Community driven twister-core
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

161 lines
4.8 KiB

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2012 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_KEY_H
#define BITCOIN_KEY_H
#include <stdexcept>
#include <vector>
#include "allocators.h"
#include "serialize.h"
#include "uint256.h"
#include "util.h"
#include <openssl/ec.h> // for EC_KEY definition
// secp160k1
// const unsigned int PRIVATE_KEY_SIZE = 192;
// const unsigned int PUBLIC_KEY_SIZE = 41;
// const unsigned int SIGNATURE_SIZE = 48;
//
// secp192k1
// const unsigned int PRIVATE_KEY_SIZE = 222;
// const unsigned int PUBLIC_KEY_SIZE = 49;
// const unsigned int SIGNATURE_SIZE = 57;
//
// secp224k1
// const unsigned int PRIVATE_KEY_SIZE = 250;
// const unsigned int PUBLIC_KEY_SIZE = 57;
// const unsigned int SIGNATURE_SIZE = 66;
//
// secp256k1:
// const unsigned int PRIVATE_KEY_SIZE = 279;
// const unsigned int PUBLIC_KEY_SIZE = 65;
// const unsigned int SIGNATURE_SIZE = 72;
//
// see www.keylength.com
// script supports up to 75 for single byte push
class key_error : public std::runtime_error
{
public:
explicit key_error(const std::string& str) : std::runtime_error(str) {}
};
/** A reference to a CKey: the Hash160 of its serialized public key */
class CKeyID : public uint160
{
public:
CKeyID() : uint160(0) { }
CKeyID(const uint160 &in) : uint160(in) { }
};
/** A reference to a CScript: the Hash160 of its serialization (see script.h) */
class CScriptID : public uint160
{
public:
CScriptID() : uint160(0) { }
CScriptID(const uint160 &in) : uint160(in) { }
};
/** An encapsulated public key. */
class CPubKey {
private:
std::vector<unsigned char> vchPubKey;
friend class CKey;
public:
CPubKey() { }
CPubKey(const std::vector<unsigned char> &vchPubKeyIn) : vchPubKey(vchPubKeyIn) { }
friend bool operator==(const CPubKey &a, const CPubKey &b) { return a.vchPubKey == b.vchPubKey; }
friend bool operator!=(const CPubKey &a, const CPubKey &b) { return a.vchPubKey != b.vchPubKey; }
friend bool operator<(const CPubKey &a, const CPubKey &b) { return a.vchPubKey < b.vchPubKey; }
IMPLEMENT_SERIALIZE(
READWRITE(vchPubKey);
)
CKeyID GetID() const {
return CKeyID(Hash160(vchPubKey));
}
uint256 GetHash() const {
return Hash(vchPubKey.begin(), vchPubKey.end());
}
bool IsValid() const {
return vchPubKey.size() == 33 || vchPubKey.size() == 65;
}
bool IsCompressed() const {
return vchPubKey.size() == 33;
}
std::vector<unsigned char> Raw() const {
return vchPubKey;
}
};
// secure_allocator is defined in allocators.h
// CPrivKey is a serialized private key, with all parameters included (279 bytes)
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CPrivKey;
// CSecret is a serialization of just the secret parameter (32 bytes)
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CSecret;
/** An encapsulated OpenSSL Elliptic Curve key (public and/or private) */
class CKey
{
protected:
EC_KEY* pkey;
bool fSet;
bool fCompressedPubKey;
public:
void SetCompressedPubKey(bool fCompressed = true);
void Reset();
CKey();
CKey(const CKey& b);
CKey& operator=(const CKey& b);
~CKey();
bool IsNull() const;
bool IsCompressed() const;
void MakeNewKey(bool fCompressed);
bool SetPrivKey(const CPrivKey& vchPrivKey);
bool SetSecret(const CSecret& vchSecret, bool fCompressed = false);
CSecret GetSecret(bool &fCompressed) const;
CPrivKey GetPrivKey() const;
bool SetPubKey(const CPubKey& vchPubKey);
CPubKey GetPubKey() const;
bool Sign(uint256 hash, std::vector<unsigned char>& vchSig);
// create a compact signature (65 bytes), which allows reconstructing the used public key
// The format is one header byte, followed by two times 32 bytes for the serialized r and s values.
// The header byte: 0x1B = first key with even y, 0x1C = first key with odd y,
// 0x1D = second key with even y, 0x1E = second key with odd y
bool SignCompact(uint256 hash, std::vector<unsigned char>& vchSig);
// reconstruct public key from a compact signature
// This is only slightly more CPU intensive than just verifying it.
// If this function succeeds, the recovered public key is guaranteed to be valid
// (the signature is a valid signature of the given data for that key)
bool SetCompactSignature(uint256 hash, const std::vector<unsigned char>& vchSig);
bool Verify(uint256 hash, const std::vector<unsigned char>& vchSig);
// Verify a compact signature
bool VerifyCompact(uint256 hash, const std::vector<unsigned char>& vchSig);
bool IsValid();
};
#endif