|
|
|
@ -5,9 +5,15 @@
@@ -5,9 +5,15 @@
|
|
|
|
|
#include <openssl/ecdsa.h> |
|
|
|
|
#include <openssl/rand.h> |
|
|
|
|
#include <openssl/obj_mac.h> |
|
|
|
|
#include <openssl/ecdh.h> |
|
|
|
|
#include <openssl/evp.h> |
|
|
|
|
#include <openssl/hmac.h> |
|
|
|
|
|
|
|
|
|
#include "key.h" |
|
|
|
|
|
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
#include "util.h" |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
// anonymous namespace with local implementation code (OpenSSL interaction)
|
|
|
|
|
namespace { |
|
|
|
@ -123,6 +129,14 @@ err:
@@ -123,6 +129,14 @@ err:
|
|
|
|
|
return ret; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void * ecies_key_derivation(const void *input, size_t ilen, void *output, size_t *olen) { |
|
|
|
|
if (*olen < SHA512_DIGEST_LENGTH) { |
|
|
|
|
return NULL; |
|
|
|
|
} |
|
|
|
|
*olen = SHA512_DIGEST_LENGTH; |
|
|
|
|
return SHA512(static_cast<const unsigned char*>(input), ilen, static_cast<unsigned char*>(output)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// RAII Wrapper around OpenSSL's EC_KEY
|
|
|
|
|
class CECKey { |
|
|
|
|
private: |
|
|
|
@ -254,6 +268,369 @@ public:
@@ -254,6 +268,369 @@ public:
|
|
|
|
|
ECDSA_SIG_free(sig); |
|
|
|
|
return ret; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @file /cryptron/ecies.c |
|
|
|
|
* |
|
|
|
|
* @brief ECIES encryption/decryption functions. |
|
|
|
|
* |
|
|
|
|
* $Author: Ladar Levison $ |
|
|
|
|
* $Website: http://lavabit.com $
|
|
|
|
|
* $Date: 2010/08/06 06:02:03 $ |
|
|
|
|
* $Revision: a51931d0f81f6abe29ca91470931d41a374508a7 $ |
|
|
|
|
* |
|
|
|
|
*/ |
|
|
|
|
bool Encrypt(std::vector<unsigned char> const &vchText, ecies_secure_t &cryptex) |
|
|
|
|
{ |
|
|
|
|
size_t length = vchText.size(); |
|
|
|
|
size_t envelope_length, block_length, key_length; |
|
|
|
|
if ((key_length = EVP_CIPHER_key_length(ECIES_CIPHER)) * 2 > SHA512_DIGEST_LENGTH) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("The key derivation method will not produce enough envelope key material for the chosen ciphers. {envelope = %i / required = %zu}\n", |
|
|
|
|
SHA512_DIGEST_LENGTH / 8, (key_length * 2) / 8); |
|
|
|
|
#endif |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Create the ephemeral key used specifically for this block of data.
|
|
|
|
|
EC_KEY *ephemeral; |
|
|
|
|
if (!(ephemeral = EC_KEY_new())) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("An error occurred while trying to generate the ephemeral key.\n"); |
|
|
|
|
#endif |
|
|
|
|
return false; |
|
|
|
|
} else { |
|
|
|
|
const EC_GROUP *group = NULL; |
|
|
|
|
if( !(group = EC_KEY_get0_group(pkey))) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("An error occurred in EC_KEY_get0_group.\n"); |
|
|
|
|
#endif |
|
|
|
|
EC_KEY_free(ephemeral); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
if (EC_KEY_set_group(ephemeral, group) != 1) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("EC_KEY_set_group failed.\n"); |
|
|
|
|
#endif |
|
|
|
|
EC_KEY_free(ephemeral); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (EC_KEY_generate_key(ephemeral) != 1) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("EC_KEY_generate_key failed.\n"); |
|
|
|
|
#endif |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Use the intersection of the provided keys to generate the envelope data used by the ciphers below. The ecies_key_derivation() function uses
|
|
|
|
|
// SHA 512 to ensure we have a sufficient amount of envelope key material and that the material created is sufficiently secure.
|
|
|
|
|
unsigned char envelope_key[SHA512_DIGEST_LENGTH]; |
|
|
|
|
if (ECDH_compute_key(envelope_key, SHA512_DIGEST_LENGTH, |
|
|
|
|
EC_KEY_get0_public_key(pkey), |
|
|
|
|
ephemeral, |
|
|
|
|
ecies_key_derivation) != SHA512_DIGEST_LENGTH) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("An error occurred while trying to compute the envelope key.\n"); |
|
|
|
|
#endif |
|
|
|
|
EC_KEY_free(ephemeral); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Determine the envelope and block lengths so we can allocate a buffer for the result.
|
|
|
|
|
if ((block_length = EVP_CIPHER_block_size(ECIES_CIPHER)) == 0 || |
|
|
|
|
block_length > EVP_MAX_BLOCK_LENGTH || |
|
|
|
|
(envelope_length = EC_POINT_point2oct(EC_KEY_get0_group(ephemeral), EC_KEY_get0_public_key(ephemeral), |
|
|
|
|
POINT_CONVERSION_COMPRESSED, NULL, 0, NULL)) == 0) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("Invalid block or envelope length. {block = %zu / envelope = %zu}\n", block_length, envelope_length); |
|
|
|
|
#endif |
|
|
|
|
EC_KEY_free(ephemeral); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// We use a conditional to pad the length if the input buffer is not evenly divisible by the block size.
|
|
|
|
|
cryptex.key = std::vector<unsigned char>(envelope_length); |
|
|
|
|
cryptex.mac = std::vector<unsigned char>(EVP_MD_size(ECIES_HASHER)); |
|
|
|
|
cryptex.orig = length; |
|
|
|
|
cryptex.body = std::vector<unsigned char>(length + (length % block_length ? (block_length - (length % block_length)) : 0)); |
|
|
|
|
|
|
|
|
|
// Store the public key portion of the ephemeral key.
|
|
|
|
|
if (EC_POINT_point2oct(EC_KEY_get0_group(ephemeral), |
|
|
|
|
EC_KEY_get0_public_key(ephemeral), |
|
|
|
|
POINT_CONVERSION_COMPRESSED, |
|
|
|
|
cryptex.key.data(), envelope_length, |
|
|
|
|
NULL) != envelope_length) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("An error occurred while trying to record the public portion of the envelope key.\n"); |
|
|
|
|
#endif |
|
|
|
|
EC_KEY_free(ephemeral); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
// The envelope key has been stored so we no longer need to keep the keys around.
|
|
|
|
|
EC_KEY_free(ephemeral); |
|
|
|
|
|
|
|
|
|
unsigned char iv[EVP_MAX_IV_LENGTH], block[EVP_MAX_BLOCK_LENGTH]; |
|
|
|
|
// For now we use an empty initialization vector.
|
|
|
|
|
memset(iv, 0, EVP_MAX_IV_LENGTH); |
|
|
|
|
|
|
|
|
|
// Setup the cipher context, the body length, and store a pointer to the body buffer location.
|
|
|
|
|
EVP_CIPHER_CTX cipher; |
|
|
|
|
EVP_CIPHER_CTX_init(&cipher); |
|
|
|
|
|
|
|
|
|
unsigned char *body = cryptex.body.data(); |
|
|
|
|
int body_length = cryptex.body.size(); |
|
|
|
|
|
|
|
|
|
// Initialize the cipher with the envelope key.
|
|
|
|
|
if (EVP_EncryptInit_ex(&cipher, ECIES_CIPHER, NULL, envelope_key, iv) != 1 || |
|
|
|
|
EVP_CIPHER_CTX_set_padding(&cipher, 0) != 1 || |
|
|
|
|
EVP_EncryptUpdate(&cipher, body, &body_length, vchText.data(), length - (length % block_length)) != 1) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("An error occurred while trying to secure the data using the chosen symmetric cipher.\n"); |
|
|
|
|
#endif |
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
// Check whether all of the data was encrypted. If they don't match up, we either have a partial block remaining, or an error occurred.
|
|
|
|
|
if (body_length != (int)length) { |
|
|
|
|
// Make sure all that remains is a partial block, and their wasn't an error.
|
|
|
|
|
if (length - body_length >= block_length) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("Unable to secure the data using the chosen symmetric cipher.\n"); |
|
|
|
|
#endif |
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Copy the remaining data into our partial block buffer. The memset() call ensures any extra bytes will be zero'ed out.
|
|
|
|
|
memset(block, 0, EVP_MAX_BLOCK_LENGTH); |
|
|
|
|
memcpy(block, vchText.data() + body_length, length - body_length); |
|
|
|
|
|
|
|
|
|
// Advance the body pointer to the location of the remaining space, and calculate just how much room is still available.
|
|
|
|
|
body += body_length; |
|
|
|
|
if ((body_length = cryptex.body.size() - body_length) < 0) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("The symmetric cipher overflowed!\n"); |
|
|
|
|
#endif |
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Pass the final partially filled data block into the cipher as a complete block. The padding will be removed during the decryption process.
|
|
|
|
|
else if (EVP_EncryptUpdate(&cipher, body, &body_length, block, block_length) != 1) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("Unable to secure the data using the chosen symmetric cipher\n"); |
|
|
|
|
#endif |
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Advance the pointer, then use pointer arithmetic to calculate how much of the body buffer has been used. The complex logic is needed so that we get
|
|
|
|
|
// the correct status regardless of whether there was a partial data block.
|
|
|
|
|
body += body_length; |
|
|
|
|
if ((body_length = cryptex.body.size() - (body - cryptex.body.data())) < 0) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("The symmetric cipher overflowed!\n"); |
|
|
|
|
#endif |
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
else if (EVP_EncryptFinal_ex(&cipher, body, &body_length) != 1) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("Unable to secure the data using the chosen symmetric cipher.\n"); |
|
|
|
|
#endif |
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher); |
|
|
|
|
|
|
|
|
|
// Generate an authenticated hash which can be used to validate the data during decryption.
|
|
|
|
|
HMAC_CTX hmac; |
|
|
|
|
HMAC_CTX_init(&hmac); |
|
|
|
|
unsigned int mac_length = cryptex.mac.size(); |
|
|
|
|
|
|
|
|
|
// At the moment we are generating the hash using encrypted data. At some point we may want to validate the original text instead.
|
|
|
|
|
if (HMAC_Init_ex(&hmac, envelope_key + key_length, key_length, ECIES_HASHER, NULL) != 1 || |
|
|
|
|
HMAC_Update(&hmac, cryptex.body.data(), cryptex.body.size()) != 1 || |
|
|
|
|
HMAC_Final(&hmac, cryptex.mac.data(), &mac_length) != 1) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("Unable to generate a data authentication code.\n"); |
|
|
|
|
#endif |
|
|
|
|
HMAC_CTX_cleanup(&hmac); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
HMAC_CTX_cleanup(&hmac); |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool Decrypt(ecies_secure_t const &cryptex, std::vector<unsigned char> &vchText ) |
|
|
|
|
{ |
|
|
|
|
size_t key_length; |
|
|
|
|
if ((key_length = EVP_CIPHER_key_length(ECIES_CIPHER)) * 2 > SHA512_DIGEST_LENGTH) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("The key derivation method will not produce enough envelope key material for the chosen ciphers. {envelope = %i / required = %zu}\n", |
|
|
|
|
SHA512_DIGEST_LENGTH / 8, (key_length * 2) / 8); |
|
|
|
|
#endif |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Create the ephemeral key used specifically for this block of data.
|
|
|
|
|
EC_KEY *ephemeral; |
|
|
|
|
if (!(ephemeral = EC_KEY_new())) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("An error occurred while trying to generate the ephemeral key.\n"); |
|
|
|
|
#endif |
|
|
|
|
return false; |
|
|
|
|
} else { |
|
|
|
|
const EC_GROUP *group = NULL; |
|
|
|
|
if( !(group = EC_KEY_get0_group(pkey))) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("An error occurred in EC_KEY_get0_group.\n"); |
|
|
|
|
#endif |
|
|
|
|
EC_KEY_free(ephemeral); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
if (EC_KEY_set_group(ephemeral, group) != 1) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("EC_KEY_set_group failed.\n"); |
|
|
|
|
#endif |
|
|
|
|
EC_KEY_free(ephemeral); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
EC_POINT *point = NULL; |
|
|
|
|
if (!(point = EC_POINT_new(group))) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("EC_POINT_new failed.\n"); |
|
|
|
|
#endif |
|
|
|
|
EC_KEY_free(ephemeral); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (EC_POINT_oct2point(group, point, cryptex.key.data(), cryptex.key.size(), NULL) != 1) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("EC_POINT_oct2point failed.\n"); |
|
|
|
|
#endif |
|
|
|
|
EC_KEY_free(ephemeral); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (EC_KEY_set_public_key(ephemeral, point) != 1) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("EC_KEY_set_public_key failed.\n"); |
|
|
|
|
#endif |
|
|
|
|
EC_POINT_free(point); |
|
|
|
|
EC_KEY_free(ephemeral); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
EC_POINT_free(point); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (EC_KEY_check_key(ephemeral) != 1) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("EC_KEY_check_key ephemeral failed.\n"); |
|
|
|
|
#endif |
|
|
|
|
EC_KEY_free(ephemeral); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Use the intersection of the provided keys to generate the envelope data used by the ciphers below. The ecies_key_derivation() function uses
|
|
|
|
|
// SHA 512 to ensure we have a sufficient amount of envelope key material and that the material created is sufficiently secure.
|
|
|
|
|
unsigned char envelope_key[SHA512_DIGEST_LENGTH]; |
|
|
|
|
if (ECDH_compute_key(envelope_key, SHA512_DIGEST_LENGTH, |
|
|
|
|
EC_KEY_get0_public_key(ephemeral), |
|
|
|
|
pkey, |
|
|
|
|
ecies_key_derivation) != SHA512_DIGEST_LENGTH) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("An error occurred while trying to compute the envelope key.\n"); |
|
|
|
|
#endif |
|
|
|
|
EC_KEY_free(ephemeral); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// The envelope key material has been extracted, so we no longer need the user and ephemeral keys.
|
|
|
|
|
EC_KEY_free(ephemeral); |
|
|
|
|
|
|
|
|
|
// Use the authenticated hash of the ciphered data to ensure it was not modified after being encrypted.
|
|
|
|
|
HMAC_CTX hmac; |
|
|
|
|
HMAC_CTX_init(&hmac); |
|
|
|
|
unsigned int mac_length = EVP_MAX_MD_SIZE; |
|
|
|
|
unsigned char md[EVP_MAX_MD_SIZE]; |
|
|
|
|
|
|
|
|
|
// At the moment we are generating the hash using encrypted data. At some point we may want to validate the original text instead.
|
|
|
|
|
if (HMAC_Init_ex(&hmac, envelope_key + key_length, key_length, ECIES_HASHER, NULL) != 1 || |
|
|
|
|
HMAC_Update(&hmac, cryptex.body.data(), cryptex.body.size()) != 1 || |
|
|
|
|
HMAC_Final(&hmac, md, &mac_length) != 1) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("Unable to generate a data authentication code.\n"); |
|
|
|
|
#endif |
|
|
|
|
HMAC_CTX_cleanup(&hmac); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
HMAC_CTX_cleanup(&hmac); |
|
|
|
|
|
|
|
|
|
// We can use the generated hash to ensure the encrypted data was not altered after being encrypted.
|
|
|
|
|
if (mac_length != cryptex.mac.size() || memcmp(md, cryptex.mac.data(), mac_length)) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("The authentication code was invalid! The ciphered data has been corrupted!\n"); |
|
|
|
|
#endif |
|
|
|
|
return NULL; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Create a buffer to hold the result.
|
|
|
|
|
int output_length = cryptex.body.size(); |
|
|
|
|
vchText.resize(output_length+1); |
|
|
|
|
unsigned char *block, *output; |
|
|
|
|
block = output = vchText.data(); |
|
|
|
|
|
|
|
|
|
unsigned char iv[EVP_MAX_IV_LENGTH]; |
|
|
|
|
// For now we use an empty initialization vector. We also clear out the result buffer just to be on the safe side.
|
|
|
|
|
memset(iv, 0, EVP_MAX_IV_LENGTH); |
|
|
|
|
memset(output, 0, output_length + 1); |
|
|
|
|
|
|
|
|
|
// Setup the cipher context, the body length, and store a pointer to the body buffer location.
|
|
|
|
|
EVP_CIPHER_CTX cipher; |
|
|
|
|
EVP_CIPHER_CTX_init(&cipher); |
|
|
|
|
|
|
|
|
|
// Decrypt the data using the chosen symmetric cipher.
|
|
|
|
|
if (EVP_DecryptInit_ex(&cipher, ECIES_CIPHER, NULL, envelope_key, iv) != 1 || |
|
|
|
|
EVP_CIPHER_CTX_set_padding(&cipher, 0) != 1 || |
|
|
|
|
EVP_DecryptUpdate(&cipher, block, &output_length, cryptex.body.data(), cryptex.body.size()) != 1) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("Unable to decrypt the data using the chosen symmetric cipher.\n"); |
|
|
|
|
#endif |
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
block += output_length; |
|
|
|
|
if ((output_length = cryptex.body.size() - output_length) != 0) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("The symmetric cipher failed to properly decrypt the correct amount of data!\n"); |
|
|
|
|
#endif |
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (EVP_DecryptFinal_ex(&cipher, block, &output_length) != 1) { |
|
|
|
|
#ifdef DEBUG_ECIES |
|
|
|
|
printf("Unable to decrypt the data using the chosen symmetric cipher.\n"); |
|
|
|
|
#endif |
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher); |
|
|
|
|
|
|
|
|
|
vchText.resize(cryptex.orig); |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
}; // end of anonymous namespace
|
|
|
|
@ -340,6 +717,15 @@ bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig)
@@ -340,6 +717,15 @@ bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig)
|
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool CKey::Decrypt(ecies_secure_t const &cryptex, std::vector<unsigned char> &vchText ) |
|
|
|
|
{ |
|
|
|
|
if (!fValid) |
|
|
|
|
return false; |
|
|
|
|
CECKey key; |
|
|
|
|
key.SetSecretBytes(vch); |
|
|
|
|
return key.Decrypt(cryptex, vchText); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool CPubKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) const { |
|
|
|
|
if (!IsValid()) |
|
|
|
|
return false; |
|
|
|
@ -394,3 +780,14 @@ bool CPubKey::Decompress() {
@@ -394,3 +780,14 @@ bool CPubKey::Decompress() {
|
|
|
|
|
key.GetPubKey(*this, false); |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool CPubKey::Encrypt(std::vector<unsigned char> const &vchText, ecies_secure_t &cryptex) |
|
|
|
|
{ |
|
|
|
|
if (!IsValid()) |
|
|
|
|
return false; |
|
|
|
|
CECKey key; |
|
|
|
|
if (!key.SetPubKey(*this)) |
|
|
|
|
return false; |
|
|
|
|
return key.Encrypt(vchText, cryptex); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|