Browse Source
* During block verification (when parallelism is requested), script check actions are stored instead of being executed immediately. * After every processed transactions, its signature actions are pushed to a CScriptCheckQueue, which maintains a queue and some synchronization mechanism. * Two or more threads (if enabled) start processing elements from this queue, * When the block connection code is finished processing transactions, it joins the worker pool until the queue is empty. As cs_main is held the entire time, and all verification must be finished before the block continues processing, this does not reach the best possible performance. It is a less drastic change than some more advanced mechanisms (like doing verification out-of-band entirely, and rolling back blocks when a failure is detected). The -par=N flag controls the number of threads (1-16). 0 means auto, and is the default.miguelfreitas
Pieter Wuille
12 years ago
7 changed files with 281 additions and 6 deletions
@ -0,0 +1,206 @@
@@ -0,0 +1,206 @@
|
||||
// Copyright (c) 2012 The Bitcoin developers
|
||||
// Distributed under the MIT/X11 software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
#ifndef CHECKQUEUE_H |
||||
#define CHECKQUEUE_H |
||||
|
||||
#include <boost/thread/mutex.hpp> |
||||
#include <boost/thread/locks.hpp> |
||||
#include <boost/thread/condition_variable.hpp> |
||||
|
||||
#include <vector> |
||||
#include <algorithm> |
||||
|
||||
template<typename T> class CCheckQueueControl; |
||||
|
||||
/** Queue for verifications that have to be performed.
|
||||
* The verifications are represented by a type T, which must provide an |
||||
* operator(), returning a bool. |
||||
* |
||||
* One thread (the master) is assumed to push batches of verifications |
||||
* onto the queue, where they are processed by N-1 worker threads. When |
||||
* the master is done adding work, it temporarily joins the worker pool |
||||
* as an N'th worker, until all jobs are done. |
||||
*/ |
||||
template<typename T> class CCheckQueue { |
||||
private: |
||||
// Mutex to protect the inner state
|
||||
boost::mutex mutex; |
||||
|
||||
// Worker threads block on this when out of work
|
||||
boost::condition_variable condWorker; |
||||
|
||||
// Master thread blocks on this when out of work
|
||||
boost::condition_variable condMaster; |
||||
|
||||
// Quit method blocks on this until all workers are gone
|
||||
boost::condition_variable condQuit; |
||||
|
||||
// The queue of elements to be processed.
|
||||
// As the order of booleans doesn't matter, it is used as a LIFO (stack)
|
||||
std::vector<T> queue; |
||||
|
||||
// The number of workers (including the master) that are idle.
|
||||
int nIdle; |
||||
|
||||
// The total number of workers (including the master).
|
||||
int nTotal; |
||||
|
||||
// The temporary evaluation result.
|
||||
bool fAllOk; |
||||
|
||||
// Number of verifications that haven't completed yet.
|
||||
// This includes elements that are not anymore in queue, but still in
|
||||
// worker's own batches.
|
||||
unsigned int nTodo; |
||||
|
||||
// Whether we're shutting down.
|
||||
bool fQuit; |
||||
|
||||
// The maximum number of elements to be processed in one batch
|
||||
unsigned int nBatchSize; |
||||
|
||||
// Internal function that does bulk of the verification work.
|
||||
bool Loop(bool fMaster = false) { |
||||
boost::condition_variable &cond = fMaster ? condMaster : condWorker; |
||||
std::vector<T> vChecks; |
||||
vChecks.reserve(nBatchSize); |
||||
unsigned int nNow = 0; |
||||
bool fOk = true; |
||||
do { |
||||
{ |
||||
boost::unique_lock<boost::mutex> lock(mutex); |
||||
// first do the clean-up of the previous loop run (allowing us to do it in the same critsect)
|
||||
if (nNow) { |
||||
fAllOk &= fOk; |
||||
nTodo -= nNow; |
||||
if (nTodo == 0 && !fMaster) |
||||
// We processed the last element; inform the master he can exit and return the result
|
||||
condMaster.notify_one(); |
||||
} else { |
||||
// first iteration
|
||||
nTotal++; |
||||
} |
||||
// logically, the do loop starts here
|
||||
while (queue.empty()) { |
||||
if ((fMaster || fQuit) && nTodo == 0) { |
||||
nTotal--; |
||||
if (nTotal==0) |
||||
condQuit.notify_one(); |
||||
bool fRet = fAllOk; |
||||
// reset the status for new work later
|
||||
if (fMaster) |
||||
fAllOk = true; |
||||
// return the current status
|
||||
return fRet; |
||||
} |
||||
nIdle++; |
||||
cond.wait(lock); // wait
|
||||
nIdle--; |
||||
} |
||||
// Decide how many work units to process now.
|
||||
// * Do not try to do everything at once, but aim for increasingly smaller batches so
|
||||
// all workers finish approximately simultaneously.
|
||||
// * Try to account for idle jobs which will instantly start helping.
|
||||
// * Don't do batches smaller than 1 (duh), or larger than nBatchSize.
|
||||
nNow = std::max(1U, std::min(nBatchSize, (unsigned int)queue.size() / (nTotal + nIdle + 1))); |
||||
vChecks.resize(nNow); |
||||
for (unsigned int i = 0; i < nNow; i++) { |
||||
// We want the lock on the mutex to be as short as possible, so swap jobs from the global
|
||||
// queue to the local batch vector instead of copying.
|
||||
vChecks[i].swap(queue.back()); |
||||
queue.pop_back(); |
||||
} |
||||
// Check whether we need to do work at all
|
||||
fOk = fAllOk; |
||||
} |
||||
// execute work
|
||||
BOOST_FOREACH(T &check, vChecks) |
||||
if (fOk) |
||||
fOk = check(); |
||||
vChecks.clear(); |
||||
} while(true); |
||||
} |
||||
|
||||
public: |
||||
// Create a new check queue
|
||||
CCheckQueue(unsigned int nBatchSizeIn) : |
||||
nIdle(0), nTotal(0), fAllOk(true), nTodo(0), fQuit(false), nBatchSize(nBatchSizeIn) {} |
||||
|
||||
// Worker thread
|
||||
void Thread() { |
||||
Loop(); |
||||
} |
||||
|
||||
// Wait until execution finishes, and return whether all evaluations where succesful.
|
||||
bool Wait() { |
||||
return Loop(true); |
||||
} |
||||
|
||||
// Add a batch of checks to the queue
|
||||
void Add(std::vector<T> &vChecks) { |
||||
boost::unique_lock<boost::mutex> lock(mutex); |
||||
BOOST_FOREACH(T &check, vChecks) { |
||||
queue.push_back(T()); |
||||
check.swap(queue.back()); |
||||
} |
||||
nTodo += vChecks.size(); |
||||
if (vChecks.size() == 1) |
||||
condWorker.notify_one(); |
||||
else if (vChecks.size() > 1) |
||||
condWorker.notify_all(); |
||||
} |
||||
|
||||
// Shut the queue down
|
||||
void Quit() { |
||||
boost::unique_lock<boost::mutex> lock(mutex); |
||||
fQuit = true; |
||||
// No need to wake the master, as he will quit automatically when all jobs are
|
||||
// done.
|
||||
condWorker.notify_all(); |
||||
|
||||
while (nTotal > 0) |
||||
condQuit.wait(lock); |
||||
} |
||||
|
||||
friend class CCheckQueueControl<T>; |
||||
}; |
||||
|
||||
/** RAII-style controller object for a CCheckQueue that guarantees the passed
|
||||
* queue is finished before continuing. |
||||
*/ |
||||
template<typename T> class CCheckQueueControl { |
||||
private: |
||||
CCheckQueue<T> *pqueue; |
||||
bool fDone; |
||||
|
||||
public: |
||||
CCheckQueueControl(CCheckQueue<T> *pqueueIn) : pqueue(pqueueIn), fDone(false) { |
||||
// passed queue is supposed to be unused, or NULL
|
||||
if (pqueue != NULL) { |
||||
assert(pqueue->nTotal == pqueue->nIdle); |
||||
assert(pqueue->nTodo == 0); |
||||
assert(pqueue->fAllOk == true); |
||||
} |
||||
} |
||||
|
||||
bool Wait() { |
||||
if (pqueue == NULL) |
||||
return true; |
||||
bool fRet = pqueue->Wait(); |
||||
fDone = true; |
||||
return fRet; |
||||
} |
||||
|
||||
void Add(std::vector<T> &vChecks) { |
||||
if (pqueue != NULL) |
||||
pqueue->Add(vChecks); |
||||
} |
||||
|
||||
~CCheckQueueControl() { |
||||
if (!fDone) |
||||
Wait(); |
||||
} |
||||
}; |
||||
|
||||
#endif |
Loading…
Reference in new issue