->blocks[block].callback.swap(j.callback); |
|
#ifdef TORRENT_DISK_STATS |
|
rename_buffer(j.buffer, "write cache"); |
|
#endif |
|
++m_cache_stats.cache_size; |
|
++const_cast<cached_piece_entry&>(*p).num_blocks; |
|
if (recalc_contiguous) |
|
{ |
|
const_cast<cached_piece_entry&>(*p).num_contiguous_blocks = contiguous_blocks(*p); |
|
} |
|
idx.modify(p, update_last_use(j.cache_min_time)); |
|
// we might just have created a contiguous range |
|
// that meets the requirement to be flushed. try it |
|
// if we're in avoid_readback mode, don't do this. Only flush |
|
// pieces when we need more space in the cache (which will avoid |
|
// flushing blocks out-of-order) or when we issue a hash job, |
|
// wich indicates the piece is completely downloaded |
|
flush_contiguous_blocks(const_cast<cached_piece_entry&>(*p) |
|
, l, m_settings.write_cache_line_size |
|
, m_settings.disk_cache_algorithm == session_settings::avoid_readback); |
|
|
|
if (p->num_blocks == 0 && p->next_block_to_hash == 0) idx.erase(p); |
|
test_error(j); |
|
TORRENT_ASSERT(!j.storage->error()); |
|
} |
|
else |
|
{ |
|
TORRENT_ASSERT(!j.storage->error()); |
|
if (cache_block(j, j.callback, j.cache_min_time, l) < 0) |
|
{ |
|
l.unlock(); |
|
ptime start = time_now_hires(); |
|
file::iovec_t iov = {j.buffer, j.buffer_size}; |
|
ret = j.storage->write_impl(&iov, j.piece, j.offset, 1); |
|
l.lock(); |
|
if (ret < 0) |
|
{ |
|
test_error(j); |
|
break; |
|
} |
|
ptime done = time_now_hires(); |
|
m_write_time.add_sample(total_microseconds(done - start)); |
|
m_cache_stats.cumulative_write_time += total_milliseconds(done - start); |
|
// we successfully wrote the block. Ignore previous errors |
|
j.storage->clear_error(); |
|
break; |
|
} |
|
TORRENT_ASSERT(!j.storage->error()); |
|
} |
|
// we've now inserted the buffer |
|
// in the cache, we should not |
|
// free it at the end |
|
holder.release(); |
|
|
|
if (in_use() > m_settings.cache_size) |
|
{ |
|
flush_cache_blocks(l, in_use() - m_settings.cache_size); |
|
test_error(j); |
|
} |
|
TORRENT_ASSERT(!j.storage->error()); |
|
|
|
break; |
|
} |
|
case disk_io_job::cache_piece: |
|
{ |
|
mutex::scoped_lock l(m_piece_mutex); |
|
|
|
if (test_error(j)) |
|
{ |
|
ret = -1; |
|
break; |
|
} |
|
#ifdef TORRENT_DISK_STATS |
|
m_log << log_time() << " cache " << j.piece << std::endl; |
|
#endif |
|
INVARIANT_CHECK; |
|
TORRENT_ASSERT(j.buffer == 0); |
|
|
|
cache_piece_index_t::iterator p; |
|
bool hit; |
|
ret = cache_piece(j, p, hit, 0, l); |
|
if (ret == -2) ret = -1; |
|
|
|
if (ret < 0) test_error(j); |
|
break; |
|
} |
|
case disk_io_job::hash: |
|
{ |
|
#ifdef TORRENT_DISK_STATS |
|
m_log << log_time() << " hash" << std::endl; |
|
#endif |
|
TORRENT_ASSERT(!j.storage->error()); |
|
mutex::scoped_lock l(m_piece_mutex); |
|
INVARIANT_CHECK; |
|
|
|
//printf("disk_io_thread:hash for piece %d hash\n", j.piece); |
|
cache_piece_index_t& idx = m_pieces.get<0>(); |
|
cache_piece_index_t::iterator i = find_cached_piece(m_pieces, j, l); |
|
if (i != idx.end()) |
|
{ |
|
//printf("disk_io_thread:flush piece %d (size=%d) before hash\n", |
|
// j.piece, i->piece_size); |
|
TORRENT_ASSERT(i->storage); |
|
int ret = flush_range(const_cast<cached_piece_entry&>(*i), 0, INT_MAX, l); |
|
idx.erase(i); |
|
if (test_error(j)) |
|
{ |
|
ret = -1; |
|
j.storage->mark_failed(j.piece); |
|
break; |
|
} |
|
} |
|
l.unlock(); |
|
if (m_settings.disable_hash_checks) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
|
|
ptime hash_start = time_now_hires(); |
|
|
|
int readback = 0; |
|
bool hash_ok = j.storage->hash_for_piece_impl(j.piece, &readback, &j.post_flags); |
|
if (test_error(j)) |
|
{ |
|
ret = -1; |
|
j.storage->mark_failed(j.piece); |
|
break; |
|
} |
|
|
|
m_cache_stats.total_read_back += readback / m_block_size; |
|
|
|
ret = (hash_ok)?0:-2; |
|
if (ret == -2) j.storage->mark_failed(j.piece); |
|
|
|
ptime done = time_now_hires(); |
|
m_hash_time.add_sample(total_microseconds(done - hash_start)); |
|
m_cache_stats.cumulative_hash_time += total_milliseconds(done - hash_start); |
|
break; |
|
} |
|
case disk_io_job::move_storage: |
|
{ |
|
#ifdef TORRENT_DISK_STATS |
|
m_log << log_time() << " move" << std::endl; |
|
#endif |
|
TORRENT_ASSERT(j.buffer == 0); |
|
ret = j.storage->move_storage_impl(j.str, j.piece); |
|
if (ret == piece_manager::file_exist) |
|
{ |
|
j.error = error_code(boost::system::errc::file_exists, get_system_category()); |
|
j.error_file = -1; |
|
j.buffer = NULL; |
|
break; |
|
} |
|
if (ret != piece_manager::no_error && ret != piece_manager::need_full_check) |
|
{ |
|
test_error(j); |
|
break; |
|
} |
|
j.str = j.storage->save_path(); |
|
break; |
|
} |
|
case disk_io_job::release_files: |
|
{ |
|
#ifdef TORRENT_DISK_STATS |
|
m_log << log_time() << " release" << std::endl; |
|
#endif |
|
TORRENT_ASSERT(j.buffer == 0); |
|
|
|
mutex::scoped_lock l(m_piece_mutex); |
|
INVARIANT_CHECK; |
|
|
|
for (cache_t::iterator i = m_pieces.begin(); i != m_pieces.end();) |
|
{ |
|
if (i->storage == j.storage) |
|
{ |
|
flush_range(const_cast<cached_piece_entry&>(*i), 0, INT_MAX, l); |
|
i = m_pieces.erase(i); |
|
} |
|
else |
|
{ |
|
++i; |
|
} |
|
} |
|
l.unlock(); |
|
release_memory(); |
|
|
|
ret = j.storage->release_files_impl(); |
|
if (ret != 0) test_error(j); |
|
break; |
|
} |
|
case disk_io_job::clear_read_cache: |
|
{ |
|
#ifdef TORRENT_DISK_STATS |
|
m_log << log_time() << " clear-cache" << std::endl; |
|
#endif |
|
TORRENT_ASSERT(j.buffer == 0); |
|
|
|
mutex::scoped_lock l(m_piece_mutex); |
|
INVARIANT_CHECK; |
|
|
|
for (cache_t::iterator i = m_read_pieces.begin(); |
|
i != m_read_pieces.end();) |
|
{ |
|
if (i->storage == j.storage) |
|
{ |
|
free_piece(const_cast<cached_piece_entry&>(*i), l); |
|
i = m_read_pieces.erase(i); |
|
} |
|
else |
|
{ |
|
++i; |
|
} |
|
} |
|
l.unlock(); |
|
release_memory(); |
|
ret = 0; |
|
break; |
|
} |
|
case disk_io_job::delete_files: |
|
{ |
|
#ifdef TORRENT_DISK_STATS |
|
m_log << log_time() << " delete" << std::endl; |
|
#endif |
|
TORRENT_ASSERT(j.buffer == 0); |
|
|
|
mutex::scoped_lock l(m_piece_mutex); |
|
INVARIANT_CHECK; |
|
|
|
// delete all write cache entries for this storage |
|
cache_piece_index_t& idx = m_pieces.get<0>(); |
|
cache_piece_index_t::iterator start = idx.lower_bound(std::pair<void*, int>(j.storage.get(), 0)); |
|
cache_piece_index_t::iterator end = idx.upper_bound(std::pair<void*, int>(j.storage.get(), INT_MAX)); |
|
|
|
// build a vector of all the buffers we need to free |
|
// and free them all in one go |
|
std::vector<char*> buffers; |
|
torrent_info const& ti = *j.storage->info(); |
|
for (cache_piece_index_t::iterator i = start; i != end; ++i) |
|
{ |
|
int blocks_in_piece = (ti.piece_size(i->piece) + m_block_size - 1) / m_block_size; |
|
cached_piece_entry& e = const_cast<cached_piece_entry&>(*i); |
|
for (int j = 0; j < blocks_in_piece; ++j) |
|
{ |
|
if (i->blocks[j].buf == 0) continue; |
|
buffers.push_back(i->blocks[j].buf); |
|
i->blocks[j].buf = 0; |
|
--m_cache_stats.cache_size; |
|
TORRENT_ASSERT(e.num_blocks > 0); |
|
--e.num_blocks; |
|
} |
|
TORRENT_ASSERT(i->num_blocks == 0); |
|
} |
|
idx.erase(start, end); |
|
l.unlock(); |
|
if (!buffers.empty()) free_multiple_buffers(&buffers[0], buffers.size()); |
|
release_memory(); |
|
|
|
ret = j.storage->delete_files_impl(); |
|
if (ret != 0) test_error(j); |
|
break; |
|
} |
|
case disk_io_job::check_fastresume: |
|
{ |
|
#ifdef TORRENT_DISK_STATS |
|
m_log << log_time() << " check_fastresume" << std::endl; |
|
#endif |
|
lazy_entry const* rd = (lazy_entry const*)j.buffer; |
|
TORRENT_ASSERT(rd != 0); |
|
ret = j.storage->check_fastresume(*rd, j.error); |
|
test_error(j); |
|
break; |
|
} |
|
case disk_io_job::check_files: |
|
{ |
|
#ifdef TORRENT_DISK_STATS |
|
m_log << log_time() << " check_files" << std::endl; |
|
#endif |
|
int piece_size = j.storage->info()->piece_length(); |
|
for (int processed = 0; processed < 4 * 1024 * 1024; processed += piece_size) |
|
{ |
|
ptime now = time_now_hires(); |
|
TORRENT_ASSERT(now >= m_last_file_check); |
|
// this happens sometimes on windows for some reason |
|
if (now < m_last_file_check) now = m_last_file_check; |
|
|
|
#if BOOST_VERSION > 103600 |
|
if (now - m_last_file_check < milliseconds(m_settings.file_checks_delay_per_block)) |
|
{ |
|
int sleep_time = m_settings.file_checks_delay_per_block |
|
* (piece_size / (16 * 1024)) |
|
- total_milliseconds(now - m_last_file_check); |
|
if (sleep_time < 0) sleep_time = 0; |
|
TORRENT_ASSERT(sleep_time < 5 * 1000); |
|
|
|
sleep(sleep_time); |
|
} |
|
m_last_file_check = time_now_hires(); |
|
#endif |
|
|
|
ptime hash_start = time_now_hires(); |
|
if (m_waiting_to_shutdown) break; |
|
|
|
ret = j.storage->check_files(j.piece, j.offset, j.error, &j.post_flags); |
|
|
|
ptime done = time_now_hires(); |
|
m_hash_time.add_sample(total_microseconds(done - hash_start)); |
|
m_cache_stats.cumulative_hash_time += total_milliseconds(done - hash_start); |
|
|
|
TORRENT_TRY { |
|
TORRENT_ASSERT(j.callback); |
|
if (j.callback && ret == piece_manager::need_full_check) |
|
post_callback(j, ret); |
|
} TORRENT_CATCH(std::exception&) {} |
|
if (ret != piece_manager::need_full_check) break; |
|
} |
|
if (test_error(j)) |
|
{ |
|
ret = piece_manager::fatal_disk_error; |
|
break; |
|
} |
|
TORRENT_ASSERT(ret != -2 || j.error); |
|
|
|
// if the check is not done, add it at the end of the job queue |
|
if (ret == piece_manager::need_full_check) |
|
{ |
|
// offset needs to be reset to 0 so that the disk |
|
// job sorting can be done correctly |
|
j.offset = 0; |
|
add_job(j, j.callback); |
|
continue; |
|
} |
|
break; |
|
} |
|
case disk_io_job::save_resume_data: |
|
{ |
|
#ifdef TORRENT_DISK_STATS |
|
m_log << log_time() << " save_resume_data" << std::endl; |
|
#endif |
|
j.resume_data.reset(new entry(entry::dictionary_t)); |
|
j.storage->write_resume_data(*j.resume_data); |
|
ret = 0; |
|
break; |
|
} |
|
case disk_io_job::rename_file: |
|
{ |
|
#ifdef TORRENT_DISK_STATS |
|
m_log << log_time() << " rename_file" << std::endl; |
|
#endif |
|
ret = j.storage->rename_file_impl(j.piece, j.str); |
|
if (ret != 0) |
|
{ |
|
test_error(j); |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
TORRENT_CATCH(std::exception& e) |
|
{ |
|
TORRENT_DECLARE_DUMMY(std::exception, e); |
|
ret = -1; |
|
TORRENT_TRY { |
|
j.str = e.what(); |
|
} TORRENT_CATCH(std::exception&) {} |
|
} |
|
|
|
TORRENT_ASSERT(!j.storage || !j.storage->error()); |
|
|
|
ptime done = time_now_hires(); |
|
m_job_time.add_sample(total_microseconds(done - operation_start)); |
|
m_cache_stats.cumulative_job_time += total_milliseconds(done - operation_start); |
|
|
|
// if (!j.callback) std::cerr << "DISK THREAD: no callback specified" << std::endl; |
|
// else std::cerr << "DISK THREAD: invoking callback" << std::endl; |
|
TORRENT_TRY { |
|
TORRENT_ASSERT(ret != -2 || j.error |
|
|| j.action == disk_io_job::hash); |
|
#if TORRENT_DISK_STATS |
|
if ((j.action == disk_io_job::read || j.action == disk_io_job::read_and_hash) |
|
&& j.buffer != 0) |
|
rename_buffer(j.buffer, "posted send buffer"); |
|
#endif |
|
post_callback(j, ret); |
|
} TORRENT_CATCH(std::exception&) { |
|
TORRENT_ASSERT(false); |
|
} |
|
} |
|
TORRENT_ASSERT(false); |
|
} |
|
} |
|
|
|
|