Community driven twister-core
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1200 lines
39 KiB

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2012 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file license.txt or http://www.opensource.org/licenses/mit-license.php.
#include "headers.h"
#include "db.h"
#include "net.h"
#include <boost/version.hpp>
#include <boost/filesystem.hpp>
#include <boost/filesystem/fstream.hpp>
using namespace std;
using namespace boost;
unsigned int nWalletDBUpdated;
uint64 nAccountingEntryNumber = 0;
//
// CDB
//
static CCriticalSection cs_db;
static bool fDbEnvInit = false;
DbEnv dbenv(0);
static map<string, int> mapFileUseCount;
static map<string, Db*> mapDb;
static void EnvShutdown()
{
if (!fDbEnvInit)
return;
fDbEnvInit = false;
try
{
dbenv.close(0);
}
catch (const DbException& e)
{
printf("EnvShutdown exception: %s (%d)\n", e.what(), e.get_errno());
}
DbEnv(0).remove(GetDataDir().string().c_str(), 0);
}
class CDBInit
{
public:
CDBInit()
{
}
~CDBInit()
{
EnvShutdown();
}
}
instance_of_cdbinit;
CDB::CDB(const char *pszFile, const char* pszMode) : pdb(NULL)
{
int ret;
if (pszFile == NULL)
return;
fReadOnly = (!strchr(pszMode, '+') && !strchr(pszMode, 'w'));
bool fCreate = strchr(pszMode, 'c');
unsigned int nFlags = DB_THREAD;
if (fCreate)
nFlags |= DB_CREATE;
{
LOCK(cs_db);
if (!fDbEnvInit)
{
if (fShutdown)
return;
filesystem::path pathDataDir = GetDataDir();
filesystem::path pathLogDir = pathDataDir / "database";
filesystem::create_directory(pathLogDir);
filesystem::path pathErrorFile = pathDataDir / "db.log";
printf("dbenv.open LogDir=%s ErrorFile=%s\n", pathLogDir.string().c_str(), pathErrorFile.string().c_str());
int nDbCache = GetArg("-dbcache", 25);
dbenv.set_lg_dir(pathLogDir.string().c_str());
dbenv.set_cachesize(nDbCache / 1024, (nDbCache % 1024)*1048576, 1);
dbenv.set_lg_bsize(1048576);
dbenv.set_lg_max(10485760);
dbenv.set_lk_max_locks(10000);
dbenv.set_lk_max_objects(10000);
dbenv.set_errfile(fopen(pathErrorFile.string().c_str(), "a")); /// debug
dbenv.set_flags(DB_AUTO_COMMIT, 1);
dbenv.log_set_config(DB_LOG_AUTO_REMOVE, 1);
ret = dbenv.open(pathDataDir.string().c_str(),
DB_CREATE |
DB_INIT_LOCK |
DB_INIT_LOG |
DB_INIT_MPOOL |
DB_INIT_TXN |
DB_THREAD |
DB_RECOVER,
S_IRUSR | S_IWUSR);
if (ret > 0)
throw runtime_error(strprintf("CDB() : error %d opening database environment", ret));
fDbEnvInit = true;
}
strFile = pszFile;
++mapFileUseCount[strFile];
pdb = mapDb[strFile];
if (pdb == NULL)
{
pdb = new Db(&dbenv, 0);
ret = pdb->open(NULL, // Txn pointer
pszFile, // Filename
"main", // Logical db name
DB_BTREE, // Database type
nFlags, // Flags
0);
if (ret > 0)
{
delete pdb;
pdb = NULL;
{
LOCK(cs_db);
--mapFileUseCount[strFile];
}
strFile = "";
throw runtime_error(strprintf("CDB() : can't open database file %s, error %d", pszFile, ret));
}
if (fCreate && !Exists(string("version")))
{
bool fTmp = fReadOnly;
fReadOnly = false;
WriteVersion(CLIENT_VERSION);
fReadOnly = fTmp;
}
mapDb[strFile] = pdb;
}
}
}
void CDB::Close()
{
if (!pdb)
return;
if (!vTxn.empty())
vTxn.front()->abort();
vTxn.clear();
pdb = NULL;
// Flush database activity from memory pool to disk log
unsigned int nMinutes = 0;
if (fReadOnly)
nMinutes = 1;
if (strFile == "addr.dat")
nMinutes = 2;
if (strFile == "blkindex.dat" && IsInitialBlockDownload())
nMinutes = 5;
dbenv.txn_checkpoint(nMinutes ? GetArg("-dblogsize", 100)*1024 : 0, nMinutes, 0);
{
LOCK(cs_db);
--mapFileUseCount[strFile];
}
}
void static CloseDb(const string& strFile)
{
{
LOCK(cs_db);
if (mapDb[strFile] != NULL)
{
// Close the database handle
Db* pdb = mapDb[strFile];
pdb->close(0);
delete pdb;
mapDb[strFile] = NULL;
}
}
}
bool CDB::Rewrite(const string& strFile, const char* pszSkip)
13 years ago
{
while (!fShutdown)
{
{
LOCK(cs_db);
13 years ago
if (!mapFileUseCount.count(strFile) || mapFileUseCount[strFile] == 0)
{
// Flush log data to the dat file
CloseDb(strFile);
dbenv.txn_checkpoint(0, 0, 0);
dbenv.lsn_reset(strFile.c_str(), 0);
mapFileUseCount.erase(strFile);
bool fSuccess = true;
printf("Rewriting %s...\n", strFile.c_str());
string strFileRes = strFile + ".rewrite";
{ // surround usage of db with extra {}
CDB db(strFile.c_str(), "r");
Db* pdbCopy = new Db(&dbenv, 0);
int ret = pdbCopy->open(NULL, // Txn pointer
strFileRes.c_str(), // Filename
"main", // Logical db name
DB_BTREE, // Database type
DB_CREATE, // Flags
0);
if (ret > 0)
13 years ago
{
printf("Cannot create database file %s\n", strFileRes.c_str());
fSuccess = false;
}
Dbc* pcursor = db.GetCursor();
if (pcursor)
while (fSuccess)
{
CDataStream ssKey;
CDataStream ssValue;
int ret = db.ReadAtCursor(pcursor, ssKey, ssValue, DB_NEXT);
if (ret == DB_NOTFOUND)
{
pcursor->close();
break;
}
else if (ret != 0)
{
pcursor->close();
fSuccess = false;
break;
}
if (pszSkip &&
strncmp(&ssKey[0], pszSkip, std::min(ssKey.size(), strlen(pszSkip))) == 0)
continue;
if (strncmp(&ssKey[0], "\x07version", 8) == 0)
{
// Update version:
ssValue.clear();
ssValue << CLIENT_VERSION;
}
Dbt datKey(&ssKey[0], ssKey.size());
Dbt datValue(&ssValue[0], ssValue.size());
int ret2 = pdbCopy->put(NULL, &datKey, &datValue, DB_NOOVERWRITE);
if (ret2 > 0)
fSuccess = false;
}
if (fSuccess)
{
db.Close();
CloseDb(strFile);
if (pdbCopy->close(0))
13 years ago
fSuccess = false;
delete pdbCopy;
13 years ago
}
}
if (fSuccess)
{
Db dbA(&dbenv, 0);
if (dbA.remove(strFile.c_str(), NULL, 0))
fSuccess = false;
Db dbB(&dbenv, 0);
if (dbB.rename(strFileRes.c_str(), NULL, strFile.c_str(), 0))
fSuccess = false;
}
if (!fSuccess)
printf("Rewriting of %s FAILED!\n", strFileRes.c_str());
13 years ago
return fSuccess;
}
}
Sleep(100);
}
return false;
}
void DBFlush(bool fShutdown)
{
// Flush log data to the actual data file
// on all files that are not in use
printf("DBFlush(%s)%s\n", fShutdown ? "true" : "false", fDbEnvInit ? "" : " db not started");
if (!fDbEnvInit)
return;
{
LOCK(cs_db);
map<string, int>::iterator mi = mapFileUseCount.begin();
while (mi != mapFileUseCount.end())
{
string strFile = (*mi).first;
int nRefCount = (*mi).second;
printf("%s refcount=%d\n", strFile.c_str(), nRefCount);
if (nRefCount == 0)
{
// Move log data to the dat file
CloseDb(strFile);
dbenv.txn_checkpoint(0, 0, 0);
printf("%s flush\n", strFile.c_str());
dbenv.lsn_reset(strFile.c_str(), 0);
mapFileUseCount.erase(mi++);
}
else
mi++;
}
if (fShutdown)
{
char** listp;
if (mapFileUseCount.empty())
{
dbenv.log_archive(&listp, DB_ARCH_REMOVE);
EnvShutdown();
}
}
}
}
//
// CTxDB
//
bool CTxDB::ReadTxIndex(uint256 hash, CTxIndex& txindex)
{
assert(!fClient);
txindex.SetNull();
return Read(make_pair(string("tx"), hash), txindex);
}
bool CTxDB::UpdateTxIndex(uint256 hash, const CTxIndex& txindex)
{
assert(!fClient);
return Write(make_pair(string("tx"), hash), txindex);
}
bool CTxDB::AddTxIndex(const CTransaction& tx, const CDiskTxPos& pos, int nHeight)
{
assert(!fClient);
// Add to tx index
uint256 hash = tx.GetHash();
CTxIndex txindex(pos, tx.vout.size());
return Write(make_pair(string("tx"), hash), txindex);
}
bool CTxDB::EraseTxIndex(const CTransaction& tx)
{
assert(!fClient);
uint256 hash = tx.GetHash();
return Erase(make_pair(string("tx"), hash));
}
bool CTxDB::ContainsTx(uint256 hash)
{
assert(!fClient);
return Exists(make_pair(string("tx"), hash));
}
bool CTxDB::ReadOwnerTxes(uint160 hash160, int nMinHeight, vector<CTransaction>& vtx)
{
assert(!fClient);
vtx.clear();
// Get cursor
Dbc* pcursor = GetCursor();
if (!pcursor)
return false;
unsigned int fFlags = DB_SET_RANGE;
loop
{
// Read next record
CDataStream ssKey;
if (fFlags == DB_SET_RANGE)
ssKey << string("owner") << hash160 << CDiskTxPos(0, 0, 0);
CDataStream ssValue;
int ret = ReadAtCursor(pcursor, ssKey, ssValue, fFlags);
fFlags = DB_NEXT;
if (ret == DB_NOTFOUND)
break;
else if (ret != 0)
{
pcursor->close();
return false;
}
// Unserialize
string strType;
uint160 hashItem;
CDiskTxPos pos;
ssKey >> strType >> hashItem >> pos;
int nItemHeight;
ssValue >> nItemHeight;
// Read transaction
if (strType != "owner" || hashItem != hash160)
break;
if (nItemHeight >= nMinHeight)
{
vtx.resize(vtx.size()+1);
if (!vtx.back().ReadFromDisk(pos))
{
pcursor->close();
return false;
}
}
}
pcursor->close();
return true;
}
bool CTxDB::ReadDiskTx(uint256 hash, CTransaction& tx, CTxIndex& txindex)
{
assert(!fClient);
tx.SetNull();
if (!ReadTxIndex(hash, txindex))
return false;
return (tx.ReadFromDisk(txindex.pos));
}
bool CTxDB::ReadDiskTx(uint256 hash, CTransaction& tx)
{
CTxIndex txindex;
return ReadDiskTx(hash, tx, txindex);
}
bool CTxDB::ReadDiskTx(COutPoint outpoint, CTransaction& tx, CTxIndex& txindex)
{
return ReadDiskTx(outpoint.hash, tx, txindex);
}
bool CTxDB::ReadDiskTx(COutPoint outpoint, CTransaction& tx)
{
CTxIndex txindex;
return ReadDiskTx(outpoint.hash, tx, txindex);
}
bool CTxDB::WriteBlockIndex(const CDiskBlockIndex& blockindex)
{
return Write(make_pair(string("blockindex"), blockindex.GetBlockHash()), blockindex);
}
bool CTxDB::EraseBlockIndex(uint256 hash)
{
return Erase(make_pair(string("blockindex"), hash));
}
bool CTxDB::ReadHashBestChain(uint256& hashBestChain)
{
return Read(string("hashBestChain"), hashBestChain);
}
bool CTxDB::WriteHashBestChain(uint256 hashBestChain)
{
return Write(string("hashBestChain"), hashBestChain);
}
bool CTxDB::ReadBestInvalidWork(CBigNum& bnBestInvalidWork)
{
return Read(string("bnBestInvalidWork"), bnBestInvalidWork);
}
bool CTxDB::WriteBestInvalidWork(CBigNum bnBestInvalidWork)
{
return Write(string("bnBestInvalidWork"), bnBestInvalidWork);
}
CBlockIndex static * InsertBlockIndex(uint256 hash)
{
if (hash == 0)
return NULL;
// Return existing
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end())
return (*mi).second;
// Create new
CBlockIndex* pindexNew = new CBlockIndex();
if (!pindexNew)
throw runtime_error("LoadBlockIndex() : new CBlockIndex failed");
mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
return pindexNew;
}
bool CTxDB::LoadBlockIndex()
{
// Get database cursor
Dbc* pcursor = GetCursor();
if (!pcursor)
return false;
// Load mapBlockIndex
unsigned int fFlags = DB_SET_RANGE;
loop
{
// Read next record
CDataStream ssKey;
if (fFlags == DB_SET_RANGE)
ssKey << make_pair(string("blockindex"), uint256(0));
CDataStream ssValue;
int ret = ReadAtCursor(pcursor, ssKey, ssValue, fFlags);
fFlags = DB_NEXT;
if (ret == DB_NOTFOUND)
break;
else if (ret != 0)
return false;
// Unserialize
string strType;
ssKey >> strType;
if (strType == "blockindex")
{
CDiskBlockIndex diskindex;
ssValue >> diskindex;
// Construct block index object
CBlockIndex* pindexNew = InsertBlockIndex(diskindex.GetBlockHash());
pindexNew->pprev = InsertBlockIndex(diskindex.hashPrev);
pindexNew->pnext = InsertBlockIndex(diskindex.hashNext);
pindexNew->nFile = diskindex.nFile;
pindexNew->nBlockPos = diskindex.nBlockPos;
pindexNew->nHeight = diskindex.nHeight;
pindexNew->nVersion = diskindex.nVersion;
pindexNew->hashMerkleRoot = diskindex.hashMerkleRoot;
pindexNew->nTime = diskindex.nTime;
pindexNew->nBits = diskindex.nBits;
pindexNew->nNonce = diskindex.nNonce;
// Watch for genesis block
if (pindexGenesisBlock == NULL && diskindex.GetBlockHash() == hashGenesisBlock)
pindexGenesisBlock = pindexNew;
if (!pindexNew->CheckIndex())
return error("LoadBlockIndex() : CheckIndex failed at %d", pindexNew->nHeight);
}
else
{
break;
}
}
pcursor->close();
// Calculate bnChainWork
vector<pair<int, CBlockIndex*> > vSortedByHeight;
vSortedByHeight.reserve(mapBlockIndex.size());
BOOST_FOREACH(const PAIRTYPE(uint256, CBlockIndex*)& item, mapBlockIndex)
{
CBlockIndex* pindex = item.second;
vSortedByHeight.push_back(make_pair(pindex->nHeight, pindex));
}
sort(vSortedByHeight.begin(), vSortedByHeight.end());
BOOST_FOREACH(const PAIRTYPE(int, CBlockIndex*)& item, vSortedByHeight)
{
CBlockIndex* pindex = item.second;
pindex->bnChainWork = (pindex->pprev ? pindex->pprev->bnChainWork : 0) + pindex->GetBlockWork();
}
// Load hashBestChain pointer to end of best chain
if (!ReadHashBestChain(hashBestChain))
{
if (pindexGenesisBlock == NULL)
return true;
return error("CTxDB::LoadBlockIndex() : hashBestChain not loaded");
}
if (!mapBlockIndex.count(hashBestChain))
return error("CTxDB::LoadBlockIndex() : hashBestChain not found in the block index");
pindexBest = mapBlockIndex[hashBestChain];
nBestHeight = pindexBest->nHeight;
bnBestChainWork = pindexBest->bnChainWork;
printf("LoadBlockIndex(): hashBestChain=%s height=%d\n", hashBestChain.ToString().substr(0,20).c_str(), nBestHeight);
// Load bnBestInvalidWork, OK if it doesn't exist
ReadBestInvalidWork(bnBestInvalidWork);
// Verify blocks in the best chain
int nCheckLevel = GetArg("-checklevel", 1);
int nCheckDepth = GetArg( "-checkblocks", 2500);
if (nCheckDepth == 0)
nCheckDepth = 1000000000; // suffices until the year 19000
if (nCheckDepth > nBestHeight)
nCheckDepth = nBestHeight;
printf("Verifying last %i blocks at level %i\n", nCheckDepth, nCheckLevel);
CBlockIndex* pindexFork = NULL;
map<pair<unsigned int, unsigned int>, CBlockIndex*> mapBlockPos;
for (CBlockIndex* pindex = pindexBest; pindex && pindex->pprev; pindex = pindex->pprev)
{
if (pindex->nHeight < nBestHeight-nCheckDepth)
break;
CBlock block;
if (!block.ReadFromDisk(pindex))
return error("LoadBlockIndex() : block.ReadFromDisk failed");
// check level 1: verify block validity
if (nCheckLevel>0 && !block.CheckBlock())
{
printf("LoadBlockIndex() : *** found bad block at %d, hash=%s\n", pindex->nHeight, pindex->GetBlockHash().ToString().c_str());
pindexFork = pindex->pprev;
}
// check level 2: verify transaction index validity
if (nCheckLevel>1)
{
pair<unsigned int, unsigned int> pos = make_pair(pindex->nFile, pindex->nBlockPos);
mapBlockPos[pos] = pindex;
BOOST_FOREACH(const CTransaction &tx, block.vtx)
{
uint256 hashTx = tx.GetHash();
CTxIndex txindex;
if (ReadTxIndex(hashTx, txindex))
{
// check level 3: checker transaction hashes
if (nCheckLevel>2 || pindex->nFile != txindex.pos.nFile || pindex->nBlockPos != txindex.pos.nBlockPos)
{
// either an error or a duplicate transaction
CTransaction txFound;
if (!txFound.ReadFromDisk(txindex.pos))
{
printf("LoadBlockIndex() : *** cannot read mislocated transaction %s\n", hashTx.ToString().c_str());
pindexFork = pindex->pprev;
}
else
if (txFound.GetHash() != hashTx) // not a duplicate tx
{
printf("LoadBlockIndex(): *** invalid tx position for %s\n", hashTx.ToString().c_str());
pindexFork = pindex->pprev;
}
}
// check level 4: check whether spent txouts were spent within the main chain
int nOutput = 0;
if (nCheckLevel>3)
{
BOOST_FOREACH(const CDiskTxPos &txpos, txindex.vSpent)
{
if (!txpos.IsNull())
{
pair<unsigned int, unsigned int> posFind = make_pair(txpos.nFile, txpos.nBlockPos);
if (!mapBlockPos.count(posFind))
{
printf("LoadBlockIndex(): *** found bad spend at %d, hashBlock=%s, hashTx=%s\n", pindex->nHeight, pindex->GetBlockHash().ToString().c_str(), hashTx.ToString().c_str());
pindexFork = pindex->pprev;
}
// check level 6: check whether spent txouts were spent by a valid transaction that consume them
if (nCheckLevel>5)
{
CTransaction txSpend;
if (!txSpend.ReadFromDisk(txpos))
{
printf("LoadBlockIndex(): *** cannot read spending transaction of %s:%i from disk\n", hashTx.ToString().c_str(), nOutput);
pindexFork = pindex->pprev;
}
else if (!txSpend.CheckTransaction())
{
printf("LoadBlockIndex(): *** spending transaction of %s:%i is invalid\n", hashTx.ToString().c_str(), nOutput);
pindexFork = pindex->pprev;
}
else
{
bool fFound = false;
BOOST_FOREACH(const CTxIn &txin, txSpend.vin)
if (txin.prevout.hash == hashTx && txin.prevout.n == nOutput)
fFound = true;
if (!fFound)
{
printf("LoadBlockIndex(): *** spending transaction of %s:%i does not spend it\n", hashTx.ToString().c_str(), nOutput);
pindexFork = pindex->pprev;
}
}
}
}
nOutput++;
}
}
}
// check level 5: check whether all prevouts are marked spent
if (nCheckLevel>4)
{
BOOST_FOREACH(const CTxIn &txin, tx.vin)
{
CTxIndex txindex;
if (ReadTxIndex(txin.prevout.hash, txindex))
if (txindex.vSpent.size()-1 < txin.prevout.n || txindex.vSpent[txin.prevout.n].IsNull())
{
printf("LoadBlockIndex(): *** found unspent prevout %s:%i in %s\n", txin.prevout.hash.ToString().c_str(), txin.prevout.n, hashTx.ToString().c_str());
pindexFork = pindex->pprev;
}
}
}
}
}
}
if (pindexFork)
{
// Reorg back to the fork
printf("LoadBlockIndex() : *** moving best chain pointer back to block %d\n", pindexFork->nHeight);
CBlock block;
if (!block.ReadFromDisk(pindexFork))
return error("LoadBlockIndex() : block.ReadFromDisk failed");
CTxDB txdb;
block.SetBestChain(txdb, pindexFork);
}
return true;
}
//
// CAddrDB
//
bool CAddrDB::WriteAddrman(const CAddrMan& addrman)
{
return Write(string("addrman"), addrman);
}
bool CAddrDB::LoadAddresses()
{
if (Read(string("addrman"), addrman))
{
printf("Loaded %i addresses\n", addrman.size());
return true;
}
// Read pre-0.6 addr records
vector<CAddress> vAddr;
vector<vector<unsigned char> > vDelete;
// Get cursor
Dbc* pcursor = GetCursor();
if (!pcursor)
return false;
loop
{
// Read next record
CDataStream ssKey;
CDataStream ssValue;
int ret = ReadAtCursor(pcursor, ssKey, ssValue);
if (ret == DB_NOTFOUND)
break;
else if (ret != 0)
return false;
// Unserialize
string strType;
ssKey >> strType;
if (strType == "addr")
{
CAddress addr;
ssValue >> addr;
vAddr.push_back(addr);
}
}
pcursor->close();
addrman.Add(vAddr, CNetAddr("0.0.0.0"));
printf("Loaded %i addresses\n", addrman.size());
// Note: old records left; we ran into hangs-on-startup
// bugs for some users who (we think) were running after
// an unclean shutdown.
return true;
}
bool LoadAddresses()
{
return CAddrDB("cr+").LoadAddresses();
}
//
// CWalletDB
//
bool CWalletDB::WriteName(const string& strAddress, const string& strName)
{
nWalletDBUpdated++;
return Write(make_pair(string("name"), strAddress), strName);
}
bool CWalletDB::EraseName(const string& strAddress)
{
// This should only be used for sending addresses, never for receiving addresses,
// receiving addresses must always have an address book entry if they're not change return.
nWalletDBUpdated++;
return Erase(make_pair(string("name"), strAddress));
}
bool CWalletDB::ReadAccount(const string& strAccount, CAccount& account)
{
account.SetNull();
return Read(make_pair(string("acc"), strAccount), account);
}
bool CWalletDB::WriteAccount(const string& strAccount, const CAccount& account)
{
return Write(make_pair(string("acc"), strAccount), account);
}
bool CWalletDB::WriteAccountingEntry(const CAccountingEntry& acentry)
{
return Write(boost::make_tuple(string("acentry"), acentry.strAccount, ++nAccountingEntryNumber), acentry);
}
int64 CWalletDB::GetAccountCreditDebit(const string& strAccount)
{
list<CAccountingEntry> entries;
ListAccountCreditDebit(strAccount, entries);
int64 nCreditDebit = 0;
BOOST_FOREACH (const CAccountingEntry& entry, entries)
nCreditDebit += entry.nCreditDebit;
return nCreditDebit;
}
void CWalletDB::ListAccountCreditDebit(const string& strAccount, list<CAccountingEntry>& entries)
{
bool fAllAccounts = (strAccount == "*");
Dbc* pcursor = GetCursor();
if (!pcursor)
throw runtime_error("CWalletDB::ListAccountCreditDebit() : cannot create DB cursor");
unsigned int fFlags = DB_SET_RANGE;
loop
{
// Read next record
CDataStream ssKey;
if (fFlags == DB_SET_RANGE)
ssKey << boost::make_tuple(string("acentry"), (fAllAccounts? string("") : strAccount), uint64(0));
CDataStream ssValue;
int ret = ReadAtCursor(pcursor, ssKey, ssValue, fFlags);
fFlags = DB_NEXT;
if (ret == DB_NOTFOUND)
break;
else if (ret != 0)
{
pcursor->close();
throw runtime_error("CWalletDB::ListAccountCreditDebit() : error scanning DB");
}
// Unserialize
string strType;
ssKey >> strType;
if (strType != "acentry")
break;
CAccountingEntry acentry;
ssKey >> acentry.strAccount;
if (!fAllAccounts && acentry.strAccount != strAccount)
break;
ssValue >> acentry;
entries.push_back(acentry);
}
pcursor->close();
}
int CWalletDB::LoadWallet(CWallet* pwallet)
{
pwallet->vchDefaultKey.clear();
int nFileVersion = 0;
vector<uint256> vWalletUpgrade;
13 years ago
bool fIsEncrypted = false;
//// todo: shouldn't we catch exceptions and try to recover and continue?
{
LOCK(pwallet->cs_wallet);
int nMinVersion = 0;
if (Read((string)"minversion", nMinVersion))
{
if (nMinVersion > CLIENT_VERSION)
return DB_TOO_NEW;
pwallet->LoadMinVersion(nMinVersion);
}
// Get cursor
Dbc* pcursor = GetCursor();
if (!pcursor)
{
printf("Error getting wallet database cursor\n");
return DB_CORRUPT;
}
loop
{
// Read next record
CDataStream ssKey;
CDataStream ssValue;
int ret = ReadAtCursor(pcursor, ssKey, ssValue);
if (ret == DB_NOTFOUND)
break;
else if (ret != 0)
{
printf("Error reading next record from wallet database\n");
return DB_CORRUPT;
}
// Unserialize
// Taking advantage of the fact that pair serialization
// is just the two items serialized one after the other
string strType;
ssKey >> strType;
if (strType == "name")
{
string strAddress;
ssKey >> strAddress;
ssValue >> pwallet->mapAddressBook[strAddress];
}
else if (strType == "tx")
{
uint256 hash;
ssKey >> hash;
CWalletTx& wtx = pwallet->mapWallet[hash];
ssValue >> wtx;
wtx.BindWallet(pwallet);
if (wtx.GetHash() != hash)
printf("Error in wallet.dat, hash mismatch\n");
// Undo serialize changes in 31600
if (31404 <= wtx.fTimeReceivedIsTxTime && wtx.fTimeReceivedIsTxTime <= 31703)
{
if (!ssValue.empty())
{
char fTmp;
char fUnused;
ssValue >> fTmp >> fUnused >> wtx.strFromAccount;
printf("LoadWallet() upgrading tx ver=%d %d '%s' %s\n", wtx.fTimeReceivedIsTxTime, fTmp, wtx.strFromAccount.c_str(), hash.ToString().c_str());
wtx.fTimeReceivedIsTxTime = fTmp;
}
else
{
printf("LoadWallet() repairing tx ver=%d %s\n", wtx.fTimeReceivedIsTxTime, hash.ToString().c_str());
wtx.fTimeReceivedIsTxTime = 0;
}
vWalletUpgrade.push_back(hash);
}
//// debug print
//printf("LoadWallet %s\n", wtx.GetHash().ToString().c_str());
//printf(" %12I64d %s %s %s\n",
// wtx.vout[0].nValue,
// DateTimeStrFormat("%x %H:%M:%S", wtx.GetBlockTime()).c_str(),
// wtx.hashBlock.ToString().substr(0,20).c_str(),
// wtx.mapValue["message"].c_str());
}
else if (strType == "acentry")
{
string strAccount;
ssKey >> strAccount;
uint64 nNumber;
ssKey >> nNumber;
if (nNumber > nAccountingEntryNumber)
nAccountingEntryNumber = nNumber;
}
else if (strType == "key" || strType == "wkey")
{
vector<unsigned char> vchPubKey;
ssKey >> vchPubKey;
CKey key;
if (strType == "key")
{
CPrivKey pkey;
ssValue >> pkey;
key.SetPubKey(vchPubKey);
key.SetPrivKey(pkey);
if (key.GetPubKey() != vchPubKey)
{
printf("Error reading wallet database: CPrivKey pubkey inconsistency\n");
return DB_CORRUPT;
}
if (!key.IsValid())
{
printf("Error reading wallet database: invalid CPrivKey\n");
return DB_CORRUPT;
}
}
else
{
CWalletKey wkey;
ssValue >> wkey;
key.SetPubKey(vchPubKey);
key.SetPrivKey(wkey.vchPrivKey);
if (key.GetPubKey() != vchPubKey)
{
printf("Error reading wallet database: CWalletKey pubkey inconsistency\n");
return DB_CORRUPT;
}
if (!key.IsValid())
{
printf("Error reading wallet database: invalid CWalletKey\n");
return DB_CORRUPT;
}
}
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
14 years ago
if (!pwallet->LoadKey(key))
{
printf("Error reading wallet database: LoadKey failed\n");
return DB_CORRUPT;
}
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
14 years ago
}
else if (strType == "mkey")
{
unsigned int nID;
ssKey >> nID;
CMasterKey kMasterKey;
ssValue >> kMasterKey;
if(pwallet->mapMasterKeys.count(nID) != 0)
{
printf("Error reading wallet database: duplicate CMasterKey id %u\n", nID);
return DB_CORRUPT;
}
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
14 years ago
pwallet->mapMasterKeys[nID] = kMasterKey;
if (pwallet->nMasterKeyMaxID < nID)
pwallet->nMasterKeyMaxID = nID;
}
else if (strType == "ckey")
{
vector<unsigned char> vchPubKey;
ssKey >> vchPubKey;
vector<unsigned char> vchPrivKey;
ssValue >> vchPrivKey;
if (!pwallet->LoadCryptedKey(vchPubKey, vchPrivKey))
{
printf("Error reading wallet database: LoadCryptedKey failed\n");
return DB_CORRUPT;
}
13 years ago
fIsEncrypted = true;
}
else if (strType == "defaultkey")
{
ssValue >> pwallet->vchDefaultKey;
}
else if (strType == "pool")
{
int64 nIndex;
ssKey >> nIndex;
pwallet->setKeyPool.insert(nIndex);
}
else if (strType == "version")
{
ssValue >> nFileVersion;
if (nFileVersion == 10300)
nFileVersion = 300;
}
else if (strType == "cscript")
{
uint160 hash;
ssKey >> hash;
CScript script;
ssValue >> script;
if (!pwallet->LoadCScript(script))
{
printf("Error reading wallet database: LoadCScript failed\n");
return DB_CORRUPT;
}
}
}
pcursor->close();
}
BOOST_FOREACH(uint256 hash, vWalletUpgrade)
WriteTx(hash, pwallet->mapWallet[hash]);
printf("nFileVersion = %d\n", nFileVersion);
// Rewrite encrypted wallets of versions 0.4.0 and 0.5.0rc:
if (fIsEncrypted && (nFileVersion == 40000 || nFileVersion == 50000))
return DB_NEED_REWRITE;
if (nFileVersion < CLIENT_VERSION) // Update
WriteVersion(CLIENT_VERSION);
return DB_LOAD_OK;
}
void ThreadFlushWalletDB(void* parg)
{
const string& strFile = ((const string*)parg)[0];
static bool fOneThread;
if (fOneThread)
return;
fOneThread = true;
if (!GetBoolArg("-flushwallet", true))
return;
unsigned int nLastSeen = nWalletDBUpdated;
unsigned int nLastFlushed = nWalletDBUpdated;
int64 nLastWalletUpdate = GetTime();
while (!fShutdown)
{
Sleep(500);
if (nLastSeen != nWalletDBUpdated)
{
nLastSeen = nWalletDBUpdated;
nLastWalletUpdate = GetTime();
}
if (nLastFlushed != nWalletDBUpdated && GetTime() - nLastWalletUpdate >= 2)
{
TRY_LOCK(cs_db,lockDb);
if (lockDb)
{
// Don't do this if any databases are in use
int nRefCount = 0;
map<string, int>::iterator mi = mapFileUseCount.begin();
while (mi != mapFileUseCount.end())
{
nRefCount += (*mi).second;
mi++;
}
if (nRefCount == 0 && !fShutdown)
{
map<string, int>::iterator mi = mapFileUseCount.find(strFile);
if (mi != mapFileUseCount.end())
{
printf("%s ", DateTimeStrFormat("%x %H:%M:%S", GetTime()).c_str());
printf("Flushing wallet.dat\n");
nLastFlushed = nWalletDBUpdated;
int64 nStart = GetTimeMillis();
// Flush wallet.dat so it's self contained
CloseDb(strFile);
dbenv.txn_checkpoint(0, 0, 0);
dbenv.lsn_reset(strFile.c_str(), 0);
mapFileUseCount.erase(mi++);
printf("Flushed wallet.dat %"PRI64d"ms\n", GetTimeMillis() - nStart);
}
}
}
}
}
}
bool BackupWallet(const CWallet& wallet, const string& strDest)
{
if (!wallet.fFileBacked)
return false;
while (!fShutdown)
{
{
LOCK(cs_db);
if (!mapFileUseCount.count(wallet.strWalletFile) || mapFileUseCount[wallet.strWalletFile] == 0)
{
// Flush log data to the dat file
CloseDb(wallet.strWalletFile);
dbenv.txn_checkpoint(0, 0, 0);
dbenv.lsn_reset(wallet.strWalletFile.c_str(), 0);
mapFileUseCount.erase(wallet.strWalletFile);
// Copy wallet.dat
filesystem::path pathSrc = GetDataDir() / wallet.strWalletFile;
filesystem::path pathDest(strDest);
if (filesystem::is_directory(pathDest))
pathDest /= wallet.strWalletFile;
try {
#if BOOST_VERSION >= 104000
filesystem::copy_file(pathSrc, pathDest, filesystem::copy_option::overwrite_if_exists);
#else
filesystem::copy_file(pathSrc, pathDest);
#endif
printf("copied wallet.dat to %s\n", pathDest.string().c_str());
return true;
} catch(const filesystem::filesystem_error &e) {
printf("error copying wallet.dat to %s - %s\n", pathDest.string().c_str(), e.what());
return false;
}
}
}
Sleep(100);
}
return false;
}