Community driven twister-core
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

739 lines
19 KiB

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2012 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file license.txt or http://www.opensource.org/licenses/mit-license.php.
#include "netbase.h"
#include "util.h"
#ifndef WIN32
#include <sys/fcntl.h>
#endif
#include "strlcpy.h"
using namespace std;
// Settings
int fUseProxy = false;
CService addrProxy("127.0.0.1",9050);
int nConnectTimeout = 5000;
static const unsigned char pchIPv4[12] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff };
bool static LookupIntern(const char *pszName, std::vector<CNetAddr>& vIP, int nMaxSolutions, bool fAllowLookup)
{
vIP.clear();
struct addrinfo aiHint;
memset(&aiHint, 0, sizeof(struct addrinfo));
aiHint.ai_socktype = SOCK_STREAM;
aiHint.ai_protocol = IPPROTO_TCP;
#ifdef WIN32
# ifdef USE_IPV6
aiHint.ai_family = AF_UNSPEC;
aiHint.ai_flags = fAllowLookup ? 0 : AI_NUMERICHOST;
# else
aiHint.ai_family = AF_INET;
aiHint.ai_flags = fAllowLookup ? 0 : AI_NUMERICHOST;
# endif
#else
# ifdef USE_IPV6
aiHint.ai_family = AF_UNSPEC;
aiHint.ai_flags = AI_ADDRCONFIG | (fAllowLookup ? 0 : AI_NUMERICHOST);
# else
aiHint.ai_family = AF_INET;
aiHint.ai_flags = AI_ADDRCONFIG | (fAllowLookup ? 0 : AI_NUMERICHOST);
# endif
#endif
struct addrinfo *aiRes = NULL;
int nErr = getaddrinfo(pszName, NULL, &aiHint, &aiRes);
if (nErr)
return false;
struct addrinfo *aiTrav = aiRes;
while (aiTrav != NULL && (nMaxSolutions == 0 || vIP.size() < nMaxSolutions))
{
if (aiTrav->ai_family == AF_INET)
{
assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in));
vIP.push_back(CNetAddr(((struct sockaddr_in*)(aiTrav->ai_addr))->sin_addr));
}
#ifdef USE_IPV6
if (aiTrav->ai_family == AF_INET6)
{
assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in6));
vIP.push_back(CNetAddr(((struct sockaddr_in6*)(aiTrav->ai_addr))->sin6_addr));
}
#endif
aiTrav = aiTrav->ai_next;
}
freeaddrinfo(aiRes);
return (vIP.size() > 0);
}
bool LookupHost(const char *pszName, std::vector<CNetAddr>& vIP, int nMaxSolutions, bool fAllowLookup)
{
if (pszName[0] == 0)
return false;
char psz[256];
char *pszHost = psz;
strlcpy(psz, pszName, sizeof(psz));
if (psz[0] == '[' && psz[strlen(psz)-1] == ']')
{
pszHost = psz+1;
psz[strlen(psz)-1] = 0;
}
return LookupIntern(pszHost, vIP, nMaxSolutions, fAllowLookup);
}
bool LookupHostNumeric(const char *pszName, std::vector<CNetAddr>& vIP, int nMaxSolutions)
{
return LookupHost(pszName, vIP, nMaxSolutions, false);
}
bool Lookup(const char *pszName, std::vector<CService>& vAddr, int portDefault, bool fAllowLookup, int nMaxSolutions)
{
if (pszName[0] == 0)
return false;
int port = portDefault;
char psz[256];
char *pszHost = psz;
strlcpy(psz, pszName, sizeof(psz));
char* pszColon = strrchr(psz+1,':');
char *pszPortEnd = NULL;
int portParsed = pszColon ? strtoul(pszColon+1, &pszPortEnd, 10) : 0;
if (pszColon && pszPortEnd && pszPortEnd[0] == 0)
{
if (psz[0] == '[' && pszColon[-1] == ']')
{
pszHost = psz+1;
pszColon[-1] = 0;
}
else
pszColon[0] = 0;
if (port >= 0 && port <= USHRT_MAX)
port = portParsed;
}
else
{
if (psz[0] == '[' && psz[strlen(psz)-1] == ']')
{
pszHost = psz+1;
psz[strlen(psz)-1] = 0;
}
}
std::vector<CNetAddr> vIP;
bool fRet = LookupIntern(pszHost, vIP, nMaxSolutions, fAllowLookup);
if (!fRet)
return false;
vAddr.resize(vIP.size());
for (unsigned int i = 0; i < vIP.size(); i++)
vAddr[i] = CService(vIP[i], port);
return true;
}
bool Lookup(const char *pszName, CService& addr, int portDefault, bool fAllowLookup)
{
std::vector<CService> vService;
bool fRet = Lookup(pszName, vService, portDefault, fAllowLookup, 1);
if (!fRet)
return false;
addr = vService[0];
return true;
}
bool LookupNumeric(const char *pszName, CService& addr, int portDefault)
{
return Lookup(pszName, addr, portDefault, false);
}
bool ConnectSocket(const CService &addrDest, SOCKET& hSocketRet, int nTimeout)
{
hSocketRet = INVALID_SOCKET;
SOCKET hSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (hSocket == INVALID_SOCKET)
return false;
#ifdef SO_NOSIGPIPE
int set = 1;
setsockopt(hSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&set, sizeof(int));
#endif
bool fProxy = (fUseProxy && addrDest.IsRoutable());
struct sockaddr_in sockaddr;
if (fProxy)
addrProxy.GetSockAddr(&sockaddr);
else
addrDest.GetSockAddr(&sockaddr);
#ifdef WIN32
u_long fNonblock = 1;
if (ioctlsocket(hSocket, FIONBIO, &fNonblock) == SOCKET_ERROR)
#else
int fFlags = fcntl(hSocket, F_GETFL, 0);
if (fcntl(hSocket, F_SETFL, fFlags | O_NONBLOCK) == -1)
#endif
{
closesocket(hSocket);
return false;
}
if (connect(hSocket, (struct sockaddr*)&sockaddr, sizeof(sockaddr)) == SOCKET_ERROR)
{
// WSAEINVAL is here because some legacy version of winsock uses it
if (WSAGetLastError() == WSAEINPROGRESS || WSAGetLastError() == WSAEWOULDBLOCK || WSAGetLastError() == WSAEINVAL)
{
struct timeval timeout;
timeout.tv_sec = nTimeout / 1000;
timeout.tv_usec = (nTimeout % 1000) * 1000;
fd_set fdset;
FD_ZERO(&fdset);
FD_SET(hSocket, &fdset);
int nRet = select(hSocket + 1, NULL, &fdset, NULL, &timeout);
if (nRet == 0)
{
printf("connection timeout\n");
closesocket(hSocket);
return false;
}
if (nRet == SOCKET_ERROR)
{
printf("select() for connection failed: %i\n",WSAGetLastError());
closesocket(hSocket);
return false;
}
socklen_t nRetSize = sizeof(nRet);
#ifdef WIN32
if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, (char*)(&nRet), &nRetSize) == SOCKET_ERROR)
#else
if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, &nRet, &nRetSize) == SOCKET_ERROR)
#endif
{
printf("getsockopt() for connection failed: %i\n",WSAGetLastError());
closesocket(hSocket);
return false;
}
if (nRet != 0)
{
printf("connect() failed after select(): %s\n",strerror(nRet));
closesocket(hSocket);
return false;
}
}
#ifdef WIN32
else if (WSAGetLastError() != WSAEISCONN)
#else
else
#endif
{
printf("connect() failed: %i\n",WSAGetLastError());
closesocket(hSocket);
return false;
}
}
// this isn't even strictly necessary
// CNode::ConnectNode immediately turns the socket back to non-blocking
// but we'll turn it back to blocking just in case
#ifdef WIN32
fNonblock = 0;
if (ioctlsocket(hSocket, FIONBIO, &fNonblock) == SOCKET_ERROR)
#else
fFlags = fcntl(hSocket, F_GETFL, 0);
if (fcntl(hSocket, F_SETFL, fFlags & !O_NONBLOCK) == SOCKET_ERROR)
#endif
{
closesocket(hSocket);
return false;
}
if (fProxy)
{
printf("proxy connecting %s\n", addrDest.ToString().c_str());
char pszSocks4IP[] = "\4\1\0\0\0\0\0\0user";
struct sockaddr_in addr;
addrDest.GetSockAddr(&addr);
memcpy(pszSocks4IP + 2, &addr.sin_port, 2);
memcpy(pszSocks4IP + 4, &addr.sin_addr, 4);
char* pszSocks4 = pszSocks4IP;
int nSize = sizeof(pszSocks4IP);
int ret = send(hSocket, pszSocks4, nSize, MSG_NOSIGNAL);
if (ret != nSize)
{
closesocket(hSocket);
return error("Error sending to proxy");
}
char pchRet[8];
if (recv(hSocket, pchRet, 8, 0) != 8)
{
closesocket(hSocket);
return error("Error reading proxy response");
}
if (pchRet[1] != 0x5a)
{
closesocket(hSocket);
if (pchRet[1] != 0x5b)
printf("ERROR: Proxy returned error %d\n", pchRet[1]);
return false;
}
printf("proxy connected %s\n", addrDest.ToString().c_str());
}
hSocketRet = hSocket;
return true;
}
void CNetAddr::Init()
{
memset(ip, 0, 16);
}
void CNetAddr::SetIP(const CNetAddr& ipIn)
{
memcpy(ip, ipIn.ip, sizeof(ip));
}
CNetAddr::CNetAddr()
{
Init();
}
CNetAddr::CNetAddr(const struct in_addr& ipv4Addr)
{
memcpy(ip, pchIPv4, 12);
memcpy(ip+12, &ipv4Addr, 4);
}
#ifdef USE_IPV6
CNetAddr::CNetAddr(const struct in6_addr& ipv6Addr)
{
memcpy(ip, &ipv6Addr, 16);
}
#endif
CNetAddr::CNetAddr(const char *pszIp, bool fAllowLookup)
{
Init();
std::vector<CNetAddr> vIP;
if (LookupHost(pszIp, vIP, 1, fAllowLookup))
*this = vIP[0];
}
CNetAddr::CNetAddr(const std::string &strIp, bool fAllowLookup)
{
Init();
std::vector<CNetAddr> vIP;
if (LookupHost(strIp.c_str(), vIP, 1, fAllowLookup))
*this = vIP[0];
}
int CNetAddr::GetByte(int n) const
{
return ip[15-n];
}
bool CNetAddr::IsIPv4() const
{
return (memcmp(ip, pchIPv4, sizeof(pchIPv4)) == 0);
}
bool CNetAddr::IsRFC1918() const
{
return IsIPv4() && (
GetByte(3) == 10 ||
(GetByte(3) == 192 && GetByte(2) == 168) ||
(GetByte(3) == 172 && (GetByte(2) >= 16 && GetByte(2) <= 31)));
}
bool CNetAddr::IsRFC3927() const
{
return IsIPv4() && (GetByte(3) == 169 && GetByte(2) == 254);
}
bool CNetAddr::IsRFC3849() const
{
return GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x0D && GetByte(12) == 0xB8;
}
bool CNetAddr::IsRFC3964() const
{
return (GetByte(15) == 0x20 && GetByte(14) == 0x02);
}
bool CNetAddr::IsRFC6052() const
{
static const unsigned char pchRFC6052[] = {0,0x64,0xFF,0x9B,0,0,0,0,0,0,0,0};
return (memcmp(ip, pchRFC6052, sizeof(pchRFC6052)) == 0);
}
bool CNetAddr::IsRFC4380() const
{
return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0 && GetByte(12) == 0);
}
bool CNetAddr::IsRFC4862() const
{
static const unsigned char pchRFC4862[] = {0xFE,0x80,0,0,0,0,0,0};
return (memcmp(ip, pchRFC4862, sizeof(pchRFC4862)) == 0);
}
bool CNetAddr::IsRFC4193() const
{
return ((GetByte(15) & 0xFE) == 0xFC);
}
bool CNetAddr::IsRFC6145() const
{
static const unsigned char pchRFC6145[] = {0,0,0,0,0,0,0,0,0xFF,0xFF,0,0};
return (memcmp(ip, pchRFC6145, sizeof(pchRFC6145)) == 0);
}
bool CNetAddr::IsRFC4843() const
{
return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x00 && (GetByte(12) & 0xF0) == 0x10);
}
bool CNetAddr::IsLocal() const
{
// IPv4 loopback
if (IsIPv4() && (GetByte(3) == 127 || GetByte(3) == 0))
return true;
// IPv6 loopback (::1/128)
static const unsigned char pchLocal[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
if (memcmp(ip, pchLocal, 16) == 0)
return true;
return false;
}
bool CNetAddr::IsMulticast() const
{
return (IsIPv4() && (GetByte(3) & 0xF0) == 0xE0)
|| (GetByte(15) == 0xFF);
}
bool CNetAddr::IsValid() const
{
// Clean up 3-byte shifted addresses caused by garbage in size field
// of addr messages from versions before 0.2.9 checksum.
// Two consecutive addr messages look like this:
// header20 vectorlen3 addr26 addr26 addr26 header20 vectorlen3 addr26 addr26 addr26...
// so if the first length field is garbled, it reads the second batch
// of addr misaligned by 3 bytes.
if (memcmp(ip, pchIPv4+3, sizeof(pchIPv4)-3) == 0)
return false;
// unspecified IPv6 address (::/128)
unsigned char ipNone[16] = {};
if (memcmp(ip, ipNone, 16) == 0)
return false;
// documentation IPv6 address
if (IsRFC3849())
return false;
if (IsIPv4())
{
// INADDR_NONE
uint32_t ipNone = INADDR_NONE;
if (memcmp(ip+12, &ipNone, 4) == 0)
return false;
// 0
ipNone = 0;
if (memcmp(ip+12, &ipNone, 4) == 0)
return false;
}
return true;
}
bool CNetAddr::IsRoutable() const
{
return IsValid() && !(IsRFC1918() || IsRFC3927() || IsRFC4862() || IsRFC4193() || IsRFC4843() || IsLocal());
}
std::string CNetAddr::ToStringIP() const
{
if (IsIPv4())
return strprintf("%u.%u.%u.%u", GetByte(3), GetByte(2), GetByte(1), GetByte(0));
else
return strprintf("%x:%x:%x:%x:%x:%x:%x:%x",
GetByte(15) << 8 | GetByte(14), GetByte(13) << 8 | GetByte(12),
GetByte(11) << 8 | GetByte(10), GetByte(9) << 8 | GetByte(8),
GetByte(7) << 8 | GetByte(6), GetByte(5) << 8 | GetByte(4),
GetByte(3) << 8 | GetByte(2), GetByte(1) << 8 | GetByte(0));
}
std::string CNetAddr::ToString() const
{
return ToStringIP();
}
bool operator==(const CNetAddr& a, const CNetAddr& b)
{
return (memcmp(a.ip, b.ip, 16) == 0);
}
bool operator!=(const CNetAddr& a, const CNetAddr& b)
{
return (memcmp(a.ip, b.ip, 16) != 0);
}
bool operator<(const CNetAddr& a, const CNetAddr& b)
{
return (memcmp(a.ip, b.ip, 16) < 0);
}
bool CNetAddr::GetInAddr(struct in_addr* pipv4Addr) const
{
if (!IsIPv4())
return false;
memcpy(pipv4Addr, ip+12, 4);
return true;
}
#ifdef USE_IPV6
bool CNetAddr::GetIn6Addr(struct in6_addr* pipv6Addr) const
{
memcpy(pipv6Addr, ip, 16);
return true;
}
#endif
// get canonical identifier of an address' group
// no two connections will be attempted to addresses with the same group
std::vector<unsigned char> CNetAddr::GetGroup() const
{
std::vector<unsigned char> vchRet;
int nClass = 0; // 0=IPv6, 1=IPv4, 254=local, 255=unroutable
int nStartByte = 0;
int nBits = 16;
// all local addresses belong to the same group
if (IsLocal())
{
nClass = 254;
nBits = 0;
}
// all unroutable addresses belong to the same group
if (!IsRoutable())
{
nClass = 255;
nBits = 0;
}
// for IPv4 addresses, '1' + the 16 higher-order bits of the IP
// includes mapped IPv4, SIIT translated IPv4, and the well-known prefix
else if (IsIPv4() || IsRFC6145() || IsRFC6052())
{
nClass = 1;
nStartByte = 12;
}
// for 6to4 tunneled addresses, use the encapsulated IPv4 address
else if (IsRFC3964())
{
nClass = 1;
nStartByte = 2;
}
// for Teredo-tunneled IPv6 addresses, use the encapsulated IPv4 address
else if (IsRFC4380())
{
vchRet.push_back(1);
vchRet.push_back(GetByte(3) ^ 0xFF);
vchRet.push_back(GetByte(2) ^ 0xFF);
return vchRet;
}
// for he.net, use /36 groups
else if (GetByte(15) == 0x20 && GetByte(14) == 0x11 && GetByte(13) == 0x04 && GetByte(12) == 0x70)
nBits = 36;
// for the rest of the IPv6 network, use /32 groups
else
nBits = 32;
vchRet.push_back(nClass);
while (nBits >= 8)
{
vchRet.push_back(GetByte(15 - nStartByte));
nStartByte++;
nBits -= 8;
}
if (nBits > 0)
vchRet.push_back(GetByte(15 - nStartByte) | ((1 << nBits) - 1));
return vchRet;
}
int64 CNetAddr::GetHash() const
{
uint256 hash = Hash(&ip[0], &ip[16]);
int64 nRet;
memcpy(&nRet, &hash, sizeof(nRet));
return nRet;
}
void CNetAddr::print() const
{
printf("CNetAddr(%s)\n", ToString().c_str());
}
void CService::Init()
{
port = 0;
}
CService::CService()
{
Init();
}
CService::CService(const CNetAddr& cip, unsigned short portIn) : CNetAddr(cip), port(portIn)
{
}
CService::CService(const struct in_addr& ipv4Addr, unsigned short portIn) : CNetAddr(ipv4Addr), port(portIn)
{
}
#ifdef USE_IPV6
CService::CService(const struct in6_addr& ipv6Addr, unsigned short portIn) : CNetAddr(ipv6Addr), port(portIn)
{
}
#endif
CService::CService(const struct sockaddr_in& addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port))
{
assert(addr.sin_family == AF_INET);
}
#ifdef USE_IPV6
CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr), port(ntohs(addr.sin6_port))
{
assert(addr.sin6_family == AF_INET6);
}
#endif
CService::CService(const char *pszIpPort, bool fAllowLookup)
{
Init();
CService ip;
if (Lookup(pszIpPort, ip, 0, fAllowLookup))
*this = ip;
}
CService::CService(const char *pszIpPort, int portDefault, bool fAllowLookup)
{
Init();
CService ip;
if (Lookup(pszIpPort, ip, portDefault, fAllowLookup))
*this = ip;
}
CService::CService(const std::string &strIpPort, bool fAllowLookup)
{
Init();
CService ip;
if (Lookup(strIpPort.c_str(), ip, 0, fAllowLookup))
*this = ip;
}
CService::CService(const std::string &strIpPort, int portDefault, bool fAllowLookup)
{
Init();
CService ip;
if (Lookup(strIpPort.c_str(), ip, portDefault, fAllowLookup))
*this = ip;
}
unsigned short CService::GetPort() const
{
return port;
}
bool operator==(const CService& a, const CService& b)
{
return (CNetAddr)a == (CNetAddr)b && a.port == b.port;
}
bool operator!=(const CService& a, const CService& b)
{
return (CNetAddr)a != (CNetAddr)b || a.port != b.port;
}
bool operator<(const CService& a, const CService& b)
{
return (CNetAddr)a < (CNetAddr)b || ((CNetAddr)a == (CNetAddr)b && a.port < b.port);
}
bool CService::GetSockAddr(struct sockaddr_in* paddr) const
{
if (!IsIPv4())
return false;
memset(paddr, 0, sizeof(struct sockaddr_in));
if (!GetInAddr(&paddr->sin_addr))
return false;
paddr->sin_family = AF_INET;
paddr->sin_port = htons(port);
return true;
}
#ifdef USE_IPV6
bool CService::GetSockAddr6(struct sockaddr_in6* paddr) const
{
memset(paddr, 0, sizeof(struct sockaddr_in6));
if (!GetIn6Addr(&paddr->sin6_addr))
return false;
paddr->sin6_family = AF_INET6;
paddr->sin6_port = htons(port);
return true;
}
#endif
std::vector<unsigned char> CService::GetKey() const
{
std::vector<unsigned char> vKey;
vKey.resize(18);
memcpy(&vKey[0], ip, 16);
vKey[16] = port / 0x100;
vKey[17] = port & 0x0FF;
return vKey;
}
std::string CService::ToStringPort() const
{
return strprintf(":%i", port);
}
std::string CService::ToStringIPPort() const
{
return ToStringIP() + ToStringPort();
}
std::string CService::ToString() const
{
return ToStringIPPort();
}
void CService::print() const
{
printf("CService(%s)\n", ToString().c_str());
}
void CService::SetPort(unsigned short portIn)
{
port = portIn;
}