/* Copyright (c) 2003-2012, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "libtorrent/pch.hpp" #include "libtorrent/file_storage.hpp" #include "libtorrent/string_util.hpp" // for allocate_string_copy #include "libtorrent/file.hpp" #include "libtorrent/utf8.hpp" #include #include #include namespace libtorrent { file_storage::file_storage() : m_total_size(0) , m_num_pieces(0) , m_piece_length(0) {} void file_storage::reserve(int num_files) { m_files.reserve(num_files); } int file_storage::piece_size(int index) const { TORRENT_ASSERT(index >= 0 && index < num_pieces()); /* [MF] always report the max (16KB) if (index == num_pieces()-1) { size_type size_except_last = num_pieces() - 1; size_except_last *= size_type(piece_length()); size_type size = total_size() - size_except_last; TORRENT_ASSERT(size > 0); TORRENT_ASSERT(size <= piece_length()); return int(size); } else */ return piece_length(); } void file_storage::update_path_index(internal_file_entry& e) { std::string fname = e.filename(); if (is_complete(fname)) { e.path_index = -2; return; } std::string parent = parent_path(fname); if (parent.empty()) { e.path_index = -1; } else { // do we already have this path in the path list? std::vector::reverse_iterator p = std::find(m_paths.rbegin(), m_paths.rend(), parent); if (p == m_paths.rend()) { // no, we don't. add it e.path_index = m_paths.size(); m_paths.push_back(parent); } else { // yes we do. use it e.path_index = p.base() - m_paths.begin() - 1; } e.set_name(filename(e.filename()).c_str()); } } file_entry::file_entry(): offset(0), size(0), file_base(0) , mtime(0), pad_file(false), hidden_attribute(false) , executable_attribute(false) , symlink_attribute(false) {} file_entry::~file_entry() {} internal_file_entry::~internal_file_entry() { if (name_len == 0) free((void*)name); } internal_file_entry::internal_file_entry(internal_file_entry const& fe) : name(0) , offset(fe.offset) , symlink_index(fe.symlink_index) , size(fe.size) , name_len(fe.name_len) , pad_file(fe.pad_file) , hidden_attribute(fe.hidden_attribute) , executable_attribute(fe.executable_attribute) , symlink_attribute(fe.symlink_attribute) , path_index(fe.path_index) { set_name(fe.filename().c_str()); } internal_file_entry& internal_file_entry::operator=(internal_file_entry const& fe) { offset = fe.offset; size = fe.size; path_index = fe.path_index; symlink_index = fe.symlink_index; pad_file = fe.pad_file; hidden_attribute = fe.hidden_attribute; executable_attribute = fe.executable_attribute; symlink_attribute = fe.symlink_attribute; set_name(fe.filename().c_str()); return *this; } void internal_file_entry::set_name(char const* n, int borrow_chars) { TORRENT_ASSERT(borrow_chars >= 0); if (borrow_chars > 1023) borrow_chars = 1023; if (name_len == 0) free((void*)name); if (n == 0 || *n == 0) { TORRENT_ASSERT(borrow_chars == 0); name = 0; } else { name = borrow_chars ? n : allocate_string_copy(n); } name_len = borrow_chars; } std::string internal_file_entry::filename() const { if (name_len) return std::string(name, name_len); return name ? name : ""; } #if TORRENT_USE_WSTRING void file_storage::set_name(std::wstring const& n) { std::string utf8; wchar_utf8(n, utf8); m_name = utf8; } void file_storage::rename_file(int index, std::wstring const& new_filename) { TORRENT_ASSERT(index >= 0 && index < int(m_files.size())); std::string utf8; wchar_utf8(new_filename, utf8); m_files[index].set_name(utf8.c_str()); update_path_index(m_files[index]); } void file_storage::add_file(std::wstring const& file, size_type size, int flags , std::time_t mtime, std::string const& symlink_path) { std::string utf8; wchar_utf8(file, utf8); add_file(utf8, size, flags, mtime, symlink_path); } #endif // TORRENT_USE_WSTRING void file_storage::rename_file(int index, std::string const& new_filename) { TORRENT_ASSERT(index >= 0 && index < int(m_files.size())); m_files[index].set_name(new_filename.c_str()); update_path_index(m_files[index]); } namespace { bool compare_file_offset(internal_file_entry const& lhs, internal_file_entry const& rhs) { return lhs.offset < rhs.offset; } } file_storage::iterator file_storage::file_at_offset(size_type offset) const { //[MF] only one "file" return begin(); } std::vector file_storage::map_block(int piece, size_type offset , int size) const { TORRENT_ASSERT(num_files() > 0); std::vector ret; if (m_files.empty()) return ret; // find the file iterator and file offset internal_file_entry target; target.offset = piece * (size_type)m_piece_length + offset; TORRENT_ASSERT(target.offset + size <= m_total_size); TORRENT_ASSERT(!compare_file_offset(target, m_files.front())); std::vector::const_iterator file_iter = std::upper_bound( begin(), end(), target, compare_file_offset); TORRENT_ASSERT(file_iter != begin()); --file_iter; size_type file_offset = target.offset - file_iter->offset; for (; size > 0; file_offset -= file_iter->size, ++file_iter) { TORRENT_ASSERT(file_iter != end()); if (file_offset < file_iter->size) { file_slice f; f.file_index = file_iter - begin(); f.offset = file_offset + file_base(*file_iter); f.size = (std::min)(file_iter->size - file_offset, (size_type)size); TORRENT_ASSERT(f.size <= size); size -= int(f.size); file_offset += f.size; ret.push_back(f); } TORRENT_ASSERT(size >= 0); } return ret; } file_entry file_storage::at(file_storage::iterator i) const { return at(i - begin()); } file_entry file_storage::at(int index) const { TORRENT_ASSERT(index >= 0 && index < int(m_files.size())); file_entry ret; internal_file_entry const& ife = m_files[index]; ret.path = file_path(ife); ret.offset = ife.offset; ret.size = ife.size; ret.file_base = file_base(ife); ret.mtime = mtime(ife); ret.pad_file = ife.pad_file; ret.hidden_attribute = ife.hidden_attribute; ret.executable_attribute = ife.executable_attribute; ret.symlink_attribute = ife.symlink_attribute; if (ife.symlink_index >= 0) ret.symlink_path = symlink(ife); ret.filehash = hash(ife); return ret; } peer_request file_storage::map_file(int file_index, size_type file_offset , int size) const { TORRENT_ASSERT(file_index < num_files()); TORRENT_ASSERT(file_index >= 0); peer_request ret; if (file_index < 0 || file_index >= num_files()) { ret.piece = m_num_pieces; ret.start = 0; ret.length = 0; return ret; } size_type offset = file_offset + this->file_offset(file_index); if (offset >= total_size()) { ret.piece = m_num_pieces; ret.start = 0; ret.length = 0; } else { ret.piece = int(offset / piece_length()); ret.start = int(offset % piece_length()); ret.length = size; if (offset + size > total_size()) ret.length = total_size() - offset; } return ret; } void file_storage::add_file(std::string const& file, size_type size, int flags , std::time_t mtime, std::string const& symlink_path) { TORRENT_ASSERT(size >= 0); if (size < 0) size = 0; if (!has_parent_path(file)) { // you have already added at least one file with a // path to the file (branch_path), which means that // all the other files need to be in the same top // directory as the first file. TORRENT_ASSERT(m_files.empty()); m_name = file; } else { if (m_files.empty()) m_name = split_path(file).c_str(); } TORRENT_ASSERT(m_name == split_path(file).c_str()); m_files.push_back(internal_file_entry()); internal_file_entry& e = m_files.back(); e.set_name(file.c_str()); e.size = size; e.offset = m_total_size; e.pad_file = (flags & pad_file) != 0; e.hidden_attribute = (flags & attribute_hidden) != 0; e.executable_attribute = (flags & attribute_executable) != 0; e.symlink_attribute = (flags & attribute_symlink) != 0; if (e.symlink_attribute) { e.symlink_index = m_symlinks.size(); m_symlinks.push_back(symlink_path); } if (mtime) { if (m_mtime.size() < m_files.size()) m_mtime.resize(m_files.size()); m_mtime[m_files.size() - 1] = mtime; } update_path_index(e); m_total_size += size; } void file_storage::add_file(file_entry const& ent, char const* filehash) { TORRENT_ASSERT(ent.size >= 0); if (!has_parent_path(ent.path)) { // you have already added at least one file with a // path to the file (branch_path), which means that // all the other files need to be in the same top // directory as the first file. TORRENT_ASSERT(m_files.empty()); m_name = ent.path; } else { if (m_files.empty()) m_name = split_path(ent.path).c_str(); } internal_file_entry ife(ent); m_files.push_back(ife); internal_file_entry& e = m_files.back(); if (e.size < 0) e.size = 0; e.offset = m_total_size; m_total_size += e.size; if (filehash) { if (m_file_hashes.size() < m_files.size()) m_file_hashes.resize(m_files.size()); m_file_hashes[m_files.size() - 1] = filehash; } if (!ent.symlink_path.empty()) { e.symlink_index = m_symlinks.size(); m_symlinks.push_back(ent.symlink_path); } if (ent.mtime) { if (m_mtime.size() < m_files.size()) m_mtime.resize(m_files.size()); m_mtime[m_files.size() - 1] = ent.mtime; } if (ent.file_base) set_file_base(e, ent.file_base); update_path_index(e); } sha1_hash file_storage::hash(int index) const { if (index >= int(m_file_hashes.size())) return sha1_hash(0); return sha1_hash(m_file_hashes[index]); } std::string const& file_storage::symlink(int index) const { TORRENT_ASSERT(index >= 0 && index < int(m_files.size())); internal_file_entry const& fe = m_files[index]; TORRENT_ASSERT(fe.symlink_index < int(m_symlinks.size())); return m_symlinks[fe.symlink_index]; } time_t file_storage::mtime(int index) const { if (index >= int(m_mtime.size())) return 0; return m_mtime[index]; } void file_storage::set_file_base(int index, size_type off) { TORRENT_ASSERT(index >= 0 && index < int(m_files.size())); if (int(m_file_base.size()) <= index) m_file_base.resize(index + 1, 0); m_file_base[index] = off; } size_type file_storage::file_base(int index) const { if (index >= int(m_file_base.size())) return 0; return m_file_base[index]; } std::string file_storage::file_path(int index, std::string const& save_path) const { TORRENT_ASSERT(index >= 0 && index < int(m_files.size())); internal_file_entry const& fe = m_files[index]; TORRENT_ASSERT(fe.path_index >= -2 && fe.path_index < int(m_paths.size())); // -2 means this is an absolute path filename if (fe.path_index == -2) return fe.filename(); // -1 means no path if (fe.path_index == -1) return combine_path(save_path, fe.filename()); return combine_path(save_path, combine_path(m_paths[fe.path_index], fe.filename())); } std::string file_storage::file_name(int index) const { TORRENT_ASSERT(index >= 0 && index < int(m_files.size())); internal_file_entry const& fe = m_files[index]; return fe.filename(); } size_type file_storage::file_size(int index) const { TORRENT_ASSERT(index >= 0 && index < int(m_files.size())); return m_files[index].size; } bool file_storage::pad_file_at(int index) const { TORRENT_ASSERT(index >= 0 && index < int(m_files.size())); return m_files[index].pad_file; } size_type file_storage::file_offset(int index) const { TORRENT_ASSERT(index >= 0 && index < int(m_files.size())); return m_files[index].offset; } sha1_hash file_storage::hash(internal_file_entry const& fe) const { int index = &fe - &m_files[0]; if (index >= int(m_file_hashes.size())) return sha1_hash(0); return sha1_hash(m_file_hashes[index]); } std::string const& file_storage::symlink(internal_file_entry const& fe) const { TORRENT_ASSERT(fe.symlink_index < int(m_symlinks.size())); return m_symlinks[fe.symlink_index]; } time_t file_storage::mtime(internal_file_entry const& fe) const { int index = &fe - &m_files[0]; if (index >= int(m_mtime.size())) return 0; return m_mtime[index]; } int file_storage::file_index(internal_file_entry const& fe) const { int index = &fe - &m_files[0]; TORRENT_ASSERT(index >= 0 && index < int(m_files.size())); return index; } void file_storage::set_file_base(internal_file_entry const& fe, size_type off) { int index = &fe - &m_files[0]; TORRENT_ASSERT(index >= 0 && index < int(m_files.size())); if (int(m_file_base.size()) <= index) m_file_base.resize(index + 1, 0); m_file_base[index] = off; } size_type file_storage::file_base(internal_file_entry const& fe) const { int index = &fe - &m_files[0]; if (index >= int(m_file_base.size())) return 0; return m_file_base[index]; } std::string file_storage::file_path(internal_file_entry const& fe, std::string const& save_path) const { TORRENT_ASSERT(fe.path_index >= -2 && fe.path_index < int(m_paths.size())); // -2 means this is an absolute path filename if (fe.path_index == -2) return fe.filename(); // -1 means no path if (fe.path_index == -1) return combine_path(save_path, fe.filename()); return combine_path(save_path, combine_path(m_paths[fe.path_index], fe.filename())); } std::string file_storage::file_name(internal_file_entry const& fe) const { return fe.filename(); } size_type file_storage::file_size(internal_file_entry const& fe) const { return fe.size; } bool file_storage::pad_file_at(internal_file_entry const& fe) const { return fe.pad_file; } size_type file_storage::file_offset(internal_file_entry const& fe) const { return fe.offset; } bool compare_file_entry_size(internal_file_entry const& fe1, internal_file_entry const& fe2) { return fe1.size < fe2.size; } void file_storage::reorder_file(int index, int dst) { TORRENT_ASSERT(index < int(m_files.size())); TORRENT_ASSERT(dst < int(m_files.size())); TORRENT_ASSERT(dst < index); std::iter_swap(m_files.begin() + index, m_files.begin() + dst); if (!m_mtime.empty()) { TORRENT_ASSERT(m_mtime.size() == m_files.size()); if (int(m_mtime.size()) < index) m_mtime.resize(index+1, 0); std::iter_swap(m_mtime.begin() + dst, m_mtime.begin() + index); } if (!m_file_hashes.empty()) { TORRENT_ASSERT(m_file_hashes.size() == m_files.size()); if (int(m_file_hashes.size()) < index) m_file_hashes.resize(index + 1, NULL); std::iter_swap(m_file_hashes.begin() + dst, m_file_hashes.begin() + index); } if (!m_file_base.empty()) { TORRENT_ASSERT(m_file_base.size() == m_files.size()); if (int(m_file_base.size()) < index) m_file_base.resize(index + 1, 0); std::iter_swap(m_file_base.begin() + dst, m_file_base.begin() + index); } } void file_storage::optimize(int pad_file_limit, int alignment) { // it doesn't make any sense to pad files that // are smaller than one block if (pad_file_limit >= 0 && pad_file_limit < 0x4000) pad_file_limit = 0x4000; // also, it doesn't make any sense to pad files // that are smaller than the alignment, since they // won't get aligned anyway; they are used as padding if (pad_file_limit >= 0 && pad_file_limit < alignment) pad_file_limit = alignment; size_type off = 0; int padding_file = 0; for (std::vector::iterator i = m_files.begin(); i != m_files.end(); ++i) { if ((off & (alignment-1)) == 0) { // this file position is aligned, pick the largest // available file to put here std::vector::iterator best_match = std::max_element(i, m_files.end() , &compare_file_entry_size); if (best_match != i) { int index = file_index(*best_match); int cur_index = file_index(*i); reorder_file(index, cur_index); i = m_files.begin() + cur_index; } } else if (pad_file_limit >= 0 && i->size > pad_file_limit && i->pad_file == false) { // if we have pad files enabled, and this file is // not piece-aligned and the file size exceeds the // limit, and it's not a padding file itself. // so add a padding file in front of it int pad_size = alignment - (off & (alignment-1)); // find the largest file that fits in pad_size std::vector::iterator best_match = m_files.end(); for (std::vector::iterator j = i+1; j < m_files.end(); ++j) { if (j->size > pad_size) continue; if (best_match == m_files.end() || j->size > best_match->size) best_match = j; } if (best_match != m_files.end()) { // we found one // We cannot have found i, because i->size > pad_file_limit // which is forced to be no less than alignment. We only // look for files <= pad_size, which never is greater than // alignment TORRENT_ASSERT(best_match != i); int index = file_index(*best_match); int cur_index = file_index(*i); reorder_file(index, cur_index); i = m_files.begin() + cur_index; i->offset = off; off += i->size; continue; } // we could not find a file that fits in pad_size // add a padding file // note that i will be set to point to the // new pad file. Once we're done adding it, we need // to increment i to point to the current file again // first add the pad file to the end of the file list // then swap it in place. This minimizes the amount // of copying of internal_file_entry, which is somewhat // expensive (until we have move semantics) int cur_index = file_index(*i); int index = m_files.size(); m_files.push_back(internal_file_entry()); internal_file_entry& e = m_files.back(); // i may have been invalidated, refresh it i = m_files.begin() + cur_index; e.size = pad_size; e.offset = off; char name[30]; snprintf(name, sizeof(name), ".____padding_file/%d", padding_file); std::string path = combine_path(m_name, name); e.set_name(path.c_str()); e.pad_file = true; off += pad_size; ++padding_file; if (!m_mtime.empty()) m_mtime.resize(index + 1, 0); if (!m_file_hashes.empty()) m_file_hashes.resize(index + 1, NULL); if (!m_file_base.empty()) m_file_base.resize(index + 1, 0); reorder_file(index, cur_index); TORRENT_ASSERT((off & (alignment-1)) == 0); continue; } i->offset = off; off += i->size; } m_total_size = off; } }