This commit adds support for ckeys, or enCrypted private keys, to the wallet.
All keys are stored in memory in their encrypted form and thus the passphrase
is required from the user to spend coins, or to create new addresses.
Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is
calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and
a random salt.
By default, the user's wallet remains unencrypted until they call the RPC
command encryptwallet <passphrase> or, from the GUI menu, Options->
Encrypt Wallet.
When the user is attempting to call RPC functions which require the password
to unlock the wallet, an error will be returned unless they call
walletpassphrase <passphrase> <time to keep key in memory> first.
A keypoolrefill command has been added which tops up the users keypool
(requiring the passphrase via walletpassphrase first).
keypoolsize has been added to the output of getinfo to show the user the
number of keys left before they need to specify their passphrase (and call
keypoolrefill).
Note that walletpassphrase will automatically fill keypool in a separate
thread which it spawns when the passphrase is set. This could cause some
delays in other threads waiting for locks on the wallet passphrase, including
one which could cause the passphrase to be stored longer than expected,
however it will not allow the passphrase to be used longer than expected as
ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon
as the specified lock time has arrived.
When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool
returns vchDefaultKey, meaning miners may start to generate many blocks to
vchDefaultKey instead of a new key each time.
A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to
allow the user to change their password via RPC.
Whenever keying material (unencrypted private keys, the user's passphrase,
the wallet's AES key) is stored unencrypted in memory, any reasonable attempt
is made to mlock/VirtualLock that memory before storing the keying material.
This is not true in several (commented) cases where mlock/VirtualLocking the
memory is not possible.
Although encryption of private keys in memory can be very useful on desktop
systems (as some small amount of protection against stupid viruses), on an
RPC server, the password is entered fairly insecurely. Thus, the only main
advantage encryption has for RPC servers is for RPC servers that do not spend
coins, except in rare cases, eg. a webserver of a merchant which only receives
payment except for cases of manual intervention.
Thanks to jgarzik for the original patch and sipa, gmaxwell and many others
for all their input.
Conflicts:
src/wallet.cpp
This reverts commit ee1f884229.
Stupid, stupid me...there is exactly 0 way to convince make to
execute a conditional based on a target-specific variable.
Using the comma as thousands separator causes problems for parts of the world
where comma == decimal point. Germans sending 0,001 bitcoins are unpleasantly
surprised when that results in 1 BTC getting sent.
Introduce SendBufferSize() and ReceiveBufferSize(), and limit
the blocks sent as response to the "getblocks" message to
half of the active send buffer size.
In order to be a proper HTTP implementation clients that aren't allowed
to connect to the RPC server (using -rpcallowip), should receive a
proper HTTP response. So instead of closing the connection on them send
a '403 Forbidden' status.
Signed-off-by: Giel van Schijndel <me@mortis.eu>
Some problems found by ius:
* compiler complains with no return after critical section block
* CKeyStore::GetPrivKey(key) was undefined for unknown key
* missing return statement in GetChange()
* A new class CKeyStore manages private keys, and script.cpp depends on access to CKeyStore.
* A new class CWallet extends CKeyStore, and contains all former wallet-specific globals; CWallet depends on script.cpp, not the other way around.
* Wallet-specific functions in CTransaction/CTxIn/CTxOut (GetDebit, GetCredit, GetChange, IsMine, IsFromMe), are moved to CWallet, taking their former 'this' argument as an explicit parameter
* CWalletTx objects know which CWallet they belong to, for convenience, so they have their own direct (and caching) GetDebit/... functions.
* Some code was moved from CWalletDB to CWallet, such as handling of reserve keys.
* Main.cpp keeps a set of all 'registered' wallets, which should be informed about updates to the block chain, and does not have any notion about any 'main' wallet. Function in main.cpp that require a wallet (such as GenerateCoins), take an explicit CWallet* argument.
* The actual CWallet instance used by the application is defined in init.cpp as "CWallet* pwalletMain". rpc.cpp and ui.cpp use this variable.
* Functions in main.cpp and db.cpp that are not used by other modules are marked static.
* The code for handling the 'submitorder' message is removed, as it not really compatible with the idea that a node is independent from the wallet(s) connected to it, and obsolete anyway.
This introduces two new source files, keystore.cpp and wallet.cpp with
corresponding headers. Code is moved from main and db, in a preparation
for a follow-up commit which introduces the classes CWallet and CKeyStore.
Use non-blocking connects, and a select() call to wait a predefined
time (5s by default, but configurable with -timeout) for either
success or failure. This allows much more connections to be tried
per time unit.
Based on a patch by phantomcircuit.
For instance any nBits compressed value from 0x1a44b800 thru
0x1a44b9ff will show as difficulty 244139.4816. This patch will
more accurately convert the nBits compressed values to the double
difficulty.
This will display any of the recent difficulty levels slightly
differently though. Early difficulties and testnet difficulties are
not large enough to trigger this bug.
None of the actual targets or compressed targets are changed, only
the conversion to the floating point difficulty is changed and afaik
it is only ever displayed, never converted back so the patch does not
effect the target calculations, binary files, databases nor the binary
protocol.
Transactions created with the new minimal fee policy would not be
relayed by the network. Therefore, we separate the minimal fee that
is necessary to relay and to create, leaving the creation one at
the old amount, for now.
With the separation of CENT and MIN_TX_FEE, it is now reasonable
to create change outputs between 0.01 and 0.0005, as these are
spendable according to the policy, even though they require a fee
to be paid.
Also, when enough fee was already present, everything can go into
a change output, without further increasing the fee.
When rescanning, if the scanned transaction is already in the wallet, it
is skipped. However, if someone sends a transaction, does not wait for
confirmation, switches wallets, waits for a block that contains his original
transaction, and switches wallets again, a rescan will leave his wallet
transaction (which has no merkle branch, so no confirmations) untouched.
This reverts commit 69ae372b51 which
removes support for building the Mac version of Bitcoin with UPnP
support and UPnP disabled by default (which should be the default,
according to the community vote and as its the default on all
other platforms).
* A new option -dns is introduced that enables name lookups in
-connect and -addnode, which is not enabled by default,
as it may be considered a security issue.
* A Lookup function is added that supports retrieving one or
more addresses based on a host name
* CAddress constructors (optionally) support name lookups.
* The different places in the source code that did name lookups
are refactored to use NameLookup or CAddress instead (dns seeding,
irc server lookup, getexternalip, ...).
* Removed ToStringLog() from CAddress, and switched to ToString(),
since it was empty.
Use case: Customer owes you bitcoins, so you create a payment address
associated with an account with a negative balance (the amount they owe).
When customer pays, that account balance will go to zero.
there is no internal modification of any file in this commit
files are moved into directories according to established standards in
sourcecode distribution; these directories contain:
src - Files that are used in constructing the executable binaries,
but are not installed.
doc - Files in HTML and text format that document usage, quirks of
the implementation, and contributor checklists.
locale - Files that contain human language translation of strings
used in the program
contrib - Files contributed from distributions or other third party
implementing scripts and auxiliary programs