twister-core/src/rpc.cpp

2485 lines
84 KiB
C++
Raw Normal View History

// Copyright (c) 2010 Satoshi Nakamoto
// Distributed under the MIT/X11 software license, see the accompanying
// file license.txt or http://www.opensource.org/licenses/mit-license.php.
#include "headers.h"
#include "cryptopp/sha.h"
2011-05-14 15:57:34 -05:00
#include "db.h"
2011-05-14 16:20:30 -05:00
#include "net.h"
2011-05-15 16:52:31 -05:00
#include "init.h"
#undef printf
#include <boost/asio.hpp>
#include <boost/iostreams/concepts.hpp>
#include <boost/iostreams/stream.hpp>
#include <boost/algorithm/string.hpp>
#ifdef USE_SSL
#include <boost/asio/ssl.hpp>
#include <boost/filesystem.hpp>
#include <boost/filesystem/fstream.hpp>
typedef boost::asio::ssl::stream<boost::asio::ip::tcp::socket> SSLStream;
#endif
#include "json/json_spirit_reader_template.h"
#include "json/json_spirit_writer_template.h"
#include "json/json_spirit_utils.h"
#define printf OutputDebugStringF
// MinGW 3.4.5 gets "fatal error: had to relocate PCH" if the json headers are
// precompiled in headers.h. The problem might be when the pch file goes over
// a certain size around 145MB. If we need access to json_spirit outside this
// file, we could use the compiled json_spirit option.
using namespace std;
using namespace boost;
using namespace boost::asio;
using namespace json_spirit;
void ThreadRPCServer2(void* parg);
typedef Value(*rpcfn_type)(const Array& params, bool fHelp);
extern map<string, rpcfn_type> mapCallTable;
2011-06-29 00:47:41 +02:00
static int64 nWalletUnlockTime;
static CCriticalSection cs_nWalletUnlockTime;
Object JSONRPCError(int code, const string& message)
{
Object error;
error.push_back(Pair("code", code));
error.push_back(Pair("message", message));
return error;
}
void PrintConsole(const char* format, ...)
{
char buffer[50000];
int limit = sizeof(buffer);
va_list arg_ptr;
va_start(arg_ptr, format);
int ret = _vsnprintf(buffer, limit, format, arg_ptr);
va_end(arg_ptr);
if (ret < 0 || ret >= limit)
{
ret = limit - 1;
buffer[limit-1] = 0;
}
printf("%s", buffer);
#if defined(__WXMSW__) && defined(GUI)
MyMessageBox(buffer, "Bitcoin", wxOK | wxICON_EXCLAMATION);
#else
fprintf(stdout, "%s", buffer);
#endif
}
int64 AmountFromValue(const Value& value)
{
double dAmount = value.get_real();
if (dAmount <= 0.0 || dAmount > 21000000.0)
throw JSONRPCError(-3, "Invalid amount");
int64 nAmount = roundint64(dAmount * COIN);
if (!MoneyRange(nAmount))
throw JSONRPCError(-3, "Invalid amount");
return nAmount;
}
Value ValueFromAmount(int64 amount)
{
return (double)amount / (double)COIN;
}
void WalletTxToJSON(const CWalletTx& wtx, Object& entry)
{
entry.push_back(Pair("confirmations", wtx.GetDepthInMainChain()));
entry.push_back(Pair("txid", wtx.GetHash().GetHex()));
entry.push_back(Pair("time", (boost::int64_t)wtx.GetTxTime()));
BOOST_FOREACH(const PAIRTYPE(string,string)& item, wtx.mapValue)
entry.push_back(Pair(item.first, item.second));
}
string AccountFromValue(const Value& value)
{
string strAccount = value.get_str();
if (strAccount == "*")
throw JSONRPCError(-11, "Invalid account name");
return strAccount;
}
///
/// Note: This interface may still be subject to change.
///
Value help(const Array& params, bool fHelp)
{
if (fHelp || params.size() > 1)
throw runtime_error(
"help [command]\n"
"List commands, or get help for a command.");
string strCommand;
if (params.size() > 0)
strCommand = params[0].get_str();
string strRet;
set<rpcfn_type> setDone;
for (map<string, rpcfn_type>::iterator mi = mapCallTable.begin(); mi != mapCallTable.end(); ++mi)
{
string strMethod = (*mi).first;
// We already filter duplicates, but these deprecated screw up the sort order
if (strMethod == "getamountreceived" ||
strMethod == "getallreceived" ||
(strMethod.find("label") != string::npos))
continue;
if (strCommand != "" && strMethod != strCommand)
continue;
try
{
Array params;
rpcfn_type pfn = (*mi).second;
if (setDone.insert(pfn).second)
(*pfn)(params, true);
}
catch (std::exception& e)
{
// Help text is returned in an exception
string strHelp = string(e.what());
if (strCommand == "")
if (strHelp.find('\n') != -1)
strHelp = strHelp.substr(0, strHelp.find('\n'));
strRet += strHelp + "\n";
}
}
if (strRet == "")
strRet = strprintf("help: unknown command: %s\n", strCommand.c_str());
strRet = strRet.substr(0,strRet.size()-1);
return strRet;
}
Value stop(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 0)
throw runtime_error(
"stop\n"
"Stop bitcoin server.");
// Shutdown will take long enough that the response should get back
CreateThread(Shutdown, NULL);
return "bitcoin server stopping";
}
Value getblockcount(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 0)
throw runtime_error(
"getblockcount\n"
"Returns the number of blocks in the longest block chain.");
return nBestHeight;
}
Value getblocknumber(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 0)
throw runtime_error(
"getblocknumber\n"
"Returns the block number of the latest block in the longest block chain.");
return nBestHeight;
}
Value getconnectioncount(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 0)
throw runtime_error(
"getconnectioncount\n"
"Returns the number of connections to other nodes.");
return (int)vNodes.size();
}
double GetDifficulty()
{
// Floating point number that is a multiple of the minimum difficulty,
// minimum difficulty = 1.0.
if (pindexBest == NULL)
return 1.0;
int nShift = (pindexBest->nBits >> 24) & 0xff;
double dDiff =
(double)0x0000ffff / (double)(pindexBest->nBits & 0x00ffffff);
while (nShift < 29)
{
dDiff *= 256.0;
nShift++;
}
while (nShift > 29)
{
dDiff /= 256.0;
nShift--;
}
return dDiff;
}
Value getdifficulty(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 0)
throw runtime_error(
"getdifficulty\n"
"Returns the proof-of-work difficulty as a multiple of the minimum difficulty.");
return GetDifficulty();
}
Value getgenerate(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 0)
throw runtime_error(
"getgenerate\n"
"Returns true or false.");
return (bool)fGenerateBitcoins;
}
Value setgenerate(const Array& params, bool fHelp)
{
if (fHelp || params.size() < 1 || params.size() > 2)
throw runtime_error(
"setgenerate <generate> [genproclimit]\n"
"<generate> is true or false to turn generation on or off.\n"
"Generation is limited to [genproclimit] processors, -1 is unlimited.");
bool fGenerate = true;
if (params.size() > 0)
fGenerate = params[0].get_bool();
if (params.size() > 1)
{
int nGenProcLimit = params[1].get_int();
fLimitProcessors = (nGenProcLimit != -1);
WriteSetting("fLimitProcessors", fLimitProcessors);
if (nGenProcLimit != -1)
WriteSetting("nLimitProcessors", nLimitProcessors = nGenProcLimit);
if (nGenProcLimit == 0)
fGenerate = false;
}
GenerateBitcoins(fGenerate, pwalletMain);
return Value::null;
}
Value gethashespersec(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 0)
throw runtime_error(
"gethashespersec\n"
"Returns a recent hashes per second performance measurement while generating.");
if (GetTimeMillis() - nHPSTimerStart > 8000)
return (boost::int64_t)0;
return (boost::int64_t)dHashesPerSec;
}
Value getinfo(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 0)
throw runtime_error(
"getinfo\n"
"Returns an object containing various state info.");
Object obj;
obj.push_back(Pair("version", (int)VERSION));
obj.push_back(Pair("balance", ValueFromAmount(pwalletMain->GetBalance())));
obj.push_back(Pair("blocks", (int)nBestHeight));
obj.push_back(Pair("connections", (int)vNodes.size()));
obj.push_back(Pair("proxy", (fUseProxy ? addrProxy.ToStringIPPort() : string())));
obj.push_back(Pair("generate", (bool)fGenerateBitcoins));
obj.push_back(Pair("genproclimit", (int)(fLimitProcessors ? nLimitProcessors : -1)));
obj.push_back(Pair("difficulty", (double)GetDifficulty()));
obj.push_back(Pair("hashespersec", gethashespersec(params, false)));
obj.push_back(Pair("testnet", fTestNet));
obj.push_back(Pair("keypoololdest", (boost::int64_t)pwalletMain->GetOldestKeyPoolTime()));
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
obj.push_back(Pair("keypoolsize", pwalletMain->GetKeyPoolSize()));
2011-02-23 14:24:16 -05:00
obj.push_back(Pair("paytxfee", ValueFromAmount(nTransactionFee)));
2011-06-29 00:47:41 +02:00
if (pwalletMain->IsCrypted())
obj.push_back(Pair("unlocked_until", (boost::int64_t)nWalletUnlockTime));
obj.push_back(Pair("errors", GetWarnings("statusbar")));
return obj;
}
Value getnewaddress(const Array& params, bool fHelp)
{
if (fHelp || params.size() > 1)
throw runtime_error(
"getnewaddress [account]\n"
"Returns a new bitcoin address for receiving payments. "
"If [account] is specified (recommended), it is added to the address book "
"so payments received with the address will be credited to [account].");
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
if (!pwalletMain->IsLocked())
pwalletMain->TopUpKeyPool();
if (pwalletMain->GetKeyPoolSize() < 1)
throw JSONRPCError(-12, "Error: Keypool ran out, please call keypoolrefill first");
// Parse the account first so we don't generate a key if there's an error
string strAccount;
if (params.size() > 0)
strAccount = AccountFromValue(params[0]);
// Generate a new key that is added to wallet
string strAddress = CBitcoinAddress(pwalletMain->GetOrReuseKeyFromPool()).ToString();
// This could be done in the same main CS as GetKeyFromKeyPool.
CRITICAL_BLOCK(pwalletMain->cs_mapAddressBook)
pwalletMain->SetAddressBookName(strAddress, strAccount);
return strAddress;
}
// requires cs_main, cs_mapWallet, cs_mapAddressBook locks
CBitcoinAddress GetAccountAddress(string strAccount, bool bForceNew=false)
{
string strAddress;
CWalletDB walletdb(pwalletMain->strWalletFile);
CAccount account;
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
CRITICAL_BLOCK(pwalletMain->cs_mapAddressBook)
{
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
walletdb.ReadAccount(strAccount, account);
bool bKeyUsed = false;
// Check if the current key has been used
if (!account.vchPubKey.empty())
{
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
CScript scriptPubKey;
scriptPubKey.SetBitcoinAddress(account.vchPubKey);
for (map<uint256, CWalletTx>::iterator it = pwalletMain->mapWallet.begin();
it != pwalletMain->mapWallet.end() && !account.vchPubKey.empty();
++it)
{
const CWalletTx& wtx = (*it).second;
BOOST_FOREACH(const CTxOut& txout, wtx.vout)
if (txout.scriptPubKey == scriptPubKey)
bKeyUsed = true;
}
}
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
// Generate a new key
if (account.vchPubKey.empty() || bForceNew || bKeyUsed)
{
if (pwalletMain->GetKeyPoolSize() < 1)
{
if (bKeyUsed || bForceNew)
throw JSONRPCError(-12, "Error: Keypool ran out, please call topupkeypool first");
}
else
{
account.vchPubKey = pwalletMain->GetOrReuseKeyFromPool();
string strAddress = CBitcoinAddress(account.vchPubKey).ToString();
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
pwalletMain->SetAddressBookName(strAddress, strAccount);
walletdb.WriteAccount(strAccount, account);
}
}
}
return CBitcoinAddress(account.vchPubKey);
}
Value getaccountaddress(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 1)
throw runtime_error(
"getaccountaddress <account>\n"
"Returns the current bitcoin address for receiving payments to this account.");
// Parse the account first so we don't generate a key if there's an error
string strAccount = AccountFromValue(params[0]);
Value ret;
CRITICAL_BLOCK(cs_main)
CRITICAL_BLOCK(pwalletMain->cs_mapWallet)
CRITICAL_BLOCK(pwalletMain->cs_mapAddressBook)
{
ret = GetAccountAddress(strAccount).ToString();
}
return ret;
}
Value setaccount(const Array& params, bool fHelp)
{
if (fHelp || params.size() < 1 || params.size() > 2)
throw runtime_error(
"setaccount <bitcoinaddress> <account>\n"
"Sets the account associated with the given address.");
string strAddress = params[0].get_str();
CBitcoinAddress address(strAddress);
if (!address.IsValid())
throw JSONRPCError(-5, "Invalid bitcoin address");
string strAccount;
if (params.size() > 1)
strAccount = AccountFromValue(params[1]);
// Detect when changing the account of an address that is the 'unused current key' of another account:
CRITICAL_BLOCK(cs_main)
CRITICAL_BLOCK(pwalletMain->cs_mapWallet)
CRITICAL_BLOCK(pwalletMain->cs_mapAddressBook)
{
if (pwalletMain->mapAddressBook.count(address))
{
string strOldAccount = pwalletMain->mapAddressBook[address];
if (address == GetAccountAddress(strOldAccount))
GetAccountAddress(strOldAccount, true);
}
pwalletMain->SetAddressBookName(strAddress, strAccount);
}
return Value::null;
}
Value getaccount(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 1)
throw runtime_error(
"getaccount <bitcoinaddress>\n"
"Returns the account associated with the given address.");
string strAddress = params[0].get_str();
CBitcoinAddress address(strAddress);
string strAccount;
CRITICAL_BLOCK(pwalletMain->cs_mapAddressBook)
{
map<CBitcoinAddress, string>::iterator mi = pwalletMain->mapAddressBook.find(address);
if (mi != pwalletMain->mapAddressBook.end() && !(*mi).second.empty())
strAccount = (*mi).second;
}
return strAccount;
}
Value getaddressesbyaccount(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 1)
throw runtime_error(
"getaddressesbyaccount <account>\n"
"Returns the list of addresses for the given account.");
string strAccount = AccountFromValue(params[0]);
// Find all addresses that have the given account
Array ret;
CRITICAL_BLOCK(pwalletMain->cs_mapAddressBook)
{
BOOST_FOREACH(const PAIRTYPE(CBitcoinAddress, string)& item, pwalletMain->mapAddressBook)
{
const CBitcoinAddress& address = item.first;
const string& strName = item.second;
if (strName == strAccount)
ret.push_back(address.ToString());
}
}
return ret;
}
Value settxfee(const Array& params, bool fHelp)
{
if (fHelp || params.size() < 1 || params.size() > 1)
throw runtime_error(
"settxfee <amount>\n"
"<amount> is a real and is rounded to the nearest 0.00000001");
// Amount
int64 nAmount = 0;
if (params[0].get_real() != 0.0)
nAmount = AmountFromValue(params[0]); // rejects 0.0 amounts
nTransactionFee = nAmount;
return true;
}
Value sendtoaddress(const Array& params, bool fHelp)
{
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
if (pwalletMain->IsCrypted() && (fHelp || params.size() < 2 || params.size() > 4))
throw runtime_error(
"sendtoaddress <bitcoinaddress> <amount> [comment] [comment-to]\n"
"<amount> is a real and is rounded to the nearest 0.00000001\n"
"requires wallet passphrase to be set with walletpassphrase first");
if (!pwalletMain->IsCrypted() && (fHelp || params.size() < 2 || params.size() > 4))
throw runtime_error(
"sendtoaddress <bitcoinaddress> <amount> [comment] [comment-to]\n"
"<amount> is a real and is rounded to the nearest 0.00000001");
string strAddress = params[0].get_str();
// Amount
int64 nAmount = AmountFromValue(params[1]);
// Wallet comments
CWalletTx wtx;
if (params.size() > 2 && params[2].type() != null_type && !params[2].get_str().empty())
wtx.mapValue["comment"] = params[2].get_str();
if (params.size() > 3 && params[3].type() != null_type && !params[3].get_str().empty())
wtx.mapValue["to"] = params[3].get_str();
CRITICAL_BLOCK(cs_main)
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
CRITICAL_BLOCK(pwalletMain->cs_vMasterKey)
{
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
if(pwalletMain->IsLocked())
throw JSONRPCError(-14, "Error: The wallet passphrase entered was incorrect.");
string strError = pwalletMain->SendMoneyToBitcoinAddress(strAddress, nAmount, wtx);
if (strError != "")
throw JSONRPCError(-4, strError);
}
return wtx.GetHash().GetHex();
}
Value getreceivedbyaddress(const Array& params, bool fHelp)
{
if (fHelp || params.size() < 1 || params.size() > 2)
throw runtime_error(
"getreceivedbyaddress <bitcoinaddress> [minconf=1]\n"
"Returns the total amount received by <bitcoinaddress> in transactions with at least [minconf] confirmations.");
// Bitcoin address
CBitcoinAddress address = CBitcoinAddress(params[0].get_str());
CScript scriptPubKey;
if (!address.IsValid())
throw JSONRPCError(-5, "Invalid bitcoin address");
scriptPubKey.SetBitcoinAddress(address);
if (!IsMine(*pwalletMain,scriptPubKey))
return (double)0.0;
// Minimum confirmations
int nMinDepth = 1;
if (params.size() > 1)
nMinDepth = params[1].get_int();
// Tally
int64 nAmount = 0;
CRITICAL_BLOCK(pwalletMain->cs_mapWallet)
{
for (map<uint256, CWalletTx>::iterator it = pwalletMain->mapWallet.begin(); it != pwalletMain->mapWallet.end(); ++it)
{
const CWalletTx& wtx = (*it).second;
if (wtx.IsCoinBase() || !wtx.IsFinal())
continue;
BOOST_FOREACH(const CTxOut& txout, wtx.vout)
if (txout.scriptPubKey == scriptPubKey)
if (wtx.GetDepthInMainChain() >= nMinDepth)
nAmount += txout.nValue;
}
}
2011-02-23 14:24:16 -05:00
return ValueFromAmount(nAmount);
}
void GetAccountAddresses(string strAccount, set<CBitcoinAddress>& setAddress)
{
CRITICAL_BLOCK(pwalletMain->cs_mapAddressBook)
{
BOOST_FOREACH(const PAIRTYPE(CBitcoinAddress, string)& item, pwalletMain->mapAddressBook)
{
const CBitcoinAddress& address = item.first;
const string& strName = item.second;
if (strName == strAccount)
setAddress.insert(address);
}
}
}
Value getreceivedbyaccount(const Array& params, bool fHelp)
{
if (fHelp || params.size() < 1 || params.size() > 2)
throw runtime_error(
"getreceivedbyaccount <account> [minconf=1]\n"
"Returns the total amount received by addresses with <account> in transactions with at least [minconf] confirmations.");
// Minimum confirmations
int nMinDepth = 1;
if (params.size() > 1)
nMinDepth = params[1].get_int();
// Get the set of pub keys that have the label
string strAccount = AccountFromValue(params[0]);
set<CBitcoinAddress> setAddress;
GetAccountAddresses(strAccount, setAddress);
// Tally
int64 nAmount = 0;
CRITICAL_BLOCK(pwalletMain->cs_mapWallet)
{
for (map<uint256, CWalletTx>::iterator it = pwalletMain->mapWallet.begin(); it != pwalletMain->mapWallet.end(); ++it)
{
const CWalletTx& wtx = (*it).second;
if (wtx.IsCoinBase() || !wtx.IsFinal())
continue;
BOOST_FOREACH(const CTxOut& txout, wtx.vout)
{
CBitcoinAddress address;
if (ExtractAddress(txout.scriptPubKey, pwalletMain, address) && setAddress.count(address))
if (wtx.GetDepthInMainChain() >= nMinDepth)
nAmount += txout.nValue;
}
}
}
return (double)nAmount / (double)COIN;
}
int64 GetAccountBalance(CWalletDB& walletdb, const string& strAccount, int nMinDepth)
{
int64 nBalance = 0;
CRITICAL_BLOCK(pwalletMain->cs_mapWallet)
{
// Tally wallet transactions
for (map<uint256, CWalletTx>::iterator it = pwalletMain->mapWallet.begin(); it != pwalletMain->mapWallet.end(); ++it)
{
const CWalletTx& wtx = (*it).second;
if (!wtx.IsFinal())
continue;
int64 nGenerated, nReceived, nSent, nFee;
wtx.GetAccountAmounts(strAccount, nGenerated, nReceived, nSent, nFee);
if (nReceived != 0 && wtx.GetDepthInMainChain() >= nMinDepth)
nBalance += nReceived;
nBalance += nGenerated - nSent - nFee;
}
// Tally internal accounting entries
nBalance += walletdb.GetAccountCreditDebit(strAccount);
}
return nBalance;
}
int64 GetAccountBalance(const string& strAccount, int nMinDepth)
{
CWalletDB walletdb(pwalletMain->strWalletFile);
return GetAccountBalance(walletdb, strAccount, nMinDepth);
}
Value getbalance(const Array& params, bool fHelp)
{
if (fHelp || params.size() > 2)
throw runtime_error(
"getbalance [account] [minconf=1]\n"
"If [account] is not specified, returns the server's total available balance.\n"
"If [account] is specified, returns the balance in the account.");
if (params.size() == 0)
return ValueFromAmount(pwalletMain->GetBalance());
int nMinDepth = 1;
if (params.size() > 1)
nMinDepth = params[1].get_int();
if (params[0].get_str() == "*") {
// Calculate total balance a different way from GetBalance()
// (GetBalance() sums up all unspent TxOuts)
// getbalance and getbalance '*' should always return the same number.
int64 nBalance = 0;
for (map<uint256, CWalletTx>::iterator it = pwalletMain->mapWallet.begin(); it != pwalletMain->mapWallet.end(); ++it)
{
const CWalletTx& wtx = (*it).second;
if (!wtx.IsFinal())
continue;
int64 allGeneratedImmature, allGeneratedMature, allFee;
allGeneratedImmature = allGeneratedMature = allFee = 0;
string strSentAccount;
list<pair<CBitcoinAddress, int64> > listReceived;
list<pair<CBitcoinAddress, int64> > listSent;
wtx.GetAmounts(allGeneratedImmature, allGeneratedMature, listReceived, listSent, allFee, strSentAccount);
if (wtx.GetDepthInMainChain() >= nMinDepth)
BOOST_FOREACH(const PAIRTYPE(CBitcoinAddress,int64)& r, listReceived)
nBalance += r.second;
BOOST_FOREACH(const PAIRTYPE(CBitcoinAddress,int64)& r, listSent)
nBalance -= r.second;
nBalance -= allFee;
nBalance += allGeneratedMature;
}
2011-02-23 14:24:16 -05:00
return ValueFromAmount(nBalance);
}
string strAccount = AccountFromValue(params[0]);
int64 nBalance = GetAccountBalance(strAccount, nMinDepth);
2011-02-23 14:24:16 -05:00
return ValueFromAmount(nBalance);
}
Value movecmd(const Array& params, bool fHelp)
{
if (fHelp || params.size() < 3 || params.size() > 5)
throw runtime_error(
"move <fromaccount> <toaccount> <amount> [minconf=1] [comment]\n"
"Move from one account in your wallet to another.");
string strFrom = AccountFromValue(params[0]);
string strTo = AccountFromValue(params[1]);
int64 nAmount = AmountFromValue(params[2]);
if (params.size() > 3)
// unused parameter, used to be nMinDepth, keep type-checking it though
(void)params[3].get_int();
string strComment;
if (params.size() > 4)
strComment = params[4].get_str();
CRITICAL_BLOCK(pwalletMain->cs_mapWallet)
{
CWalletDB walletdb(pwalletMain->strWalletFile);
walletdb.TxnBegin();
int64 nNow = GetAdjustedTime();
// Debit
CAccountingEntry debit;
debit.strAccount = strFrom;
debit.nCreditDebit = -nAmount;
debit.nTime = nNow;
debit.strOtherAccount = strTo;
debit.strComment = strComment;
walletdb.WriteAccountingEntry(debit);
// Credit
CAccountingEntry credit;
credit.strAccount = strTo;
credit.nCreditDebit = nAmount;
credit.nTime = nNow;
credit.strOtherAccount = strFrom;
credit.strComment = strComment;
walletdb.WriteAccountingEntry(credit);
walletdb.TxnCommit();
}
return true;
}
Value sendfrom(const Array& params, bool fHelp)
{
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
if (pwalletMain->IsCrypted() && (fHelp || params.size() < 3 || params.size() > 6))
throw runtime_error(
"sendfrom <fromaccount> <tobitcoinaddress> <amount> [minconf=1] [comment] [comment-to]\n"
"<amount> is a real and is rounded to the nearest 0.00000001\n"
"requires wallet passphrase to be set with walletpassphrase first");
if (!pwalletMain->IsCrypted() && (fHelp || params.size() < 3 || params.size() > 6))
throw runtime_error(
"sendfrom <fromaccount> <tobitcoinaddress> <amount> [minconf=1] [comment] [comment-to]\n"
"<amount> is a real and is rounded to the nearest 0.00000001");
string strAccount = AccountFromValue(params[0]);
string strAddress = params[1].get_str();
int64 nAmount = AmountFromValue(params[2]);
int nMinDepth = 1;
if (params.size() > 3)
nMinDepth = params[3].get_int();
CWalletTx wtx;
wtx.strFromAccount = strAccount;
if (params.size() > 4 && params[4].type() != null_type && !params[4].get_str().empty())
wtx.mapValue["comment"] = params[4].get_str();
if (params.size() > 5 && params[5].type() != null_type && !params[5].get_str().empty())
wtx.mapValue["to"] = params[5].get_str();
CRITICAL_BLOCK(cs_main)
CRITICAL_BLOCK(pwalletMain->cs_mapWallet)
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
CRITICAL_BLOCK(pwalletMain->cs_vMasterKey)
{
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
if(pwalletMain->IsLocked())
throw JSONRPCError(-14, "Error: The wallet passphrase entered was incorrect.");
// Check funds
int64 nBalance = GetAccountBalance(strAccount, nMinDepth);
if (nAmount > nBalance)
throw JSONRPCError(-6, "Account has insufficient funds");
// Send
string strError = pwalletMain->SendMoneyToBitcoinAddress(strAddress, nAmount, wtx);
if (strError != "")
throw JSONRPCError(-4, strError);
}
return wtx.GetHash().GetHex();
}
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
Value sendmany(const Array& params, bool fHelp)
{
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
if (pwalletMain->IsCrypted() && (fHelp || params.size() < 2 || params.size() > 4))
throw runtime_error(
"sendmany <fromaccount> {address:amount,...} [minconf=1] [comment]\n"
"amounts are double-precision floating point numbers\n"
"requires wallet passphrase to be set with walletpassphrase first");
if (!pwalletMain->IsCrypted() && (fHelp || params.size() < 2 || params.size() > 4))
throw runtime_error(
"sendmany <fromaccount> {address:amount,...} [minconf=1] [comment]\n"
"amounts are double-precision floating point numbers");
string strAccount = AccountFromValue(params[0]);
Object sendTo = params[1].get_obj();
int nMinDepth = 1;
if (params.size() > 2)
nMinDepth = params[2].get_int();
CWalletTx wtx;
wtx.strFromAccount = strAccount;
if (params.size() > 3 && params[3].type() != null_type && !params[3].get_str().empty())
wtx.mapValue["comment"] = params[3].get_str();
set<CBitcoinAddress> setAddress;
vector<pair<CScript, int64> > vecSend;
int64 totalAmount = 0;
BOOST_FOREACH(const Pair& s, sendTo)
{
CBitcoinAddress address(s.name_);
if (!address.IsValid())
throw JSONRPCError(-5, string("Invalid bitcoin address:")+s.name_);
if (setAddress.count(address))
throw JSONRPCError(-8, string("Invalid parameter, duplicated address: ")+s.name_);
setAddress.insert(address);
CScript scriptPubKey;
scriptPubKey.SetBitcoinAddress(address);
int64 nAmount = AmountFromValue(s.value_);
totalAmount += nAmount;
vecSend.push_back(make_pair(scriptPubKey, nAmount));
}
2011-04-05 15:15:20 -04:00
CRITICAL_BLOCK(cs_main)
CRITICAL_BLOCK(pwalletMain->cs_mapWallet)
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
CRITICAL_BLOCK(pwalletMain->cs_vMasterKey)
{
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
if(pwalletMain->IsLocked())
throw JSONRPCError(-14, "Error: The wallet passphrase entered was incorrect.");
// Check funds
int64 nBalance = GetAccountBalance(strAccount, nMinDepth);
if (totalAmount > nBalance)
throw JSONRPCError(-6, "Account has insufficient funds");
// Send
CReserveKey keyChange(pwalletMain);
int64 nFeeRequired = 0;
bool fCreated = pwalletMain->CreateTransaction(vecSend, wtx, keyChange, nFeeRequired);
if (!fCreated)
{
if (totalAmount + nFeeRequired > pwalletMain->GetBalance())
throw JSONRPCError(-6, "Insufficient funds");
throw JSONRPCError(-4, "Transaction creation failed");
}
if (!pwalletMain->CommitTransaction(wtx, keyChange))
throw JSONRPCError(-4, "Transaction commit failed");
}
return wtx.GetHash().GetHex();
}
struct tallyitem
{
int64 nAmount;
int nConf;
tallyitem()
{
nAmount = 0;
nConf = INT_MAX;
}
};
Value ListReceived(const Array& params, bool fByAccounts)
{
// Minimum confirmations
int nMinDepth = 1;
if (params.size() > 0)
nMinDepth = params[0].get_int();
// Whether to include empty accounts
bool fIncludeEmpty = false;
if (params.size() > 1)
fIncludeEmpty = params[1].get_bool();
// Tally
map<CBitcoinAddress, tallyitem> mapTally;
CRITICAL_BLOCK(pwalletMain->cs_mapWallet)
{
for (map<uint256, CWalletTx>::iterator it = pwalletMain->mapWallet.begin(); it != pwalletMain->mapWallet.end(); ++it)
{
const CWalletTx& wtx = (*it).second;
if (wtx.IsCoinBase() || !wtx.IsFinal())
continue;
int nDepth = wtx.GetDepthInMainChain();
if (nDepth < nMinDepth)
continue;
BOOST_FOREACH(const CTxOut& txout, wtx.vout)
{
CBitcoinAddress address;
if (!ExtractAddress(txout.scriptPubKey, pwalletMain, address) || !address.IsValid())
continue;
tallyitem& item = mapTally[address];
item.nAmount += txout.nValue;
item.nConf = min(item.nConf, nDepth);
}
}
}
// Reply
Array ret;
map<string, tallyitem> mapAccountTally;
CRITICAL_BLOCK(pwalletMain->cs_mapAddressBook)
{
BOOST_FOREACH(const PAIRTYPE(CBitcoinAddress, string)& item, pwalletMain->mapAddressBook)
{
const CBitcoinAddress& address = item.first;
const string& strAccount = item.second;
map<CBitcoinAddress, tallyitem>::iterator it = mapTally.find(address);
if (it == mapTally.end() && !fIncludeEmpty)
continue;
int64 nAmount = 0;
int nConf = INT_MAX;
if (it != mapTally.end())
{
nAmount = (*it).second.nAmount;
nConf = (*it).second.nConf;
}
if (fByAccounts)
{
tallyitem& item = mapAccountTally[strAccount];
item.nAmount += nAmount;
item.nConf = min(item.nConf, nConf);
}
else
{
Object obj;
obj.push_back(Pair("address", address.ToString()));
obj.push_back(Pair("account", strAccount));
obj.push_back(Pair("label", strAccount)); // deprecated
2011-02-23 14:24:16 -05:00
obj.push_back(Pair("amount", ValueFromAmount(nAmount)));
obj.push_back(Pair("confirmations", (nConf == INT_MAX ? 0 : nConf)));
ret.push_back(obj);
}
}
}
if (fByAccounts)
{
for (map<string, tallyitem>::iterator it = mapAccountTally.begin(); it != mapAccountTally.end(); ++it)
{
int64 nAmount = (*it).second.nAmount;
int nConf = (*it).second.nConf;
Object obj;
obj.push_back(Pair("account", (*it).first));
obj.push_back(Pair("label", (*it).first)); // deprecated
2011-02-23 14:24:16 -05:00
obj.push_back(Pair("amount", ValueFromAmount(nAmount)));
obj.push_back(Pair("confirmations", (nConf == INT_MAX ? 0 : nConf)));
ret.push_back(obj);
}
}
return ret;
}
Value listreceivedbyaddress(const Array& params, bool fHelp)
{
if (fHelp || params.size() > 2)
throw runtime_error(
"listreceivedbyaddress [minconf=1] [includeempty=false]\n"
"[minconf] is the minimum number of confirmations before payments are included.\n"
"[includeempty] whether to include addresses that haven't received any payments.\n"
"Returns an array of objects containing:\n"
" \"address\" : receiving address\n"
" \"account\" : the account of the receiving address\n"
" \"amount\" : total amount received by the address\n"
" \"confirmations\" : number of confirmations of the most recent transaction included");
return ListReceived(params, false);
}
Value listreceivedbyaccount(const Array& params, bool fHelp)
{
if (fHelp || params.size() > 2)
throw runtime_error(
"listreceivedbyaccount [minconf=1] [includeempty=false]\n"
"[minconf] is the minimum number of confirmations before payments are included.\n"
"[includeempty] whether to include accounts that haven't received any payments.\n"
"Returns an array of objects containing:\n"
" \"account\" : the account of the receiving addresses\n"
" \"amount\" : total amount received by addresses with this account\n"
" \"confirmations\" : number of confirmations of the most recent transaction included");
return ListReceived(params, true);
}
void ListTransactions(const CWalletTx& wtx, const string& strAccount, int nMinDepth, bool fLong, Array& ret)
{
int64 nGeneratedImmature, nGeneratedMature, nFee;
string strSentAccount;
list<pair<CBitcoinAddress, int64> > listReceived;
list<pair<CBitcoinAddress, int64> > listSent;
wtx.GetAmounts(nGeneratedImmature, nGeneratedMature, listReceived, listSent, nFee, strSentAccount);
bool fAllAccounts = (strAccount == string("*"));
// Generated blocks assigned to account ""
if ((nGeneratedMature+nGeneratedImmature) != 0 && (fAllAccounts || strAccount == ""))
{
Object entry;
entry.push_back(Pair("account", string("")));
if (nGeneratedImmature)
{
entry.push_back(Pair("category", wtx.GetDepthInMainChain() ? "immature" : "orphan"));
entry.push_back(Pair("amount", ValueFromAmount(nGeneratedImmature)));
}
else
{
entry.push_back(Pair("category", "generate"));
entry.push_back(Pair("amount", ValueFromAmount(nGeneratedMature)));
}
if (fLong)
WalletTxToJSON(wtx, entry);
ret.push_back(entry);
}
// Sent
2010-12-20 14:44:54 -05:00
if ((!listSent.empty() || nFee != 0) && (fAllAccounts || strAccount == strSentAccount))
{
BOOST_FOREACH(const PAIRTYPE(CBitcoinAddress, int64)& s, listSent)
2010-12-20 14:44:54 -05:00
{
Object entry;
entry.push_back(Pair("account", strSentAccount));
entry.push_back(Pair("address", s.first.ToString()));
2010-12-20 14:44:54 -05:00
entry.push_back(Pair("category", "send"));
entry.push_back(Pair("amount", ValueFromAmount(-s.second)));
entry.push_back(Pair("fee", ValueFromAmount(-nFee)));
if (fLong)
WalletTxToJSON(wtx, entry);
2010-12-20 14:44:54 -05:00
ret.push_back(entry);
}
}
// Received
if (listReceived.size() > 0 && wtx.GetDepthInMainChain() >= nMinDepth)
CRITICAL_BLOCK(pwalletMain->cs_mapAddressBook)
{
BOOST_FOREACH(const PAIRTYPE(CBitcoinAddress, int64)& r, listReceived)
2010-12-20 14:44:54 -05:00
{
string account;
if (pwalletMain->mapAddressBook.count(r.first))
account = pwalletMain->mapAddressBook[r.first];
2010-12-20 14:44:54 -05:00
if (fAllAccounts || (account == strAccount))
{
Object entry;
2010-12-20 14:44:54 -05:00
entry.push_back(Pair("account", account));
entry.push_back(Pair("address", r.first.ToString()));
entry.push_back(Pair("category", "receive"));
entry.push_back(Pair("amount", ValueFromAmount(r.second)));
if (fLong)
WalletTxToJSON(wtx, entry);
ret.push_back(entry);
}
2010-12-20 14:44:54 -05:00
}
}
}
void AcentryToJSON(const CAccountingEntry& acentry, const string& strAccount, Array& ret)
{
bool fAllAccounts = (strAccount == string("*"));
if (fAllAccounts || acentry.strAccount == strAccount)
{
Object entry;
entry.push_back(Pair("account", acentry.strAccount));
entry.push_back(Pair("category", "move"));
entry.push_back(Pair("time", (boost::int64_t)acentry.nTime));
entry.push_back(Pair("amount", ValueFromAmount(acentry.nCreditDebit)));
entry.push_back(Pair("otheraccount", acentry.strOtherAccount));
entry.push_back(Pair("comment", acentry.strComment));
ret.push_back(entry);
}
}
Value listtransactions(const Array& params, bool fHelp)
{
if (fHelp || params.size() > 3)
throw runtime_error(
"listtransactions [account] [count=10] [from=0]\n"
"Returns up to [count] most recent transactions skipping the first [from] transactions for account [account].");
string strAccount = "*";
if (params.size() > 0)
strAccount = params[0].get_str();
int nCount = 10;
if (params.size() > 1)
nCount = params[1].get_int();
int nFrom = 0;
if (params.size() > 2)
nFrom = params[2].get_int();
Array ret;
CWalletDB walletdb(pwalletMain->strWalletFile);
CRITICAL_BLOCK(pwalletMain->cs_mapWallet)
{
// Firs: get all CWalletTx and CAccountingEntry into a sorted-by-time multimap:
typedef pair<CWalletTx*, CAccountingEntry*> TxPair;
typedef multimap<int64, TxPair > TxItems;
TxItems txByTime;
for (map<uint256, CWalletTx>::iterator it = pwalletMain->mapWallet.begin(); it != pwalletMain->mapWallet.end(); ++it)
{
CWalletTx* wtx = &((*it).second);
2011-02-10 19:24:22 -05:00
txByTime.insert(make_pair(wtx->GetTxTime(), TxPair(wtx, (CAccountingEntry*)0)));
}
list<CAccountingEntry> acentries;
walletdb.ListAccountCreditDebit(strAccount, acentries);
BOOST_FOREACH(CAccountingEntry& entry, acentries)
{
2011-02-10 19:24:22 -05:00
txByTime.insert(make_pair(entry.nTime, TxPair((CWalletTx*)0, &entry)));
}
// Now: iterate backwards until we have nCount items to return:
TxItems::reverse_iterator it = txByTime.rbegin();
for (std::advance(it, nFrom); it != txByTime.rend(); ++it)
{
CWalletTx *const pwtx = (*it).second.first;
if (pwtx != 0)
ListTransactions(*pwtx, strAccount, 0, true, ret);
CAccountingEntry *const pacentry = (*it).second.second;
if (pacentry != 0)
AcentryToJSON(*pacentry, strAccount, ret);
if (ret.size() >= nCount) break;
}
// ret is now newest to oldest
}
// Make sure we return only last nCount items (sends-to-self might give us an extra):
if (ret.size() > nCount)
{
Array::iterator last = ret.begin();
std::advance(last, nCount);
ret.erase(last, ret.end());
}
std::reverse(ret.begin(), ret.end()); // oldest to newest
return ret;
}
Value listaccounts(const Array& params, bool fHelp)
{
if (fHelp || params.size() > 1)
throw runtime_error(
"listaccounts [minconf=1]\n"
"Returns Object that has account names as keys, account balances as values.");
int nMinDepth = 1;
if (params.size() > 0)
nMinDepth = params[0].get_int();
map<string, int64> mapAccountBalances;
CRITICAL_BLOCK(pwalletMain->cs_mapWallet)
CRITICAL_BLOCK(pwalletMain->cs_mapAddressBook)
{
BOOST_FOREACH(const PAIRTYPE(CBitcoinAddress, string)& entry, pwalletMain->mapAddressBook) {
if (pwalletMain->HaveKey(entry.first)) // This address belongs to me
mapAccountBalances[entry.second] = 0;
}
for (map<uint256, CWalletTx>::iterator it = pwalletMain->mapWallet.begin(); it != pwalletMain->mapWallet.end(); ++it)
{
const CWalletTx& wtx = (*it).second;
int64 nGeneratedImmature, nGeneratedMature, nFee;
string strSentAccount;
list<pair<CBitcoinAddress, int64> > listReceived;
list<pair<CBitcoinAddress, int64> > listSent;
wtx.GetAmounts(nGeneratedImmature, nGeneratedMature, listReceived, listSent, nFee, strSentAccount);
2010-12-20 14:44:54 -05:00
mapAccountBalances[strSentAccount] -= nFee;
BOOST_FOREACH(const PAIRTYPE(CBitcoinAddress, int64)& s, listSent)
2010-12-20 14:44:54 -05:00
mapAccountBalances[strSentAccount] -= s.second;
if (wtx.GetDepthInMainChain() >= nMinDepth)
{
mapAccountBalances[""] += nGeneratedMature;
BOOST_FOREACH(const PAIRTYPE(CBitcoinAddress, int64)& r, listReceived)
if (pwalletMain->mapAddressBook.count(r.first))
mapAccountBalances[pwalletMain->mapAddressBook[r.first]] += r.second;
else
mapAccountBalances[""] += r.second;
}
}
}
list<CAccountingEntry> acentries;
CWalletDB(pwalletMain->strWalletFile).ListAccountCreditDebit("*", acentries);
BOOST_FOREACH(const CAccountingEntry& entry, acentries)
mapAccountBalances[entry.strAccount] += entry.nCreditDebit;
Object ret;
BOOST_FOREACH(const PAIRTYPE(string, int64)& accountBalance, mapAccountBalances) {
ret.push_back(Pair(accountBalance.first, ValueFromAmount(accountBalance.second)));
}
return ret;
}
Value gettransaction(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 1)
throw runtime_error(
"gettransaction <txid>\n"
"Get detailed information about <txid>");
uint256 hash;
hash.SetHex(params[0].get_str());
Object entry;
CRITICAL_BLOCK(pwalletMain->cs_mapWallet)
{
if (!pwalletMain->mapWallet.count(hash))
throw JSONRPCError(-5, "Invalid or non-wallet transaction id");
const CWalletTx& wtx = pwalletMain->mapWallet[hash];
int64 nCredit = wtx.GetCredit();
int64 nDebit = wtx.GetDebit();
int64 nNet = nCredit - nDebit;
int64 nFee = (wtx.IsFromMe() ? wtx.GetValueOut() - nDebit : 0);
entry.push_back(Pair("amount", ValueFromAmount(nNet - nFee)));
if (wtx.IsFromMe())
entry.push_back(Pair("fee", ValueFromAmount(nFee)));
WalletTxToJSON(pwalletMain->mapWallet[hash], entry);
Array details;
ListTransactions(pwalletMain->mapWallet[hash], "*", 0, false, details);
entry.push_back(Pair("details", details));
}
return entry;
}
Value backupwallet(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 1)
throw runtime_error(
"backupwallet <destination>\n"
"Safely copies wallet.dat to destination, which can be a directory or a path with filename.");
string strDest = params[0].get_str();
BackupWallet(*pwalletMain, strDest);
return Value::null;
}
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
Value keypoolrefill(const Array& params, bool fHelp)
{
if (pwalletMain->IsCrypted() && (fHelp || params.size() > 0))
throw runtime_error(
"keypoolrefill\n"
"Fills the keypool, requires wallet passphrase to be set.");
if (!pwalletMain->IsCrypted() && (fHelp || params.size() > 0))
throw runtime_error(
"keypoolrefill\n"
"Fills the keypool.");
CRITICAL_BLOCK(pwalletMain->cs_vMasterKey)
{
if (pwalletMain->IsLocked())
throw JSONRPCError(-13, "Error: Please enter the wallet passphrase with walletpassphrase first.");
pwalletMain->TopUpKeyPool();
}
if (pwalletMain->GetKeyPoolSize() < GetArg("-keypool", 100))
throw JSONRPCError(-4, "Error refreshing keypool.");
return Value::null;
}
void ThreadTopUpKeyPool(void* parg)
{
pwalletMain->TopUpKeyPool();
}
void ThreadCleanWalletPassphrase(void* parg)
{
int64 nMyWakeTime = GetTime() + *((int*)parg);
2011-06-29 00:47:41 +02:00
if (nWalletUnlockTime == 0)
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
{
2011-06-29 00:47:41 +02:00
CRITICAL_BLOCK(cs_nWalletUnlockTime)
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
{
2011-06-29 00:47:41 +02:00
nWalletUnlockTime = nMyWakeTime;
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
}
2011-06-29 00:47:41 +02:00
while (GetTime() < nWalletUnlockTime)
Sleep(GetTime() - nWalletUnlockTime);
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
2011-06-29 00:47:41 +02:00
CRITICAL_BLOCK(cs_nWalletUnlockTime)
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
{
2011-06-29 00:47:41 +02:00
nWalletUnlockTime = 0;
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
}
}
else
{
2011-06-29 00:47:41 +02:00
CRITICAL_BLOCK(cs_nWalletUnlockTime)
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
{
2011-06-29 00:47:41 +02:00
if (nWalletUnlockTime < nMyWakeTime)
nWalletUnlockTime = nMyWakeTime;
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
}
free(parg);
return;
}
pwalletMain->Lock();
delete (int*)parg;
}
Value walletpassphrase(const Array& params, bool fHelp)
{
if (pwalletMain->IsCrypted() && (fHelp || params.size() != 2))
throw runtime_error(
"walletpassphrase <passphrase> <timeout>\n"
"Stores the wallet decryption key in memory for <timeout> seconds.");
if (fHelp)
return true;
if (!pwalletMain->IsCrypted())
throw JSONRPCError(-15, "Error: running with an unencrypted wallet, but walletpassphrase was called.");
if (!pwalletMain->IsLocked())
throw JSONRPCError(-17, "Error: Wallet is already unlocked.");
// Note that the walletpassphrase is stored in params[0] which is not mlock()ed
string strWalletPass;
strWalletPass.reserve(100);
mlock(&strWalletPass[0], strWalletPass.capacity());
strWalletPass = params[0].get_str();
CRITICAL_BLOCK(pwalletMain->cs_vMasterKey)
{
if (strWalletPass.length() > 0)
{
if (!pwalletMain->Unlock(strWalletPass))
{
fill(strWalletPass.begin(), strWalletPass.end(), '\0');
munlock(&strWalletPass[0], strWalletPass.capacity());
throw JSONRPCError(-14, "Error: The wallet passphrase entered was incorrect.");
}
fill(strWalletPass.begin(), strWalletPass.end(), '\0');
munlock(&strWalletPass[0], strWalletPass.capacity());
}
else
throw runtime_error(
"walletpassphrase <passphrase> <timeout>\n"
"Stores the wallet decryption key in memory for <timeout> seconds.");
}
CreateThread(ThreadTopUpKeyPool, NULL);
int* pnSleepTime = new int(params[1].get_int());
CreateThread(ThreadCleanWalletPassphrase, pnSleepTime);
return Value::null;
}
Value walletpassphrasechange(const Array& params, bool fHelp)
{
if (pwalletMain->IsCrypted() && (fHelp || params.size() != 2))
throw runtime_error(
"walletpassphrasechange <oldpassphrase> <newpassphrase>\n"
"Changes the wallet passphrase from <oldpassphrase> to <newpassphrase>.");
if (fHelp)
return true;
if (!pwalletMain->IsCrypted())
throw JSONRPCError(-15, "Error: running with an unencrypted wallet, but walletpassphrasechange was called.");
string strOldWalletPass;
strOldWalletPass.reserve(100);
mlock(&strOldWalletPass[0], strOldWalletPass.capacity());
strOldWalletPass = params[0].get_str();
string strNewWalletPass;
strNewWalletPass.reserve(100);
mlock(&strNewWalletPass[0], strNewWalletPass.capacity());
strNewWalletPass = params[1].get_str();
if (strOldWalletPass.length() < 1 || strNewWalletPass.length() < 1)
throw runtime_error(
"walletpassphrasechange <oldpassphrase> <newpassphrase>\n"
"Changes the wallet passphrase from <oldpassphrase> to <newpassphrase>.");
if (!pwalletMain->ChangeWalletPassphrase(strOldWalletPass, strNewWalletPass))
{
fill(strOldWalletPass.begin(), strOldWalletPass.end(), '\0');
fill(strNewWalletPass.begin(), strNewWalletPass.end(), '\0');
munlock(&strOldWalletPass[0], strOldWalletPass.capacity());
munlock(&strNewWalletPass[0], strNewWalletPass.capacity());
throw JSONRPCError(-14, "Error: The wallet passphrase entered was incorrect.");
}
fill(strNewWalletPass.begin(), strNewWalletPass.end(), '\0');
fill(strOldWalletPass.begin(), strOldWalletPass.end(), '\0');
munlock(&strOldWalletPass[0], strOldWalletPass.capacity());
munlock(&strNewWalletPass[0], strNewWalletPass.capacity());
return Value::null;
}
Value walletlock(const Array& params, bool fHelp)
{
if (pwalletMain->IsCrypted() && (fHelp || params.size() != 0))
throw runtime_error(
"walletlock\n"
"Removes the wallet encryption key from memory, locking the wallet.\n"
"After calling this method, you will need to call walletpassphrase again\n"
"before being able to call any methods which require the wallet to be unlocked.");
if (fHelp)
return true;
if (!pwalletMain->IsCrypted())
throw JSONRPCError(-15, "Error: running with an unencrypted wallet, but walletlock was called.");
pwalletMain->Lock();
CRITICAL_BLOCK(cs_nWalletUnlockTime)
{
nWalletUnlockTime = 0;
}
return Value::null;
}
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
Value encryptwallet(const Array& params, bool fHelp)
{
if (!pwalletMain->IsCrypted() && (fHelp || params.size() != 1))
throw runtime_error(
"encryptwallet <passphrase>\n"
"Encrypts the wallet with <passphrase>.");
if (fHelp)
return true;
if (pwalletMain->IsCrypted())
throw JSONRPCError(-15, "Error: running with an encrypted wallet, but encryptwallet was called.");
string strWalletPass;
strWalletPass.reserve(100);
mlock(&strWalletPass[0], strWalletPass.capacity());
strWalletPass = params[0].get_str();
if (strWalletPass.length() < 1)
throw runtime_error(
"encryptwallet <passphrase>\n"
"Encrypts the wallet with <passphrase>.");
if (!pwalletMain->EncryptWallet(strWalletPass))
{
fill(strWalletPass.begin(), strWalletPass.end(), '\0');
munlock(&strWalletPass[0], strWalletPass.capacity());
throw JSONRPCError(-16, "Error: Failed to encrypt the wallet.");
}
fill(strWalletPass.begin(), strWalletPass.end(), '\0');
munlock(&strWalletPass[0], strWalletPass.capacity());
return Value::null;
}
Value validateaddress(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 1)
throw runtime_error(
"validateaddress <bitcoinaddress>\n"
"Return information about <bitcoinaddress>.");
string strAddress = params[0].get_str();
CBitcoinAddress address(strAddress);
bool isValid = address.IsValid();
Object ret;
ret.push_back(Pair("isvalid", isValid));
if (isValid)
{
// Call Hash160ToAddress() so we always return current ADDRESSVERSION
// version of the address:
string currentAddress = address.ToString();
ret.push_back(Pair("address", currentAddress));
ret.push_back(Pair("ismine", (pwalletMain->HaveKey(address) > 0)));
CRITICAL_BLOCK(pwalletMain->cs_mapAddressBook)
{
if (pwalletMain->mapAddressBook.count(address))
ret.push_back(Pair("account", pwalletMain->mapAddressBook[address]));
}
}
return ret;
}
Value getwork(const Array& params, bool fHelp)
{
if (fHelp || params.size() > 1)
throw runtime_error(
"getwork [data]\n"
"If [data] is not specified, returns formatted hash data to work on:\n"
" \"midstate\" : precomputed hash state after hashing the first half of the data\n"
" \"data\" : block data\n"
" \"hash1\" : formatted hash buffer for second hash\n"
" \"target\" : little endian hash target\n"
"If [data] is specified, tries to solve the block and returns true if it was successful.");
if (vNodes.empty())
throw JSONRPCError(-9, "Bitcoin is not connected!");
if (IsInitialBlockDownload())
throw JSONRPCError(-10, "Bitcoin is downloading blocks...");
static map<uint256, pair<CBlock*, unsigned int> > mapNewBlock;
static vector<CBlock*> vNewBlock;
static CReserveKey reservekey(pwalletMain);
if (params.size() == 0)
{
// Update block
static unsigned int nTransactionsUpdatedLast;
static CBlockIndex* pindexPrev;
static int64 nStart;
static CBlock* pblock;
if (pindexPrev != pindexBest ||
(nTransactionsUpdated != nTransactionsUpdatedLast && GetTime() - nStart > 60))
{
if (pindexPrev != pindexBest)
{
// Deallocate old blocks since they're obsolete now
mapNewBlock.clear();
BOOST_FOREACH(CBlock* pblock, vNewBlock)
delete pblock;
vNewBlock.clear();
}
nTransactionsUpdatedLast = nTransactionsUpdated;
pindexPrev = pindexBest;
nStart = GetTime();
// Create new block
pblock = CreateNewBlock(reservekey);
if (!pblock)
throw JSONRPCError(-7, "Out of memory");
vNewBlock.push_back(pblock);
}
// Update nTime
pblock->nTime = max(pindexPrev->GetMedianTimePast()+1, GetAdjustedTime());
pblock->nNonce = 0;
// Update nExtraNonce
static unsigned int nExtraNonce = 0;
static int64 nPrevTime = 0;
IncrementExtraNonce(pblock, pindexPrev, nExtraNonce, nPrevTime);
// Save
mapNewBlock[pblock->hashMerkleRoot] = make_pair(pblock, nExtraNonce);
// Prebuild hash buffers
char pmidstate[32];
char pdata[128];
char phash1[64];
FormatHashBuffers(pblock, pmidstate, pdata, phash1);
uint256 hashTarget = CBigNum().SetCompact(pblock->nBits).getuint256();
Object result;
result.push_back(Pair("midstate", HexStr(BEGIN(pmidstate), END(pmidstate))));
result.push_back(Pair("data", HexStr(BEGIN(pdata), END(pdata))));
result.push_back(Pair("hash1", HexStr(BEGIN(phash1), END(phash1))));
result.push_back(Pair("target", HexStr(BEGIN(hashTarget), END(hashTarget))));
return result;
}
else
{
// Parse parameters
vector<unsigned char> vchData = ParseHex(params[0].get_str());
if (vchData.size() != 128)
throw JSONRPCError(-8, "Invalid parameter");
CBlock* pdata = (CBlock*)&vchData[0];
// Byte reverse
for (int i = 0; i < 128/4; i++)
((unsigned int*)pdata)[i] = CryptoPP::ByteReverse(((unsigned int*)pdata)[i]);
// Get saved block
if (!mapNewBlock.count(pdata->hashMerkleRoot))
return false;
CBlock* pblock = mapNewBlock[pdata->hashMerkleRoot].first;
unsigned int nExtraNonce = mapNewBlock[pdata->hashMerkleRoot].second;
pblock->nTime = pdata->nTime;
pblock->nNonce = pdata->nNonce;
pblock->vtx[0].vin[0].scriptSig = CScript() << pblock->nBits << CBigNum(nExtraNonce);
pblock->hashMerkleRoot = pblock->BuildMerkleTree();
return CheckWork(pblock, *pwalletMain, reservekey);
}
}
//
// Call Table
//
pair<string, rpcfn_type> pCallTable[] =
{
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
make_pair("help", &help),
make_pair("stop", &stop),
make_pair("getblockcount", &getblockcount),
make_pair("getblocknumber", &getblocknumber),
make_pair("getconnectioncount", &getconnectioncount),
make_pair("getdifficulty", &getdifficulty),
make_pair("getgenerate", &getgenerate),
make_pair("setgenerate", &setgenerate),
make_pair("gethashespersec", &gethashespersec),
make_pair("getinfo", &getinfo),
make_pair("getnewaddress", &getnewaddress),
make_pair("getaccountaddress", &getaccountaddress),
make_pair("setaccount", &setaccount),
make_pair("setlabel", &setaccount), // deprecated
make_pair("getaccount", &getaccount),
make_pair("getlabel", &getaccount), // deprecated
make_pair("getaddressesbyaccount", &getaddressesbyaccount),
make_pair("getaddressesbylabel", &getaddressesbyaccount), // deprecated
make_pair("sendtoaddress", &sendtoaddress),
make_pair("getamountreceived", &getreceivedbyaddress), // deprecated, renamed to getreceivedbyaddress
make_pair("getallreceived", &listreceivedbyaddress), // deprecated, renamed to listreceivedbyaddress
make_pair("getreceivedbyaddress", &getreceivedbyaddress),
make_pair("getreceivedbyaccount", &getreceivedbyaccount),
make_pair("getreceivedbylabel", &getreceivedbyaccount), // deprecated
make_pair("listreceivedbyaddress", &listreceivedbyaddress),
make_pair("listreceivedbyaccount", &listreceivedbyaccount),
make_pair("listreceivedbylabel", &listreceivedbyaccount), // deprecated
make_pair("backupwallet", &backupwallet),
make_pair("keypoolrefill", &keypoolrefill),
make_pair("walletpassphrase", &walletpassphrase),
make_pair("walletpassphrasechange", &walletpassphrasechange),
make_pair("walletlock", &walletlock),
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
make_pair("encryptwallet", &encryptwallet),
make_pair("validateaddress", &validateaddress),
make_pair("getbalance", &getbalance),
make_pair("move", &movecmd),
make_pair("sendfrom", &sendfrom),
make_pair("sendmany", &sendmany),
make_pair("gettransaction", &gettransaction),
make_pair("listtransactions", &listtransactions),
make_pair("getwork", &getwork),
make_pair("listaccounts", &listaccounts),
make_pair("settxfee", &settxfee),
};
map<string, rpcfn_type> mapCallTable(pCallTable, pCallTable + sizeof(pCallTable)/sizeof(pCallTable[0]));
string pAllowInSafeMode[] =
{
"help",
"stop",
"getblockcount",
"getblocknumber",
"getconnectioncount",
"getdifficulty",
"getgenerate",
"setgenerate",
"gethashespersec",
"getinfo",
"getnewaddress",
"getaccountaddress",
2011-07-30 19:58:22 +03:00
"setlabel", // deprecated
"getaccount",
"getlabel", // deprecated
"getaddressesbyaccount",
"getaddressesbylabel", // deprecated
"backupwallet",
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
"keypoolrefill",
"walletpassphrase",
"walletlock",
"validateaddress",
"getwork",
};
set<string> setAllowInSafeMode(pAllowInSafeMode, pAllowInSafeMode + sizeof(pAllowInSafeMode)/sizeof(pAllowInSafeMode[0]));
//
// HTTP protocol
//
// This ain't Apache. We're just using HTTP header for the length field
// and to be compatible with other JSON-RPC implementations.
//
string HTTPPost(const string& strMsg, const map<string,string>& mapRequestHeaders)
{
ostringstream s;
s << "POST / HTTP/1.1\r\n"
<< "User-Agent: bitcoin-json-rpc/" << FormatFullVersion() << "\r\n"
<< "Host: 127.0.0.1\r\n"
<< "Content-Type: application/json\r\n"
<< "Content-Length: " << strMsg.size() << "\r\n"
<< "Accept: application/json\r\n";
BOOST_FOREACH(const PAIRTYPE(string, string)& item, mapRequestHeaders)
s << item.first << ": " << item.second << "\r\n";
s << "\r\n" << strMsg;
return s.str();
}
string rfc1123Time()
{
char buffer[64];
time_t now;
time(&now);
struct tm* now_gmt = gmtime(&now);
string locale(setlocale(LC_TIME, NULL));
setlocale(LC_TIME, "C"); // we want posix (aka "C") weekday/month strings
strftime(buffer, sizeof(buffer), "%a, %d %b %Y %H:%M:%S +0000", now_gmt);
setlocale(LC_TIME, locale.c_str());
return string(buffer);
}
static string HTTPReply(int nStatus, const string& strMsg)
{
if (nStatus == 401)
return strprintf("HTTP/1.0 401 Authorization Required\r\n"
"Date: %s\r\n"
"Server: bitcoin-json-rpc/%s\r\n"
"WWW-Authenticate: Basic realm=\"jsonrpc\"\r\n"
"Content-Type: text/html\r\n"
"Content-Length: 296\r\n"
"\r\n"
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01 Transitional//EN\"\r\n"
"\"http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd\">\r\n"
"<HTML>\r\n"
"<HEAD>\r\n"
"<TITLE>Error</TITLE>\r\n"
"<META HTTP-EQUIV='Content-Type' CONTENT='text/html; charset=ISO-8859-1'>\r\n"
"</HEAD>\r\n"
"<BODY><H1>401 Unauthorized.</H1></BODY>\r\n"
"</HTML>\r\n", rfc1123Time().c_str(), FormatFullVersion().c_str());
string strStatus;
if (nStatus == 200) strStatus = "OK";
else if (nStatus == 400) strStatus = "Bad Request";
else if (nStatus == 403) strStatus = "Forbidden";
else if (nStatus == 404) strStatus = "Not Found";
else if (nStatus == 500) strStatus = "Internal Server Error";
return strprintf(
"HTTP/1.1 %d %s\r\n"
"Date: %s\r\n"
"Connection: close\r\n"
"Content-Length: %d\r\n"
"Content-Type: application/json\r\n"
"Server: bitcoin-json-rpc/%s\r\n"
"\r\n"
"%s",
nStatus,
strStatus.c_str(),
rfc1123Time().c_str(),
strMsg.size(),
FormatFullVersion().c_str(),
strMsg.c_str());
}
int ReadHTTPStatus(std::basic_istream<char>& stream)
{
string str;
getline(stream, str);
vector<string> vWords;
boost::split(vWords, str, boost::is_any_of(" "));
if (vWords.size() < 2)
return 500;
return atoi(vWords[1].c_str());
}
int ReadHTTPHeader(std::basic_istream<char>& stream, map<string, string>& mapHeadersRet)
{
int nLen = 0;
loop
{
string str;
std::getline(stream, str);
if (str.empty() || str == "\r")
break;
string::size_type nColon = str.find(":");
if (nColon != string::npos)
{
string strHeader = str.substr(0, nColon);
boost::trim(strHeader);
boost::to_lower(strHeader);
string strValue = str.substr(nColon+1);
boost::trim(strValue);
mapHeadersRet[strHeader] = strValue;
if (strHeader == "content-length")
nLen = atoi(strValue.c_str());
}
}
return nLen;
}
int ReadHTTP(std::basic_istream<char>& stream, map<string, string>& mapHeadersRet, string& strMessageRet)
{
mapHeadersRet.clear();
strMessageRet = "";
// Read status
int nStatus = ReadHTTPStatus(stream);
// Read header
int nLen = ReadHTTPHeader(stream, mapHeadersRet);
if (nLen < 0 || nLen > MAX_SIZE)
return 500;
// Read message
if (nLen > 0)
{
vector<char> vch(nLen);
stream.read(&vch[0], nLen);
strMessageRet = string(vch.begin(), vch.end());
}
return nStatus;
}
string EncodeBase64(string s)
{
BIO *b64, *bmem;
BUF_MEM *bptr;
b64 = BIO_new(BIO_f_base64());
BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL);
bmem = BIO_new(BIO_s_mem());
b64 = BIO_push(b64, bmem);
BIO_write(b64, s.c_str(), s.size());
BIO_flush(b64);
BIO_get_mem_ptr(b64, &bptr);
string result(bptr->data, bptr->length);
BIO_free_all(b64);
return result;
}
string DecodeBase64(string s)
{
BIO *b64, *bmem;
char* buffer = static_cast<char*>(calloc(s.size(), sizeof(char)));
b64 = BIO_new(BIO_f_base64());
BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL);
bmem = BIO_new_mem_buf(const_cast<char*>(s.c_str()), s.size());
bmem = BIO_push(b64, bmem);
BIO_read(bmem, buffer, s.size());
BIO_free_all(bmem);
string result(buffer);
free(buffer);
return result;
}
bool HTTPAuthorized(map<string, string>& mapHeaders)
{
string strAuth = mapHeaders["authorization"];
if (strAuth.substr(0,6) != "Basic ")
return false;
string strUserPass64 = strAuth.substr(6); boost::trim(strUserPass64);
string strUserPass = DecodeBase64(strUserPass64);
string::size_type nColon = strUserPass.find(":");
if (nColon == string::npos)
return false;
string strUser = strUserPass.substr(0, nColon);
string strPassword = strUserPass.substr(nColon+1);
return (strUser == mapArgs["-rpcuser"] && strPassword == mapArgs["-rpcpassword"]);
}
//
// JSON-RPC protocol. Bitcoin speaks version 1.0 for maximum compatibility,
// but uses JSON-RPC 1.1/2.0 standards for parts of the 1.0 standard that were
// unspecified (HTTP errors and contents of 'error').
//
// 1.0 spec: http://json-rpc.org/wiki/specification
// 1.2 spec: http://groups.google.com/group/json-rpc/web/json-rpc-over-http
// http://www.codeproject.com/KB/recipes/JSON_Spirit.aspx
//
string JSONRPCRequest(const string& strMethod, const Array& params, const Value& id)
{
Object request;
request.push_back(Pair("method", strMethod));
request.push_back(Pair("params", params));
request.push_back(Pair("id", id));
return write_string(Value(request), false) + "\n";
}
string JSONRPCReply(const Value& result, const Value& error, const Value& id)
{
Object reply;
if (error.type() != null_type)
reply.push_back(Pair("result", Value::null));
else
reply.push_back(Pair("result", result));
reply.push_back(Pair("error", error));
reply.push_back(Pair("id", id));
return write_string(Value(reply), false) + "\n";
}
void ErrorReply(std::ostream& stream, const Object& objError, const Value& id)
{
// Send error reply from json-rpc error object
int nStatus = 500;
int code = find_value(objError, "code").get_int();
if (code == -32600) nStatus = 400;
else if (code == -32601) nStatus = 404;
string strReply = JSONRPCReply(Value::null, objError, id);
stream << HTTPReply(nStatus, strReply) << std::flush;
}
bool ClientAllowed(const string& strAddress)
{
if (strAddress == asio::ip::address_v4::loopback().to_string())
return true;
const vector<string>& vAllow = mapMultiArgs["-rpcallowip"];
BOOST_FOREACH(string strAllow, vAllow)
if (WildcardMatch(strAddress, strAllow))
return true;
return false;
}
#ifdef USE_SSL
//
// IOStream device that speaks SSL but can also speak non-SSL
//
class SSLIOStreamDevice : public iostreams::device<iostreams::bidirectional> {
public:
SSLIOStreamDevice(SSLStream &streamIn, bool fUseSSLIn) : stream(streamIn)
{
fUseSSL = fUseSSLIn;
fNeedHandshake = fUseSSLIn;
}
void handshake(ssl::stream_base::handshake_type role)
{
if (!fNeedHandshake) return;
fNeedHandshake = false;
stream.handshake(role);
}
std::streamsize read(char* s, std::streamsize n)
{
handshake(ssl::stream_base::server); // HTTPS servers read first
if (fUseSSL) return stream.read_some(asio::buffer(s, n));
return stream.next_layer().read_some(asio::buffer(s, n));
}
std::streamsize write(const char* s, std::streamsize n)
{
handshake(ssl::stream_base::client); // HTTPS clients write first
if (fUseSSL) return asio::write(stream, asio::buffer(s, n));
return asio::write(stream.next_layer(), asio::buffer(s, n));
}
bool connect(const std::string& server, const std::string& port)
{
ip::tcp::resolver resolver(stream.get_io_service());
ip::tcp::resolver::query query(server.c_str(), port.c_str());
ip::tcp::resolver::iterator endpoint_iterator = resolver.resolve(query);
ip::tcp::resolver::iterator end;
boost::system::error_code error = asio::error::host_not_found;
while (error && endpoint_iterator != end)
{
stream.lowest_layer().close();
stream.lowest_layer().connect(*endpoint_iterator++, error);
}
if (error)
return false;
return true;
}
private:
bool fNeedHandshake;
bool fUseSSL;
SSLStream& stream;
};
#endif
void ThreadRPCServer(void* parg)
{
IMPLEMENT_RANDOMIZE_STACK(ThreadRPCServer(parg));
try
{
vnThreadsRunning[4]++;
ThreadRPCServer2(parg);
vnThreadsRunning[4]--;
}
catch (std::exception& e) {
vnThreadsRunning[4]--;
PrintException(&e, "ThreadRPCServer()");
} catch (...) {
vnThreadsRunning[4]--;
PrintException(NULL, "ThreadRPCServer()");
}
printf("ThreadRPCServer exiting\n");
}
void ThreadRPCServer2(void* parg)
{
printf("ThreadRPCServer started\n");
if (mapArgs["-rpcuser"] == "" && mapArgs["-rpcpassword"] == "")
{
string strWhatAmI = "To use bitcoind";
if (mapArgs.count("-server"))
strWhatAmI = strprintf(_("To use the %s option"), "\"-server\"");
else if (mapArgs.count("-daemon"))
strWhatAmI = strprintf(_("To use the %s option"), "\"-daemon\"");
PrintConsole(
_("Warning: %s, you must set rpcpassword=<password>\nin the configuration file: %s\n"
"If the file does not exist, create it with owner-readable-only file permissions.\n"),
strWhatAmI.c_str(),
GetConfigFile().c_str());
CreateThread(Shutdown, NULL);
return;
}
bool fUseSSL = GetBoolArg("-rpcssl");
asio::ip::address bindAddress = mapArgs.count("-rpcallowip") ? asio::ip::address_v4::any() : asio::ip::address_v4::loopback();
asio::io_service io_service;
ip::tcp::endpoint endpoint(bindAddress, GetArg("-rpcport", 8332));
ip::tcp::acceptor acceptor(io_service, endpoint);
2011-02-10 09:25:42 +01:00
acceptor.set_option(boost::asio::ip::tcp::acceptor::reuse_address(true));
#ifdef USE_SSL
ssl::context context(io_service, ssl::context::sslv23);
if (fUseSSL)
{
context.set_options(ssl::context::no_sslv2);
filesystem::path certfile = GetArg("-rpcsslcertificatechainfile", "server.cert");
if (!certfile.is_complete()) certfile = filesystem::path(GetDataDir()) / certfile;
if (filesystem::exists(certfile)) context.use_certificate_chain_file(certfile.string().c_str());
else printf("ThreadRPCServer ERROR: missing server certificate file %s\n", certfile.string().c_str());
filesystem::path pkfile = GetArg("-rpcsslprivatekeyfile", "server.pem");
if (!pkfile.is_complete()) pkfile = filesystem::path(GetDataDir()) / pkfile;
if (filesystem::exists(pkfile)) context.use_private_key_file(pkfile.string().c_str(), ssl::context::pem);
else printf("ThreadRPCServer ERROR: missing server private key file %s\n", pkfile.string().c_str());
string ciphers = GetArg("-rpcsslciphers",
"TLSv1+HIGH:!SSLv2:!aNULL:!eNULL:!AH:!3DES:@STRENGTH");
SSL_CTX_set_cipher_list(context.impl(), ciphers.c_str());
}
#else
if (fUseSSL)
throw runtime_error("-rpcssl=1, but bitcoin compiled without full openssl libraries.");
#endif
loop
{
// Accept connection
#ifdef USE_SSL
SSLStream sslStream(io_service, context);
SSLIOStreamDevice d(sslStream, fUseSSL);
iostreams::stream<SSLIOStreamDevice> stream(d);
#else
ip::tcp::iostream stream;
#endif
ip::tcp::endpoint peer;
vnThreadsRunning[4]--;
#ifdef USE_SSL
acceptor.accept(sslStream.lowest_layer(), peer);
#else
acceptor.accept(*stream.rdbuf(), peer);
#endif
vnThreadsRunning[4]++;
if (fShutdown)
return;
// Restrict callers by IP
if (!ClientAllowed(peer.address().to_string()))
{
// Only send a 403 if we're not using SSL to prevent a DoS during the SSL handshake.
if (!fUseSSL)
stream << HTTPReply(403, "") << std::flush;
continue;
}
map<string, string> mapHeaders;
string strRequest;
2011-02-10 19:24:22 -05:00
boost::thread api_caller(ReadHTTP, boost::ref(stream), boost::ref(mapHeaders), boost::ref(strRequest));
if (!api_caller.timed_join(boost::posix_time::seconds(GetArg("-rpctimeout", 30))))
{ // Timed out:
acceptor.cancel();
printf("ThreadRPCServer ReadHTTP timeout\n");
continue;
}
// Check authorization
if (mapHeaders.count("authorization") == 0)
{
stream << HTTPReply(401, "") << std::flush;
continue;
}
if (!HTTPAuthorized(mapHeaders))
{
// Deter brute-forcing short passwords
if (mapArgs["-rpcpassword"].size() < 15)
Sleep(50);
stream << HTTPReply(401, "") << std::flush;
printf("ThreadRPCServer incorrect password attempt\n");
continue;
}
Value id = Value::null;
try
{
// Parse request
Value valRequest;
if (!read_string(strRequest, valRequest) || valRequest.type() != obj_type)
throw JSONRPCError(-32700, "Parse error");
const Object& request = valRequest.get_obj();
// Parse id now so errors from here on will have the id
id = find_value(request, "id");
// Parse method
Value valMethod = find_value(request, "method");
if (valMethod.type() == null_type)
throw JSONRPCError(-32600, "Missing method");
if (valMethod.type() != str_type)
throw JSONRPCError(-32600, "Method must be a string");
string strMethod = valMethod.get_str();
if (strMethod != "getwork")
printf("ThreadRPCServer method=%s\n", strMethod.c_str());
// Parse params
Value valParams = find_value(request, "params");
Array params;
if (valParams.type() == array_type)
params = valParams.get_array();
else if (valParams.type() == null_type)
params = Array();
else
throw JSONRPCError(-32600, "Params must be an array");
// Find method
map<string, rpcfn_type>::iterator mi = mapCallTable.find(strMethod);
if (mi == mapCallTable.end())
throw JSONRPCError(-32601, "Method not found");
// Observe safe mode
string strWarning = GetWarnings("rpc");
if (strWarning != "" && !GetBoolArg("-disablesafemode") && !setAllowInSafeMode.count(strMethod))
throw JSONRPCError(-2, string("Safe mode: ") + strWarning);
try
{
// Execute
Value result = (*(*mi).second)(params, false);
// Send reply
string strReply = JSONRPCReply(result, Value::null, id);
stream << HTTPReply(200, strReply) << std::flush;
}
catch (std::exception& e)
{
ErrorReply(stream, JSONRPCError(-1, e.what()), id);
}
}
catch (Object& objError)
{
ErrorReply(stream, objError, id);
}
catch (std::exception& e)
{
ErrorReply(stream, JSONRPCError(-32700, e.what()), id);
}
}
}
Object CallRPC(const string& strMethod, const Array& params)
{
if (mapArgs["-rpcuser"] == "" && mapArgs["-rpcpassword"] == "")
throw runtime_error(strprintf(
_("You must set rpcpassword=<password> in the configuration file:\n%s\n"
"If the file does not exist, create it with owner-readable-only file permissions."),
GetConfigFile().c_str()));
// Connect to localhost
bool fUseSSL = GetBoolArg("-rpcssl");
#ifdef USE_SSL
asio::io_service io_service;
ssl::context context(io_service, ssl::context::sslv23);
context.set_options(ssl::context::no_sslv2);
SSLStream sslStream(io_service, context);
SSLIOStreamDevice d(sslStream, fUseSSL);
iostreams::stream<SSLIOStreamDevice> stream(d);
if (!d.connect(GetArg("-rpcconnect", "127.0.0.1"), GetArg("-rpcport", "8332")))
throw runtime_error("couldn't connect to server");
#else
if (fUseSSL)
throw runtime_error("-rpcssl=1, but bitcoin compiled without full openssl libraries.");
ip::tcp::iostream stream(GetArg("-rpcconnect", "127.0.0.1"), GetArg("-rpcport", "8332"));
if (stream.fail())
throw runtime_error("couldn't connect to server");
#endif
// HTTP basic authentication
string strUserPass64 = EncodeBase64(mapArgs["-rpcuser"] + ":" + mapArgs["-rpcpassword"]);
map<string, string> mapRequestHeaders;
mapRequestHeaders["Authorization"] = string("Basic ") + strUserPass64;
// Send request
string strRequest = JSONRPCRequest(strMethod, params, 1);
string strPost = HTTPPost(strRequest, mapRequestHeaders);
stream << strPost << std::flush;
// Receive reply
map<string, string> mapHeaders;
string strReply;
int nStatus = ReadHTTP(stream, mapHeaders, strReply);
if (nStatus == 401)
throw runtime_error("incorrect rpcuser or rpcpassword (authorization failed)");
else if (nStatus >= 400 && nStatus != 400 && nStatus != 404 && nStatus != 500)
throw runtime_error(strprintf("server returned HTTP error %d", nStatus));
else if (strReply.empty())
throw runtime_error("no response from server");
// Parse reply
Value valReply;
if (!read_string(strReply, valReply))
throw runtime_error("couldn't parse reply from server");
const Object& reply = valReply.get_obj();
if (reply.empty())
throw runtime_error("expected reply to have result, error and id properties");
return reply;
}
template<typename T>
void ConvertTo(Value& value)
{
if (value.type() == str_type)
{
// reinterpret string as unquoted json value
Value value2;
if (!read_string(value.get_str(), value2))
throw runtime_error("type mismatch");
value = value2.get_value<T>();
}
else
{
value = value.get_value<T>();
}
}
int CommandLineRPC(int argc, char *argv[])
{
string strPrint;
int nRet = 0;
try
{
// Skip switches
while (argc > 1 && IsSwitchChar(argv[1][0]))
{
argc--;
argv++;
}
// Method
if (argc < 2)
throw runtime_error("too few parameters");
string strMethod = argv[1];
// Parameters default to strings
Array params;
for (int i = 2; i < argc; i++)
params.push_back(argv[i]);
int n = params.size();
//
// Special case non-string parameter types
//
if (strMethod == "setgenerate" && n > 0) ConvertTo<bool>(params[0]);
if (strMethod == "setgenerate" && n > 1) ConvertTo<boost::int64_t>(params[1]);
if (strMethod == "sendtoaddress" && n > 1) ConvertTo<double>(params[1]);
if (strMethod == "settxfee" && n > 0) ConvertTo<double>(params[0]);
if (strMethod == "getamountreceived" && n > 1) ConvertTo<boost::int64_t>(params[1]); // deprecated
if (strMethod == "getreceivedbyaddress" && n > 1) ConvertTo<boost::int64_t>(params[1]);
if (strMethod == "getreceivedbyaccount" && n > 1) ConvertTo<boost::int64_t>(params[1]);
if (strMethod == "getreceivedbylabel" && n > 1) ConvertTo<boost::int64_t>(params[1]); // deprecated
if (strMethod == "getallreceived" && n > 0) ConvertTo<boost::int64_t>(params[0]); // deprecated
2011-07-30 19:58:22 +03:00
if (strMethod == "getallreceived" && n > 1) ConvertTo<bool>(params[1]); // deprecated
if (strMethod == "listreceivedbyaddress" && n > 0) ConvertTo<boost::int64_t>(params[0]);
if (strMethod == "listreceivedbyaddress" && n > 1) ConvertTo<bool>(params[1]);
if (strMethod == "listreceivedbyaccount" && n > 0) ConvertTo<boost::int64_t>(params[0]);
if (strMethod == "listreceivedbyaccount" && n > 1) ConvertTo<bool>(params[1]);
if (strMethod == "listreceivedbylabel" && n > 0) ConvertTo<boost::int64_t>(params[0]); // deprecated
if (strMethod == "listreceivedbylabel" && n > 1) ConvertTo<bool>(params[1]); // deprecated
if (strMethod == "getbalance" && n > 1) ConvertTo<boost::int64_t>(params[1]);
if (strMethod == "move" && n > 2) ConvertTo<double>(params[2]);
if (strMethod == "move" && n > 3) ConvertTo<boost::int64_t>(params[3]);
if (strMethod == "sendfrom" && n > 2) ConvertTo<double>(params[2]);
if (strMethod == "sendfrom" && n > 3) ConvertTo<boost::int64_t>(params[3]);
if (strMethod == "listtransactions" && n > 1) ConvertTo<boost::int64_t>(params[1]);
if (strMethod == "listtransactions" && n > 2) ConvertTo<boost::int64_t>(params[2]);
if (strMethod == "listaccounts" && n > 0) ConvertTo<boost::int64_t>(params[0]);
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
if (strMethod == "walletpassphrase" && n > 1) ConvertTo<boost::int64_t>(params[1]);
if (strMethod == "sendmany" && n > 1)
{
string s = params[1].get_str();
Value v;
if (!read_string(s, v) || v.type() != obj_type)
throw runtime_error("type mismatch");
params[1] = v.get_obj();
}
if (strMethod == "sendmany" && n > 2) ConvertTo<boost::int64_t>(params[2]);
// Execute
Object reply = CallRPC(strMethod, params);
// Parse reply
const Value& result = find_value(reply, "result");
const Value& error = find_value(reply, "error");
if (error.type() != null_type)
{
// Error
strPrint = "error: " + write_string(error, false);
int code = find_value(error.get_obj(), "code").get_int();
nRet = abs(code);
}
else
{
// Result
if (result.type() == null_type)
strPrint = "";
else if (result.type() == str_type)
strPrint = result.get_str();
else
strPrint = write_string(result, true);
}
}
catch (std::exception& e)
{
strPrint = string("error: ") + e.what();
nRet = 87;
}
catch (...)
{
PrintException(NULL, "CommandLineRPC()");
}
if (strPrint != "")
{
#if defined(__WXMSW__) && defined(GUI)
// Windows GUI apps can't print to command line,
// so settle for a message box yuck
MyMessageBox(strPrint, "Bitcoin", wxOK);
#else
fprintf((nRet == 0 ? stdout : stderr), "%s\n", strPrint.c_str());
#endif
}
return nRet;
}
#ifdef TEST
int main(int argc, char *argv[])
{
#ifdef _MSC_VER
// Turn off microsoft heap dump noise
_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, CreateFile("NUL", GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0, 0));
#endif
setbuf(stdin, NULL);
setbuf(stdout, NULL);
setbuf(stderr, NULL);
try
{
if (argc >= 2 && string(argv[1]) == "-server")
{
printf("server ready\n");
ThreadRPCServer(NULL);
}
else
{
return CommandLineRPC(argc, argv);
}
}
catch (std::exception& e) {
PrintException(&e, "main()");
} catch (...) {
PrintException(NULL, "main()");
}
return 0;
}
#endif