// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2012 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_MAIN_H #define BITCOIN_MAIN_H #include "core.h" #include "bignum.h" #include "sync.h" #include "net.h" #include "script.h" #include class CWallet; class CBlock; class CBlockIndex; class CKeyItem; class CAddress; class CInv; class CNode; struct CBlockIndexWorkComparator; /** The maximum allowed size for a serialized block, in bytes (network rule) */ static const unsigned int MAX_BLOCK_SIZE = 1000000; /** The maximum size for mined blocks */ static const unsigned int MAX_BLOCK_SIZE_GEN = MAX_BLOCK_SIZE/2; /** The maximum size for transactions we're willing to relay/mine */ //static const unsigned int MAX_STANDARD_TX_SIZE = MAX_BLOCK_SIZE_GEN/5; static const unsigned int MAX_STANDARD_TX_SIZE = (140+16+512+32); //msg+user+key+spare /** The maximum allowed number of signature check operations in a block (network rule) */ static const unsigned int MAX_BLOCK_SIGOPS = MAX_BLOCK_SIZE/50; /** The maximum number of orphan transactions kept in memory */ static const unsigned int MAX_ORPHAN_TRANSACTIONS = MAX_BLOCK_SIZE/100; /** The maximum size of a blk?????.dat file (since 0.8) */ static const unsigned int MAX_BLOCKFILE_SIZE = 0x8000000; // 128 MiB /** The pre-allocation chunk size for blk?????.dat files (since 0.8) */ static const unsigned int BLOCKFILE_CHUNK_SIZE = 0x1000000; // 16 MiB /** The pre-allocation chunk size for rev?????.dat files (since 0.8) */ static const unsigned int UNDOFILE_CHUNK_SIZE = 0x100000; // 1 MiB /** Fake height value used in CCoins to signify they are only in the memory pool (since 0.8) */ static const unsigned int MEMPOOL_HEIGHT = 0x7FFFFFFF; /** No amount larger than this (in satoshi) is valid */ static const int64 MAX_MONEY = 21000000 * COIN; inline bool MoneyRange(int64 nValue) { return (nValue >= 0 && nValue <= MAX_MONEY); } /** Coinbase transaction outputs can only be spent after this number of new blocks (network rule) */ static const int COINBASE_MATURITY = 100; /** Threshold for nLockTime: below this value it is interpreted as block number, otherwise as UNIX timestamp. */ static const unsigned int LOCKTIME_THRESHOLD = 500000000; // Tue Nov 5 00:53:20 1985 UTC /** Maximum number of script-checking threads allowed */ static const int MAX_SCRIPTCHECK_THREADS = 16; /** Default amount of block size reserved for high-priority transactions (in bytes) */ static const int DEFAULT_BLOCK_PRIORITY_SIZE = 27000; #ifdef USE_UPNP static const int fHaveUPnP = true; #else static const int fHaveUPnP = false; #endif /** The maximum size for spam messages */ static const unsigned int MAX_SPAM_MSG_SIZE = 140; /** The maximum size for username */ static const unsigned int MAX_USERNAME_SIZE = 16; extern CScript COINBASE_FLAGS; extern CCriticalSection cs_main; extern std::map mapBlockIndex; extern std::vector vBlockIndexByHeight; extern std::set setBlockIndexValid; extern CBlockIndex* pindexGenesisBlock; extern int nBestHeight; extern uint256 nBestChainWork; extern uint256 nBestInvalidWork; extern uint256 hashBestChain; extern CBlockIndex* pindexBest; extern unsigned int nTransactionsUpdated; extern uint64 nLastBlockTx; extern uint64 nLastBlockSize; extern const std::string strMessageMagic; extern double dHashesPerSec; extern int64 nHPSTimerStart; extern int64 nTimeBestReceived; extern CCriticalSection cs_setpwalletRegistered; extern std::set setpwalletRegistered; extern bool fImporting; extern bool fReindex; extern bool fBenchmark; extern int nScriptCheckThreads; extern unsigned int nCoinCacheSize; extern bool fHaveGUI; // Settings extern int64 nTransactionFee; extern string strSpamMessage; extern string strSpamUser; // Minimum disk space required - used in CheckDiskSpace() static const uint64 nMinDiskSpace = 52428800; class CCoinsDB; class CBlockTreeDB; struct CDiskBlockPos; class CCoins; class CTxUndo; class CCoinsView; class CCoinsViewCache; class CValidationState; struct CBlockTemplate; /** Register a wallet to receive updates from core */ void RegisterWallet(CWallet* pwalletIn); /** Unregister a wallet from core */ void UnregisterWallet(CWallet* pwalletIn); /** Unregister all wallets from core */ void UnregisterAllWallets(); /** Push an updated transaction to all registered wallets */ void SyncWithWallets(const uint256 &hash, const CTransaction& tx, const CBlock* pblock = NULL, bool fUpdate = false); /** Register with a network node to receive its signals */ void RegisterNodeSignals(CNodeSignals& nodeSignals); /** Unregister a network node */ void UnregisterNodeSignals(CNodeSignals& nodeSignals); void PushGetBlocks(CNode* pnode, CBlockIndex* pindexBegin, uint256 hashEnd); /** Process an incoming block */ bool ProcessBlock(CValidationState &state, CNode* pfrom, CBlock* pblock, CDiskBlockPos *dbp = NULL); /** Check whether enough disk space is available for an incoming block */ bool CheckDiskSpace(uint64 nAdditionalBytes = 0); /** Open a block file (blk?????.dat) */ FILE* OpenBlockFile(const CDiskBlockPos &pos, bool fReadOnly = false); /** Open an undo file (rev?????.dat) */ FILE* OpenUndoFile(const CDiskBlockPos &pos, bool fReadOnly = false); /** Import blocks from an external file */ bool LoadExternalBlockFile(FILE* fileIn, CDiskBlockPos *dbp = NULL); /** Initialize a new block tree database + block data on disk */ bool InitBlockIndex(); /** Load the block tree and coins database from disk */ bool LoadBlockIndex(); /** Unload database information */ void UnloadBlockIndex(); /** Verify consistency of the block and coin databases */ bool VerifyDB(int nCheckLevel, int nCheckDepth); /** Print the loaded block tree */ void PrintBlockTree(); /** Find a block by height in the currently-connected chain */ CBlockIndex* FindBlockByHeight(int nHeight); /** Process protocol messages received from a given node */ bool ProcessMessages(CNode* pfrom); /** Send queued protocol messages to be sent to a give node */ bool SendMessages(CNode* pto, bool fSendTrickle); /** Run the miner threads */ void GenerateBitcoins(bool fGenerate, CWallet* pwallet); /** Generate a new block, without valid proof-of-work */ CBlockTemplate* CreateNewBlock(std::vector &salt); /** Modify the extranonce in a block */ void IncrementExtraNonce(CBlock* pblock, CBlockIndex* pindexPrev, unsigned int& nExtraNonce); /** Do mining precalculation */ void FormatHashBuffers(CBlock* pblock, char* pmidstate, char* pdata, char* phash1); /** Check mined block */ bool CheckWork(CBlock* pblock, CWallet& wallet); /** Check whether a block hash satisfies the proof-of-work requirement specified by nBits */ bool CheckProofOfWork(uint256 hash, unsigned int nBits); /** Calculate the minimum amount of work a received block needs, without knowing its direct parent */ unsigned int ComputeMinWork(unsigned int nBase, int64 nTime); /** Get the number of active peers */ int GetNumBlocksOfPeers(); /** Check whether we are doing an initial block download (synchronizing from disk or network) */ bool IsInitialBlockDownload(); /** Format a string that describes several potential problems detected by the core */ std::string GetWarnings(std::string strFor); /** Retrieve a transaction (from memory pool, or from disk, if possible) */ bool GetTransaction(const uint256 &hash, CTransaction &tx, uint256 &hashBlock, bool fAllowSlow = false); /** Verify duplicate or replacement transactions */ bool verifyDuplicateOrReplacementTx(CTransaction &tx, bool checkDuplicate, bool checkReplacement); /** Connect/disconnect blocks until pindexNew is the new tip of the active block chain */ bool SetBestChain(CValidationState &state, CBlockIndex* pindexNew); /** Find the best known block, and make it the tip of the block chain */ bool ConnectBestBlock(CValidationState &state); void UpdateTime(CBlockHeader& block, const CBlockIndex* pindexPrev); /** Create a new block index entry for a given block hash */ CBlockIndex * InsertBlockIndex(uint256 hash); /** Abort with a message */ bool AbortNode(const std::string &msg); bool GetWalletFile(CWallet* pwallet, std::string &strWalletFileOut); struct CDiskBlockPos { int nFile; unsigned int nPos; IMPLEMENT_SERIALIZE( READWRITE(VARINT(nFile)); READWRITE(VARINT(nPos)); ) CDiskBlockPos() { SetNull(); } CDiskBlockPos(int nFileIn, unsigned int nPosIn) { nFile = nFileIn; nPos = nPosIn; } friend bool operator==(const CDiskBlockPos &a, const CDiskBlockPos &b) { return (a.nFile == b.nFile && a.nPos == b.nPos); } friend bool operator!=(const CDiskBlockPos &a, const CDiskBlockPos &b) { return !(a == b); } void SetNull() { nFile = -1; nPos = 0; } bool IsNull() const { return (nFile == -1); } }; struct CDiskTxPos : public CDiskBlockPos { unsigned int nTxOffset; // after header IMPLEMENT_SERIALIZE( READWRITE(*(CDiskBlockPos*)this); READWRITE(VARINT(nTxOffset)); ) CDiskTxPos(const CDiskBlockPos &blockIn, unsigned int nTxOffsetIn) : CDiskBlockPos(blockIn.nFile, blockIn.nPos), nTxOffset(nTxOffsetIn) { } CDiskTxPos() { SetNull(); } void SetNull() { CDiskBlockPos::SetNull(); nTxOffset = 0; } }; inline bool AllowFree(double dPriority) { // Large (in bytes) low-priority (new, small-coin) transactions // need a fee. return dPriority > COIN * 144 / 250; } bool CheckUsername(const std::string &userName, CValidationState &state); bool DoTxProofOfWork(CTransaction& tx); // Context-independent validity checks bool CheckTransaction(const CTransaction& tx, CValidationState& state); /** Check for standard transaction types @return True if all outputs (scriptPubKeys) use only standard transaction forms */ bool IsStandardTx(const CTransaction& tx, std::string& reason); /** Undo information for a CBlock */ class CBlockUndo { public: std::vector vtxundo; // for all but the coinbase IMPLEMENT_SERIALIZE( READWRITE(vtxundo); ) bool WriteToDisk(CDiskBlockPos &pos, const uint256 &hashBlock) { // Open history file to append CAutoFile fileout = CAutoFile(OpenUndoFile(pos), SER_DISK, CLIENT_VERSION); if (!fileout) return error("CBlockUndo::WriteToDisk() : OpenUndoFile failed"); // Write index header unsigned int nSize = fileout.GetSerializeSize(*this); fileout << FLATDATA(Params().MessageStart()) << nSize; // Write undo data long fileOutPos = ftell(fileout); if (fileOutPos < 0) return error("CBlockUndo::WriteToDisk() : ftell failed"); pos.nPos = (unsigned int)fileOutPos; fileout << *this; // calculate & write checksum CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION); hasher << hashBlock; hasher << *this; fileout << hasher.GetHash(); // Flush stdio buffers and commit to disk before returning fflush(fileout); if (!IsInitialBlockDownload()) FileCommit(fileout); return true; } bool ReadFromDisk(const CDiskBlockPos &pos, const uint256 &hashBlock) { // Open history file to read CAutoFile filein = CAutoFile(OpenUndoFile(pos, true), SER_DISK, CLIENT_VERSION); if (!filein) return error("CBlockUndo::ReadFromDisk() : OpenBlockFile failed"); // Read block uint256 hashChecksum; try { filein >> *this; filein >> hashChecksum; } catch (std::exception &e) { return error("%s() : deserialize or I/O error", __PRETTY_FUNCTION__); } // Verify checksum CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION); hasher << hashBlock; hasher << *this; if (hashChecksum != hasher.GetHash()) return error("CBlockUndo::ReadFromDisk() : checksum mismatch"); return true; } }; /** A transaction with a merkle branch linking it to the block chain. */ class CMerkleTx : public CTransaction { public: uint256 hashBlock; std::vector vMerkleBranch; int nIndex; // memory only mutable bool fMerkleVerified; CMerkleTx() { Init(); } CMerkleTx(const CTransaction& txIn) : CTransaction(txIn) { Init(); } void Init() { hashBlock = 0; nIndex = -1; fMerkleVerified = false; } IMPLEMENT_SERIALIZE ( nSerSize += SerReadWrite(s, *(CTransaction*)this, nType, nVersion, ser_action); nVersion = this->nVersion; READWRITE(hashBlock); READWRITE(vMerkleBranch); READWRITE(nIndex); ) int SetMerkleBranch(const CBlock* pblock=NULL); int GetDepthInMainChain(CBlockIndex* &pindexRet) const; int GetDepthInMainChain() const { CBlockIndex *pindexRet; return GetDepthInMainChain(pindexRet); } bool IsInMainChain() const { return GetDepthInMainChain() > 0; } int GetBlocksToMaturity() const; bool AcceptToMemoryPool(bool fLimitFree=true); }; /** Data structure that represents a partial merkle tree. * * It respresents a subset of the txid's of a known block, in a way that * allows recovery of the list of txid's and the merkle root, in an * authenticated way. * * The encoding works as follows: we traverse the tree in depth-first order, * storing a bit for each traversed node, signifying whether the node is the * parent of at least one matched leaf txid (or a matched txid itself). In * case we are at the leaf level, or this bit is 0, its merkle node hash is * stored, and its children are not explorer further. Otherwise, no hash is * stored, but we recurse into both (or the only) child branch. During * decoding, the same depth-first traversal is performed, consuming bits and * hashes as they written during encoding. * * The serialization is fixed and provides a hard guarantee about the * encoded size: * * SIZE <= 10 + ceil(32.25*N) * * Where N represents the number of leaf nodes of the partial tree. N itself * is bounded by: * * N <= total_transactions * N <= 1 + matched_transactions*tree_height * * The serialization format: * - uint32 total_transactions (4 bytes) * - varint number of hashes (1-3 bytes) * - uint256[] hashes in depth-first order (<= 32*N bytes) * - varint number of bytes of flag bits (1-3 bytes) * - byte[] flag bits, packed per 8 in a byte, least significant bit first (<= 2*N-1 bits) * The size constraints follow from this. */ class CPartialMerkleTree { protected: // the total number of transactions in the block unsigned int nTransactions; // node-is-parent-of-matched-txid bits std::vector vBits; // txids and internal hashes std::vector vHash; // flag set when encountering invalid data bool fBad; // helper function to efficiently calculate the number of nodes at given height in the merkle tree unsigned int CalcTreeWidth(int height) { return (nTransactions+(1 << height)-1) >> height; } // calculate the hash of a node in the merkle tree (at leaf level: the txid's themself) uint256 CalcHash(int height, unsigned int pos, const std::vector &vTxid); // recursive function that traverses tree nodes, storing the data as bits and hashes void TraverseAndBuild(int height, unsigned int pos, const std::vector &vTxid, const std::vector &vMatch); // recursive function that traverses tree nodes, consuming the bits and hashes produced by TraverseAndBuild. // it returns the hash of the respective node. uint256 TraverseAndExtract(int height, unsigned int pos, unsigned int &nBitsUsed, unsigned int &nHashUsed, std::vector &vMatch); public: // serialization implementation IMPLEMENT_SERIALIZE( READWRITE(nTransactions); READWRITE(vHash); std::vector vBytes; if (fRead) { READWRITE(vBytes); CPartialMerkleTree &us = *(const_cast(this)); us.vBits.resize(vBytes.size() * 8); for (unsigned int p = 0; p < us.vBits.size(); p++) us.vBits[p] = (vBytes[p / 8] & (1 << (p % 8))) != 0; us.fBad = false; } else { vBytes.resize((vBits.size()+7)/8); for (unsigned int p = 0; p < vBits.size(); p++) vBytes[p / 8] |= vBits[p] << (p % 8); READWRITE(vBytes); } ) // Construct a partial merkle tree from a list of transaction id's, and a mask that selects a subset of them CPartialMerkleTree(const std::vector &vTxid, const std::vector &vMatch); CPartialMerkleTree(); // extract the matching txid's represented by this partial merkle tree. // returns the merkle root, or 0 in case of failure uint256 ExtractMatches(std::vector &vMatch); }; /** Functions for disk access for blocks */ bool WriteBlockToDisk(CBlock& block, CDiskBlockPos& pos); bool ReadBlockFromDisk(CBlock& block, const CDiskBlockPos& pos); bool ReadBlockFromDisk(CBlock& block, const CBlockIndex* pindex); /** Functions for validating blocks and updating the block tree */ /** Undo the effects of this block (with given index) on the UTXO set represented by coins. * In case pfClean is provided, operation will try to be tolerant about errors, and *pfClean * will be true if no problems were found. Otherwise, the return value will be false in case * of problems. Note that in any case, coins may be modified. */ bool DisconnectBlock(CBlock& block, CValidationState& state, CBlockIndex* pindex, CCoinsViewCache& coins, bool fJustCheck = false); // Apply the effects of this block (with given index) on the UTXO set represented by coins bool ConnectBlock(CBlock& block, CValidationState& state, CBlockIndex* pindex, CCoinsViewCache& coins, bool fJustCheck = false); // Add this block to the block index, and if necessary, switch the active block chain to this bool AddToBlockIndex(CBlock& block, CValidationState& state, const CDiskBlockPos& pos); // Context-independent validity checks bool CheckBlock(const CBlock& block, CValidationState& state, bool fCheckPOW = true, bool fCheckMerkleRoot = true); // Store block on disk // if dbp is provided, the file is known to already reside on disk bool AcceptBlock(CBlock& block, CValidationState& state, CDiskBlockPos* dbp = NULL); class CBlockFileInfo { public: unsigned int nBlocks; // number of blocks stored in file unsigned int nSize; // number of used bytes of block file unsigned int nUndoSize; // number of used bytes in the undo file unsigned int nHeightFirst; // lowest height of block in file unsigned int nHeightLast; // highest height of block in file uint64 nTimeFirst; // earliest time of block in file uint64 nTimeLast; // latest time of block in file IMPLEMENT_SERIALIZE( READWRITE(VARINT(nBlocks)); READWRITE(VARINT(nSize)); READWRITE(VARINT(nUndoSize)); READWRITE(VARINT(nHeightFirst)); READWRITE(VARINT(nHeightLast)); READWRITE(VARINT(nTimeFirst)); READWRITE(VARINT(nTimeLast)); ) void SetNull() { nBlocks = 0; nSize = 0; nUndoSize = 0; nHeightFirst = 0; nHeightLast = 0; nTimeFirst = 0; nTimeLast = 0; } CBlockFileInfo() { SetNull(); } std::string ToString() const { return strprintf("CBlockFileInfo(blocks=%u, size=%u, heights=%u...%u, time=%s...%s)", nBlocks, nSize, nHeightFirst, nHeightLast, DateTimeStrFormat("%Y-%m-%d", nTimeFirst).c_str(), DateTimeStrFormat("%Y-%m-%d", nTimeLast).c_str()); } // update statistics (does not update nSize) void AddBlock(unsigned int nHeightIn, uint64 nTimeIn) { if (nBlocks==0 || nHeightFirst > nHeightIn) nHeightFirst = nHeightIn; if (nBlocks==0 || nTimeFirst > nTimeIn) nTimeFirst = nTimeIn; nBlocks++; if (nHeightIn > nHeightFirst) nHeightLast = nHeightIn; if (nTimeIn > nTimeLast) nTimeLast = nTimeIn; } }; extern CCriticalSection cs_LastBlockFile; extern CBlockFileInfo infoLastBlockFile; extern int nLastBlockFile; enum BlockStatus { BLOCK_VALID_UNKNOWN = 0, BLOCK_VALID_HEADER = 1, // parsed, version ok, hash satisfies claimed PoW, 1 <= vtx count <= max, timestamp not in future BLOCK_VALID_TREE = 2, // parent found, difficulty matches, timestamp >= median previous, checkpoint BLOCK_VALID_TRANSACTIONS = 3, // only first tx is coinbase, 2 <= coinbase input script length <= 100, transactions valid, no duplicate txids, sigops, size, merkle root BLOCK_VALID_CHAIN = 4, // outputs do not overspend inputs, no double spends, coinbase output ok, immature coinbase spends, BIP30 BLOCK_VALID_SCRIPTS = 5, // scripts/signatures ok BLOCK_VALID_MASK = 7, BLOCK_HAVE_DATA = 8, // full block available in blk*.dat BLOCK_HAVE_UNDO = 16, // undo data available in rev*.dat BLOCK_HAVE_MASK = 24, BLOCK_FAILED_VALID = 32, // stage after last reached validness failed BLOCK_FAILED_CHILD = 64, // descends from failed block BLOCK_FAILED_MASK = 96 }; /** The block chain is a tree shaped structure starting with the * genesis block at the root, with each block potentially having multiple * candidates to be the next block. A blockindex may have multiple pprev pointing * to it, but at most one of them can be part of the currently active branch. */ class CBlockIndex { public: // pointer to the hash of the block, if any. memory is owned by this CBlockIndex const uint256* phashBlock; // pointer to the index of the predecessor of this block CBlockIndex* pprev; // height of the entry in the chain. The genesis block has height 0 int nHeight; // Which # file this block is stored in (blk?????.dat) int nFile; // Byte offset within blk?????.dat where this block's data is stored unsigned int nDataPos; // Byte offset within rev?????.dat where this block's undo data is stored unsigned int nUndoPos; // (memory only) Total amount of work (expected number of hashes) in the chain up to and including this block uint256 nChainWork; // Number of transactions in this block. // Note: in a potential headers-first mode, this number cannot be relied upon unsigned int nTx; // (memory only) Number of transactions in the chain up to and including this block unsigned int nChainTx; // change to 64-bit type when necessary; won't happen before 2030 // Verification status of this block. See enum BlockStatus unsigned int nStatus; // block header int nVersion; uint256 hashMerkleRoot; unsigned int nTime; unsigned int nBits; unsigned int nNonce; CBlockIndex() { phashBlock = NULL; pprev = NULL; nHeight = 0; nFile = 0; nDataPos = 0; nUndoPos = 0; nChainWork = 0; nTx = 0; nChainTx = 0; nStatus = 0; nVersion = 0; hashMerkleRoot = 0; nTime = 0; nBits = 0; nNonce = 0; } CBlockIndex(CBlockHeader& block) { phashBlock = NULL; pprev = NULL; nHeight = 0; nFile = 0; nDataPos = 0; nUndoPos = 0; nChainWork = 0; nTx = 0; nChainTx = 0; nStatus = 0; nVersion = block.nVersion; hashMerkleRoot = block.hashMerkleRoot; nTime = block.nTime; nBits = block.nBits; nNonce = block.nNonce; } CDiskBlockPos GetBlockPos() const { CDiskBlockPos ret; if (nStatus & BLOCK_HAVE_DATA) { ret.nFile = nFile; ret.nPos = nDataPos; } return ret; } CDiskBlockPos GetUndoPos() const { CDiskBlockPos ret; if (nStatus & BLOCK_HAVE_UNDO) { ret.nFile = nFile; ret.nPos = nUndoPos; } return ret; } CBlockHeader GetBlockHeader() const { CBlockHeader block; block.nVersion = nVersion; block.nHeight = nHeight; if (pprev) block.hashPrevBlock = pprev->GetBlockHash(); block.hashMerkleRoot = hashMerkleRoot; block.nTime = nTime; block.nBits = nBits; block.nNonce = nNonce; return block; } uint256 GetBlockHash() const { return *phashBlock; } int64 GetBlockTime() const { return (int64)nTime; } CBigNum GetBlockWork() const { CBigNum bnTarget; bnTarget.SetCompact(nBits); if (bnTarget <= 0) return 0; return (CBigNum(1)<<256) / (bnTarget+1); } bool IsInMainChain() const { return nHeight < (int)vBlockIndexByHeight.size() && vBlockIndexByHeight[nHeight] == this; } CBlockIndex *GetNextInMainChain() const { return nHeight+1 >= (int)vBlockIndexByHeight.size() ? NULL : vBlockIndexByHeight[nHeight+1]; } bool CheckIndex() const { return CheckProofOfWork(GetBlockHash(), nBits); } enum { nMedianTimeSpan=11 }; int64 GetMedianTimePast() const { int64 pmedian[nMedianTimeSpan]; int64* pbegin = &pmedian[nMedianTimeSpan]; int64* pend = &pmedian[nMedianTimeSpan]; const CBlockIndex* pindex = this; for (int i = 0; i < nMedianTimeSpan && pindex; i++, pindex = pindex->pprev) *(--pbegin) = pindex->GetBlockTime(); std::sort(pbegin, pend); return pbegin[(pend - pbegin)/2]; } int64 GetMedianTime() const { const CBlockIndex* pindex = this; for (int i = 0; i < nMedianTimeSpan/2; i++) { if (!pindex->GetNextInMainChain()) return GetBlockTime(); pindex = pindex->GetNextInMainChain(); } return pindex->GetMedianTimePast(); } /** * Returns true if there are nRequired or more blocks of minVersion or above * in the last nToCheck blocks, starting at pstart and going backwards. */ static bool IsSuperMajority(int minVersion, const CBlockIndex* pstart, unsigned int nRequired, unsigned int nToCheck); std::string ToString() const { return strprintf("CBlockIndex(pprev=%p, pnext=%p, nHeight=%d, merkle=%s, hashBlock=%s)", pprev, GetNextInMainChain(), nHeight, hashMerkleRoot.ToString().c_str(), GetBlockHash().ToString().c_str()); } void print() const { printf("%s\n", ToString().c_str()); } }; struct CBlockIndexWorkComparator { bool operator()(CBlockIndex *pa, CBlockIndex *pb) { if (pa->nChainWork > pb->nChainWork) return false; if (pa->nChainWork < pb->nChainWork) return true; if (pa->GetBlockHash() < pb->GetBlockHash()) return false; if (pa->GetBlockHash() > pb->GetBlockHash()) return true; return false; // identical blocks } }; /** Used to marshal pointers into hashes for db storage. */ class CDiskBlockIndex : public CBlockIndex { public: uint256 hashPrev; CDiskBlockIndex() { hashPrev = 0; } explicit CDiskBlockIndex(CBlockIndex* pindex) : CBlockIndex(*pindex) { hashPrev = (pprev ? pprev->GetBlockHash() : 0); } IMPLEMENT_SERIALIZE ( if (!(nType & SER_GETHASH)) READWRITE(VARINT(nVersion)); READWRITE(VARINT(nHeight)); READWRITE(VARINT(nStatus)); READWRITE(VARINT(nTx)); if (nStatus & (BLOCK_HAVE_DATA | BLOCK_HAVE_UNDO)) READWRITE(VARINT(nFile)); if (nStatus & BLOCK_HAVE_DATA) READWRITE(VARINT(nDataPos)); if (nStatus & BLOCK_HAVE_UNDO) READWRITE(VARINT(nUndoPos)); // block header READWRITE(this->nVersion); READWRITE(hashPrev); READWRITE(hashMerkleRoot); READWRITE(nTime); READWRITE(nBits); READWRITE(nNonce); ) uint256 GetBlockHash() const { CBlockHeader block; block.nVersion = nVersion; block.nHeight = nHeight; block.hashPrevBlock = hashPrev; block.hashMerkleRoot = hashMerkleRoot; block.nTime = nTime; block.nBits = nBits; block.nNonce = nNonce; return block.GetHash(); } std::string ToString() const { std::string str = "CDiskBlockIndex("; str += CBlockIndex::ToString(); str += strprintf("\n hashBlock=%s, hashPrev=%s)", GetBlockHash().ToString().c_str(), hashPrev.ToString().c_str()); return str; } void print() const { printf("%s\n", ToString().c_str()); } }; /** Capture information about block/transaction validation */ class CValidationState { private: enum mode_state { MODE_VALID, // everything ok MODE_INVALID, // network rule violation (DoS value may be set) MODE_ERROR, // run-time error } mode; int nDoS; public: CValidationState() : mode(MODE_VALID), nDoS(0) {} bool DoS(int level, bool ret = false) { if (mode == MODE_ERROR) return ret; nDoS += level; mode = MODE_INVALID; return ret; } bool Invalid(bool ret = false) { return DoS(0, ret); } bool Error() { mode = MODE_ERROR; return false; } bool Abort(const std::string &msg) { AbortNode(msg); return Error(); } bool IsValid() { return mode == MODE_VALID; } bool IsInvalid() { return mode == MODE_INVALID; } bool IsError() { return mode == MODE_ERROR; } bool IsInvalid(int &nDoSOut) { if (IsInvalid()) { nDoSOut = nDoS; return true; } return false; } }; /** Describes a place in the block chain to another node such that if the * other node doesn't have the same branch, it can find a recent common trunk. * The further back it is, the further before the fork it may be. */ class CBlockLocator { protected: std::vector vHave; public: CBlockLocator() {} explicit CBlockLocator(const CBlockIndex* pindex) { Set(pindex); } explicit CBlockLocator(uint256 hashBlock); CBlockLocator(const std::vector& vHaveIn) { vHave = vHaveIn; } IMPLEMENT_SERIALIZE ( if (!(nType & SER_GETHASH)) READWRITE(nVersion); READWRITE(vHave); ) void SetNull() { vHave.clear(); } bool IsNull() { return vHave.empty(); } /** Given a block initialises the locator to that point in the chain. */ void Set(const CBlockIndex* pindex); /** Returns the distance in blocks this locator is from our chain head. */ int GetDistanceBack(); /** Returns the first best-chain block the locator contains. */ CBlockIndex* GetBlockIndex(); /** Returns the hash of the first best chain block the locator contains. */ uint256 GetBlockHash(); /** Returns the height of the first best chain block the locator has. */ int GetHeight(); }; class CTxMemPool { public: mutable CCriticalSection cs; std::map mapTx; // [MF] hash is now userhash bool accept(CValidationState &state, CTransaction &tx, bool fLimitFree, bool* pfMissingInputs); bool addUnchecked(const uint256& userhash, CTransaction &tx); bool remove(const CTransaction &tx, bool fRecursive = false); void clear(); void queryHashes(std::vector& vtxid); unsigned long size() { LOCK(cs); return mapTx.size(); } bool exists(uint256 userhash) { return (mapTx.count(userhash) != 0); } CTransaction& lookup(uint256 userhash) { return mapTx[userhash]; } }; extern CTxMemPool mempool; struct CCoinsStats { int nHeight; uint256 hashBlock; uint64 nTransactions; uint64 nTransactionOutputs; uint64 nSerializedSize; uint256 hashSerialized; int64 nTotalAmount; CCoinsStats() : nHeight(0), hashBlock(0), nTransactions(0), nTransactionOutputs(0), nSerializedSize(0), hashSerialized(0), nTotalAmount(0) {} }; /** Abstract view on the open txout dataset. */ class CCoinsView { public: // Retrieve the block index whose state this CCoinsView currently represents virtual CBlockIndex *GetBestBlock(); // Modify the currently active block index virtual bool SetBestBlock(CBlockIndex *pindex); // Do a bulk modification (multiple SetCoins + one SetBestBlock) virtual bool BatchWrite(const std::map &mapCoins, CBlockIndex *pindex); // Calculate statistics about the unspent transaction output set virtual bool GetStats(CCoinsStats &stats); // As we use CCoinsViews polymorphically, have a virtual destructor virtual ~CCoinsView() {} }; /** CCoinsView backed by another CCoinsView */ class CCoinsViewBacked : public CCoinsView { protected: CCoinsView *base; public: CCoinsViewBacked(CCoinsView &viewIn); CBlockIndex *GetBestBlock(); bool SetBestBlock(CBlockIndex *pindex); void SetBackend(CCoinsView &viewIn); bool BatchWrite(const std::map &mapCoins, CBlockIndex *pindex); bool GetStats(CCoinsStats &stats); }; /** CCoinsView that adds a memory cache for transactions to another CCoinsView */ class CCoinsViewCache : public CCoinsViewBacked { protected: CBlockIndex *pindexTip; std::map cacheCoins; public: CCoinsViewCache(CCoinsView &baseIn, bool fDummy = false); CBlockIndex *GetBestBlock(); bool SetBestBlock(CBlockIndex *pindex); bool BatchWrite(const std::map &mapCoins, CBlockIndex *pindex); // Push the modifications applied to this cache to its base. // Failure to call this method before destruction will cause the changes to be forgotten. bool Flush(); // Calculate the size of the cache (in number of transactions) unsigned int GetCacheSize(); private: std::map::iterator FetchCoins(const uint256 &txid); }; /** CCoinsView that brings transactions from a memorypool into view. It does not check for spendings by memory pool transactions. */ class CCoinsViewMemPool : public CCoinsViewBacked { protected: CTxMemPool &mempool; public: CCoinsViewMemPool(CCoinsView &baseIn, CTxMemPool &mempoolIn); bool GetCoins(const uint256 &txid, CCoins &coins); bool HaveCoins(const uint256 &txid); }; /** Global variable that points to the active CCoinsView (protected by cs_main) */ extern CCoinsViewCache *pcoinsTip; /** Global variable that points to the active block tree (protected by cs_main) */ extern CBlockTreeDB *pblocktree; struct CBlockTemplate { CBlock block; }; /** Used to relay blocks as header + vector * to filtered nodes. */ class CMerkleBlock { public: // Public only for unit testing CBlockHeader header; CPartialMerkleTree txn; public: // Public only for unit testing and relay testing // (not relayed) std::vector > vMatchedTxn; // Create from a CBlock, filtering transactions according to filter // Note that this will call IsRelevantAndUpdate on the filter for each transaction, // thus the filter will likely be modified. CMerkleBlock(const CBlock& block, CBloomFilter& filter); IMPLEMENT_SERIALIZE ( READWRITE(header); READWRITE(txn); ) }; #endif