include implementation for ECIES (ECC + AES + SHA) for asymetric encryption

This commit is contained in:
Miguel Freitas 2013-08-09 00:12:16 -03:00
parent 07749a22e2
commit f6639dd11b
3 changed files with 453 additions and 0 deletions

View File

@ -5,9 +5,15 @@
#include <openssl/ecdsa.h> #include <openssl/ecdsa.h>
#include <openssl/rand.h> #include <openssl/rand.h>
#include <openssl/obj_mac.h> #include <openssl/obj_mac.h>
#include <openssl/ecdh.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include "key.h" #include "key.h"
#ifdef DEBUG_ECIES
#include "util.h"
#endif
// anonymous namespace with local implementation code (OpenSSL interaction) // anonymous namespace with local implementation code (OpenSSL interaction)
namespace { namespace {
@ -123,6 +129,14 @@ err:
return ret; return ret;
} }
void * ecies_key_derivation(const void *input, size_t ilen, void *output, size_t *olen) {
if (*olen < SHA512_DIGEST_LENGTH) {
return NULL;
}
*olen = SHA512_DIGEST_LENGTH;
return SHA512(static_cast<const unsigned char*>(input), ilen, static_cast<unsigned char*>(output));
}
// RAII Wrapper around OpenSSL's EC_KEY // RAII Wrapper around OpenSSL's EC_KEY
class CECKey { class CECKey {
private: private:
@ -254,6 +268,369 @@ public:
ECDSA_SIG_free(sig); ECDSA_SIG_free(sig);
return ret; return ret;
} }
/**
* @file /cryptron/ecies.c
*
* @brief ECIES encryption/decryption functions.
*
* $Author: Ladar Levison $
* $Website: http://lavabit.com $
* $Date: 2010/08/06 06:02:03 $
* $Revision: a51931d0f81f6abe29ca91470931d41a374508a7 $
*
*/
bool Encrypt(std::vector<unsigned char> const &vchText, ecies_secure_t &cryptex)
{
size_t length = vchText.size();
size_t envelope_length, block_length, key_length;
if ((key_length = EVP_CIPHER_key_length(ECIES_CIPHER)) * 2 > SHA512_DIGEST_LENGTH) {
#ifdef DEBUG_ECIES
printf("The key derivation method will not produce enough envelope key material for the chosen ciphers. {envelope = %i / required = %zu}\n",
SHA512_DIGEST_LENGTH / 8, (key_length * 2) / 8);
#endif
return false;
}
// Create the ephemeral key used specifically for this block of data.
EC_KEY *ephemeral;
if (!(ephemeral = EC_KEY_new())) {
#ifdef DEBUG_ECIES
printf("An error occurred while trying to generate the ephemeral key.\n");
#endif
return false;
} else {
const EC_GROUP *group = NULL;
if( !(group = EC_KEY_get0_group(pkey))) {
#ifdef DEBUG_ECIES
printf("An error occurred in EC_KEY_get0_group.\n");
#endif
EC_KEY_free(ephemeral);
return false;
}
if (EC_KEY_set_group(ephemeral, group) != 1) {
#ifdef DEBUG_ECIES
printf("EC_KEY_set_group failed.\n");
#endif
EC_KEY_free(ephemeral);
return false;
}
}
if (EC_KEY_generate_key(ephemeral) != 1) {
#ifdef DEBUG_ECIES
printf("EC_KEY_generate_key failed.\n");
#endif
return false;
}
// Use the intersection of the provided keys to generate the envelope data used by the ciphers below. The ecies_key_derivation() function uses
// SHA 512 to ensure we have a sufficient amount of envelope key material and that the material created is sufficiently secure.
unsigned char envelope_key[SHA512_DIGEST_LENGTH];
if (ECDH_compute_key(envelope_key, SHA512_DIGEST_LENGTH,
EC_KEY_get0_public_key(pkey),
ephemeral,
ecies_key_derivation) != SHA512_DIGEST_LENGTH) {
#ifdef DEBUG_ECIES
printf("An error occurred while trying to compute the envelope key.\n");
#endif
EC_KEY_free(ephemeral);
return false;
}
// Determine the envelope and block lengths so we can allocate a buffer for the result.
if ((block_length = EVP_CIPHER_block_size(ECIES_CIPHER)) == 0 ||
block_length > EVP_MAX_BLOCK_LENGTH ||
(envelope_length = EC_POINT_point2oct(EC_KEY_get0_group(ephemeral), EC_KEY_get0_public_key(ephemeral),
POINT_CONVERSION_COMPRESSED, NULL, 0, NULL)) == 0) {
#ifdef DEBUG_ECIES
printf("Invalid block or envelope length. {block = %zu / envelope = %zu}\n", block_length, envelope_length);
#endif
EC_KEY_free(ephemeral);
return false;
}
// We use a conditional to pad the length if the input buffer is not evenly divisible by the block size.
cryptex.key = std::vector<unsigned char>(envelope_length);
cryptex.mac = std::vector<unsigned char>(EVP_MD_size(ECIES_HASHER));
cryptex.orig = length;
cryptex.body = std::vector<unsigned char>(length + (length % block_length ? (block_length - (length % block_length)) : 0));
// Store the public key portion of the ephemeral key.
if (EC_POINT_point2oct(EC_KEY_get0_group(ephemeral),
EC_KEY_get0_public_key(ephemeral),
POINT_CONVERSION_COMPRESSED,
cryptex.key.data(), envelope_length,
NULL) != envelope_length) {
#ifdef DEBUG_ECIES
printf("An error occurred while trying to record the public portion of the envelope key.\n");
#endif
EC_KEY_free(ephemeral);
return false;
}
// The envelope key has been stored so we no longer need to keep the keys around.
EC_KEY_free(ephemeral);
unsigned char iv[EVP_MAX_IV_LENGTH], block[EVP_MAX_BLOCK_LENGTH];
// For now we use an empty initialization vector.
memset(iv, 0, EVP_MAX_IV_LENGTH);
// Setup the cipher context, the body length, and store a pointer to the body buffer location.
EVP_CIPHER_CTX cipher;
EVP_CIPHER_CTX_init(&cipher);
unsigned char *body = cryptex.body.data();
int body_length = cryptex.body.size();
// Initialize the cipher with the envelope key.
if (EVP_EncryptInit_ex(&cipher, ECIES_CIPHER, NULL, envelope_key, iv) != 1 ||
EVP_CIPHER_CTX_set_padding(&cipher, 0) != 1 ||
EVP_EncryptUpdate(&cipher, body, &body_length, vchText.data(), length - (length % block_length)) != 1) {
#ifdef DEBUG_ECIES
printf("An error occurred while trying to secure the data using the chosen symmetric cipher.\n");
#endif
EVP_CIPHER_CTX_cleanup(&cipher);
return false;
}
// Check whether all of the data was encrypted. If they don't match up, we either have a partial block remaining, or an error occurred.
if (body_length != (int)length) {
// Make sure all that remains is a partial block, and their wasn't an error.
if (length - body_length >= block_length) {
#ifdef DEBUG_ECIES
printf("Unable to secure the data using the chosen symmetric cipher.\n");
#endif
EVP_CIPHER_CTX_cleanup(&cipher);
return false;
}
// Copy the remaining data into our partial block buffer. The memset() call ensures any extra bytes will be zero'ed out.
memset(block, 0, EVP_MAX_BLOCK_LENGTH);
memcpy(block, vchText.data() + body_length, length - body_length);
// Advance the body pointer to the location of the remaining space, and calculate just how much room is still available.
body += body_length;
if ((body_length = cryptex.body.size() - body_length) < 0) {
#ifdef DEBUG_ECIES
printf("The symmetric cipher overflowed!\n");
#endif
EVP_CIPHER_CTX_cleanup(&cipher);
return false;
}
// Pass the final partially filled data block into the cipher as a complete block. The padding will be removed during the decryption process.
else if (EVP_EncryptUpdate(&cipher, body, &body_length, block, block_length) != 1) {
#ifdef DEBUG_ECIES
printf("Unable to secure the data using the chosen symmetric cipher\n");
#endif
EVP_CIPHER_CTX_cleanup(&cipher);
return false;
}
}
// Advance the pointer, then use pointer arithmetic to calculate how much of the body buffer has been used. The complex logic is needed so that we get
// the correct status regardless of whether there was a partial data block.
body += body_length;
if ((body_length = cryptex.body.size() - (body - cryptex.body.data())) < 0) {
#ifdef DEBUG_ECIES
printf("The symmetric cipher overflowed!\n");
#endif
EVP_CIPHER_CTX_cleanup(&cipher);
return false;
}
else if (EVP_EncryptFinal_ex(&cipher, body, &body_length) != 1) {
#ifdef DEBUG_ECIES
printf("Unable to secure the data using the chosen symmetric cipher.\n");
#endif
EVP_CIPHER_CTX_cleanup(&cipher);
return false;
}
EVP_CIPHER_CTX_cleanup(&cipher);
// Generate an authenticated hash which can be used to validate the data during decryption.
HMAC_CTX hmac;
HMAC_CTX_init(&hmac);
unsigned int mac_length = cryptex.mac.size();
// At the moment we are generating the hash using encrypted data. At some point we may want to validate the original text instead.
if (HMAC_Init_ex(&hmac, envelope_key + key_length, key_length, ECIES_HASHER, NULL) != 1 ||
HMAC_Update(&hmac, cryptex.body.data(), cryptex.body.size()) != 1 ||
HMAC_Final(&hmac, cryptex.mac.data(), &mac_length) != 1) {
#ifdef DEBUG_ECIES
printf("Unable to generate a data authentication code.\n");
#endif
HMAC_CTX_cleanup(&hmac);
return false;
}
HMAC_CTX_cleanup(&hmac);
return true;
}
bool Decrypt(ecies_secure_t const &cryptex, std::vector<unsigned char> &vchText )
{
size_t key_length;
if ((key_length = EVP_CIPHER_key_length(ECIES_CIPHER)) * 2 > SHA512_DIGEST_LENGTH) {
#ifdef DEBUG_ECIES
printf("The key derivation method will not produce enough envelope key material for the chosen ciphers. {envelope = %i / required = %zu}\n",
SHA512_DIGEST_LENGTH / 8, (key_length * 2) / 8);
#endif
return false;
}
// Create the ephemeral key used specifically for this block of data.
EC_KEY *ephemeral;
if (!(ephemeral = EC_KEY_new())) {
#ifdef DEBUG_ECIES
printf("An error occurred while trying to generate the ephemeral key.\n");
#endif
return false;
} else {
const EC_GROUP *group = NULL;
if( !(group = EC_KEY_get0_group(pkey))) {
#ifdef DEBUG_ECIES
printf("An error occurred in EC_KEY_get0_group.\n");
#endif
EC_KEY_free(ephemeral);
return false;
}
if (EC_KEY_set_group(ephemeral, group) != 1) {
#ifdef DEBUG_ECIES
printf("EC_KEY_set_group failed.\n");
#endif
EC_KEY_free(ephemeral);
return false;
}
EC_POINT *point = NULL;
if (!(point = EC_POINT_new(group))) {
#ifdef DEBUG_ECIES
printf("EC_POINT_new failed.\n");
#endif
EC_KEY_free(ephemeral);
return false;
}
if (EC_POINT_oct2point(group, point, cryptex.key.data(), cryptex.key.size(), NULL) != 1) {
#ifdef DEBUG_ECIES
printf("EC_POINT_oct2point failed.\n");
#endif
EC_KEY_free(ephemeral);
return false;
}
if (EC_KEY_set_public_key(ephemeral, point) != 1) {
#ifdef DEBUG_ECIES
printf("EC_KEY_set_public_key failed.\n");
#endif
EC_POINT_free(point);
EC_KEY_free(ephemeral);
return false;
}
EC_POINT_free(point);
}
if (EC_KEY_check_key(ephemeral) != 1) {
#ifdef DEBUG_ECIES
printf("EC_KEY_check_key ephemeral failed.\n");
#endif
EC_KEY_free(ephemeral);
return false;
}
// Use the intersection of the provided keys to generate the envelope data used by the ciphers below. The ecies_key_derivation() function uses
// SHA 512 to ensure we have a sufficient amount of envelope key material and that the material created is sufficiently secure.
unsigned char envelope_key[SHA512_DIGEST_LENGTH];
if (ECDH_compute_key(envelope_key, SHA512_DIGEST_LENGTH,
EC_KEY_get0_public_key(ephemeral),
pkey,
ecies_key_derivation) != SHA512_DIGEST_LENGTH) {
#ifdef DEBUG_ECIES
printf("An error occurred while trying to compute the envelope key.\n");
#endif
EC_KEY_free(ephemeral);
return false;
}
// The envelope key material has been extracted, so we no longer need the user and ephemeral keys.
EC_KEY_free(ephemeral);
// Use the authenticated hash of the ciphered data to ensure it was not modified after being encrypted.
HMAC_CTX hmac;
HMAC_CTX_init(&hmac);
unsigned int mac_length = EVP_MAX_MD_SIZE;
unsigned char md[EVP_MAX_MD_SIZE];
// At the moment we are generating the hash using encrypted data. At some point we may want to validate the original text instead.
if (HMAC_Init_ex(&hmac, envelope_key + key_length, key_length, ECIES_HASHER, NULL) != 1 ||
HMAC_Update(&hmac, cryptex.body.data(), cryptex.body.size()) != 1 ||
HMAC_Final(&hmac, md, &mac_length) != 1) {
#ifdef DEBUG_ECIES
printf("Unable to generate a data authentication code.\n");
#endif
HMAC_CTX_cleanup(&hmac);
return false;
}
HMAC_CTX_cleanup(&hmac);
// We can use the generated hash to ensure the encrypted data was not altered after being encrypted.
if (mac_length != cryptex.mac.size() || memcmp(md, cryptex.mac.data(), mac_length)) {
#ifdef DEBUG_ECIES
printf("The authentication code was invalid! The ciphered data has been corrupted!\n");
#endif
return NULL;
}
// Create a buffer to hold the result.
int output_length = cryptex.body.size();
vchText.resize(output_length+1);
unsigned char *block, *output;
block = output = vchText.data();
unsigned char iv[EVP_MAX_IV_LENGTH];
// For now we use an empty initialization vector. We also clear out the result buffer just to be on the safe side.
memset(iv, 0, EVP_MAX_IV_LENGTH);
memset(output, 0, output_length + 1);
// Setup the cipher context, the body length, and store a pointer to the body buffer location.
EVP_CIPHER_CTX cipher;
EVP_CIPHER_CTX_init(&cipher);
// Decrypt the data using the chosen symmetric cipher.
if (EVP_DecryptInit_ex(&cipher, ECIES_CIPHER, NULL, envelope_key, iv) != 1 ||
EVP_CIPHER_CTX_set_padding(&cipher, 0) != 1 ||
EVP_DecryptUpdate(&cipher, block, &output_length, cryptex.body.data(), cryptex.body.size()) != 1) {
#ifdef DEBUG_ECIES
printf("Unable to decrypt the data using the chosen symmetric cipher.\n");
#endif
EVP_CIPHER_CTX_cleanup(&cipher);
return false;
}
block += output_length;
if ((output_length = cryptex.body.size() - output_length) != 0) {
#ifdef DEBUG_ECIES
printf("The symmetric cipher failed to properly decrypt the correct amount of data!\n");
#endif
EVP_CIPHER_CTX_cleanup(&cipher);
return false;
}
if (EVP_DecryptFinal_ex(&cipher, block, &output_length) != 1) {
#ifdef DEBUG_ECIES
printf("Unable to decrypt the data using the chosen symmetric cipher.\n");
#endif
EVP_CIPHER_CTX_cleanup(&cipher);
return false;
}
EVP_CIPHER_CTX_cleanup(&cipher);
vchText.resize(cryptex.orig);
return true;
}
}; };
}; // end of anonymous namespace }; // end of anonymous namespace
@ -340,6 +717,15 @@ bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig)
return true; return true;
} }
bool CKey::Decrypt(ecies_secure_t const &cryptex, std::vector<unsigned char> &vchText )
{
if (!fValid)
return false;
CECKey key;
key.SetSecretBytes(vch);
return key.Decrypt(cryptex, vchText);
}
bool CPubKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) const { bool CPubKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) const {
if (!IsValid()) if (!IsValid())
return false; return false;
@ -394,3 +780,14 @@ bool CPubKey::Decompress() {
key.GetPubKey(*this, false); key.GetPubKey(*this, false);
return true; return true;
} }
bool CPubKey::Encrypt(std::vector<unsigned char> const &vchText, ecies_secure_t &cryptex)
{
if (!IsValid())
return false;
CECKey key;
if (!key.SetPubKey(*this))
return false;
return key.Encrypt(vchText, cryptex);
}

View File

@ -36,6 +36,8 @@ public:
CScriptID(const uint160 &in) : uint160(in) { } CScriptID(const uint160 &in) : uint160(in) { }
}; };
struct ecies_secure_t;
/** An encapsulated public key. */ /** An encapsulated public key. */
class CPubKey { class CPubKey {
private: private:
@ -161,6 +163,9 @@ public:
// Turn this public key into an uncompressed public key. // Turn this public key into an uncompressed public key.
bool Decompress(); bool Decompress();
// Encrypt with public key
bool Encrypt(std::vector<unsigned char> const &vchText, ecies_secure_t &cryptex);
}; };
@ -251,6 +256,30 @@ public:
// 0x1D = second key with even y, 0x1E = second key with odd y, // 0x1D = second key with even y, 0x1E = second key with odd y,
// add 0x04 for compressed keys. // add 0x04 for compressed keys.
bool SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const; bool SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const;
bool Decrypt(ecies_secure_t const &cryptex, std::vector<unsigned char> &vchText );
};
/**
* @file /cryptron/ecies.h
*
* @brief ECIES module functions.
*
* $Author: Ladar Levison $
* $Website: http://lavabit.com $
* $Date: 2010/08/06 06:02:03 $
* $Revision: a51931d0f81f6abe29ca91470931d41a374508a7 $
*
*/
#define ECIES_CIPHER EVP_aes_256_cbc()
#define ECIES_HASHER EVP_sha512()
struct ecies_secure_t {
std::vector<unsigned char> key;
std::vector<unsigned char> mac;
size_t orig;
std::vector<unsigned char> body;
}; };
#endif #endif

View File

@ -345,6 +345,31 @@ void ThreadSessionAlerts()
} }
} }
void encryptDecryptTest()
{
CKey key1, key2;
key1.MakeNewKey(true);
key2.MakeNewKey(true);
string sTextIn("Encrypted with public key, decrypted with private key");
std::vector<unsigned char> textIn(sTextIn.begin(), sTextIn.end());
ecies_secure_t sec;
bool encrypted = key1.GetPubKey().Encrypt(textIn, sec);
printf("encrypted = %d [key %d, mac %d, orig %d, body %d]\n", encrypted,
sec.key.size(), sec.mac.size(), sec.orig, sec.body.size());
std::vector<unsigned char> textOut;
bool decrypt1 = key1.Decrypt(sec, textOut);
printf("decrypt1 = %d\n", decrypt1);
if( decrypt1 ) {
string s((char *)textOut.data(), textOut.size());
printf("textOut = '%s'\n", s.c_str());
}
bool decrypt2 = key2.Decrypt(sec, textOut);
printf("decrypt2 = %d\n", decrypt2);
}
void startSessionTorrent(boost::thread_group& threadGroup) void startSessionTorrent(boost::thread_group& threadGroup)
{ {
@ -355,6 +380,8 @@ void startSessionTorrent(boost::thread_group& threadGroup)
threadGroup.create_thread(boost::bind(&ThreadWaitExtIP)); threadGroup.create_thread(boost::bind(&ThreadWaitExtIP));
threadGroup.create_thread(boost::bind(&ThreadMaintainDHTNodes)); threadGroup.create_thread(boost::bind(&ThreadMaintainDHTNodes));
threadGroup.create_thread(boost::bind(&ThreadSessionAlerts)); threadGroup.create_thread(boost::bind(&ThreadSessionAlerts));
encryptDecryptTest();
} }
void stopSessionTorrent() void stopSessionTorrent()