2013-11-13 22:34:18 -02:00
|
|
|
/*
|
|
|
|
* Copyright 2009 Colin Percival, 2011 ArtForz, 2012-2013 pooler
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* This file was originally written by Colin Percival as part of the Tarsnap
|
|
|
|
* online backup system.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "scrypt.h"
|
|
|
|
#include "util.h"
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <openssl/sha.h>
|
|
|
|
|
2014-06-22 16:20:29 +02:00
|
|
|
#ifndef __FreeBSD__
|
|
|
|
/* Allready defined in sys/endian.h */
|
2013-11-13 22:34:18 -02:00
|
|
|
static inline uint32_t be32dec(const void *pp)
|
|
|
|
{
|
|
|
|
const uint8_t *p = (uint8_t const *)pp;
|
|
|
|
return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) +
|
|
|
|
((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void be32enc(void *pp, uint32_t x)
|
|
|
|
{
|
|
|
|
uint8_t *p = (uint8_t *)pp;
|
|
|
|
p[3] = x & 0xff;
|
|
|
|
p[2] = (x >> 8) & 0xff;
|
|
|
|
p[1] = (x >> 16) & 0xff;
|
|
|
|
p[0] = (x >> 24) & 0xff;
|
|
|
|
}
|
2014-06-22 16:20:29 +02:00
|
|
|
#endif
|
2013-11-13 22:34:18 -02:00
|
|
|
|
|
|
|
typedef struct HMAC_SHA256Context {
|
|
|
|
SHA256_CTX ictx;
|
|
|
|
SHA256_CTX octx;
|
|
|
|
} HMAC_SHA256_CTX;
|
|
|
|
|
|
|
|
/* Initialize an HMAC-SHA256 operation with the given key. */
|
|
|
|
static void
|
|
|
|
HMAC_SHA256_Init(HMAC_SHA256_CTX *ctx, const void *_K, size_t Klen)
|
|
|
|
{
|
|
|
|
unsigned char pad[64];
|
|
|
|
unsigned char khash[32];
|
|
|
|
const unsigned char *K = (const unsigned char *)_K;
|
|
|
|
size_t i;
|
|
|
|
|
|
|
|
/* If Klen > 64, the key is really SHA256(K). */
|
|
|
|
if (Klen > 64) {
|
|
|
|
SHA256_Init(&ctx->ictx);
|
|
|
|
SHA256_Update(&ctx->ictx, K, Klen);
|
|
|
|
SHA256_Final(khash, &ctx->ictx);
|
|
|
|
K = khash;
|
|
|
|
Klen = 32;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
|
|
|
|
SHA256_Init(&ctx->ictx);
|
|
|
|
memset(pad, 0x36, 64);
|
|
|
|
for (i = 0; i < Klen; i++)
|
|
|
|
pad[i] ^= K[i];
|
|
|
|
SHA256_Update(&ctx->ictx, pad, 64);
|
|
|
|
|
|
|
|
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
|
|
|
|
SHA256_Init(&ctx->octx);
|
|
|
|
memset(pad, 0x5c, 64);
|
|
|
|
for (i = 0; i < Klen; i++)
|
|
|
|
pad[i] ^= K[i];
|
|
|
|
SHA256_Update(&ctx->octx, pad, 64);
|
|
|
|
|
|
|
|
/* Clean the stack. */
|
|
|
|
memset(khash, 0, 32);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Add bytes to the HMAC-SHA256 operation. */
|
|
|
|
static void
|
|
|
|
HMAC_SHA256_Update(HMAC_SHA256_CTX *ctx, const void *in, size_t len)
|
|
|
|
{
|
|
|
|
/* Feed data to the inner SHA256 operation. */
|
|
|
|
SHA256_Update(&ctx->ictx, in, len);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Finish an HMAC-SHA256 operation. */
|
|
|
|
static void
|
|
|
|
HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX *ctx)
|
|
|
|
{
|
|
|
|
unsigned char ihash[32];
|
|
|
|
|
|
|
|
/* Finish the inner SHA256 operation. */
|
|
|
|
SHA256_Final(ihash, &ctx->ictx);
|
|
|
|
|
|
|
|
/* Feed the inner hash to the outer SHA256 operation. */
|
|
|
|
SHA256_Update(&ctx->octx, ihash, 32);
|
|
|
|
|
|
|
|
/* Finish the outer SHA256 operation. */
|
|
|
|
SHA256_Final(digest, &ctx->octx);
|
|
|
|
|
|
|
|
/* Clean the stack. */
|
|
|
|
memset(ihash, 0, 32);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
|
|
|
|
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
|
|
|
|
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
PBKDF2_SHA256(const uint8_t *passwd, size_t passwdlen, const uint8_t *salt,
|
|
|
|
size_t saltlen, uint64_t c, uint8_t *buf, size_t dkLen)
|
|
|
|
{
|
|
|
|
HMAC_SHA256_CTX PShctx, hctx;
|
|
|
|
size_t i;
|
|
|
|
uint8_t ivec[4];
|
|
|
|
uint8_t U[32];
|
|
|
|
uint8_t T[32];
|
|
|
|
uint64_t j;
|
|
|
|
int k;
|
|
|
|
size_t clen;
|
|
|
|
|
|
|
|
/* Compute HMAC state after processing P and S. */
|
|
|
|
HMAC_SHA256_Init(&PShctx, passwd, passwdlen);
|
|
|
|
HMAC_SHA256_Update(&PShctx, salt, saltlen);
|
|
|
|
|
|
|
|
/* Iterate through the blocks. */
|
|
|
|
for (i = 0; i * 32 < dkLen; i++) {
|
|
|
|
/* Generate INT(i + 1). */
|
|
|
|
be32enc(ivec, (uint32_t)(i + 1));
|
|
|
|
|
|
|
|
/* Compute U_1 = PRF(P, S || INT(i)). */
|
|
|
|
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
|
|
|
|
HMAC_SHA256_Update(&hctx, ivec, 4);
|
|
|
|
HMAC_SHA256_Final(U, &hctx);
|
|
|
|
|
|
|
|
/* T_i = U_1 ... */
|
|
|
|
memcpy(T, U, 32);
|
|
|
|
|
|
|
|
for (j = 2; j <= c; j++) {
|
|
|
|
/* Compute U_j. */
|
|
|
|
HMAC_SHA256_Init(&hctx, passwd, passwdlen);
|
|
|
|
HMAC_SHA256_Update(&hctx, U, 32);
|
|
|
|
HMAC_SHA256_Final(U, &hctx);
|
|
|
|
|
|
|
|
/* ... xor U_j ... */
|
|
|
|
for (k = 0; k < 32; k++)
|
|
|
|
T[k] ^= U[k];
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Copy as many bytes as necessary into buf. */
|
|
|
|
clen = dkLen - i * 32;
|
|
|
|
if (clen > 32)
|
|
|
|
clen = 32;
|
|
|
|
memcpy(&buf[i * 32], T, clen);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Clean PShctx, since we never called _Final on it. */
|
|
|
|
memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX));
|
|
|
|
}
|
|
|
|
|
|
|
|
#define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
|
|
|
|
|
|
|
|
static inline void xor_salsa8(uint32_t B[16], const uint32_t Bx[16])
|
|
|
|
{
|
|
|
|
uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
x00 = (B[ 0] ^= Bx[ 0]);
|
|
|
|
x01 = (B[ 1] ^= Bx[ 1]);
|
|
|
|
x02 = (B[ 2] ^= Bx[ 2]);
|
|
|
|
x03 = (B[ 3] ^= Bx[ 3]);
|
|
|
|
x04 = (B[ 4] ^= Bx[ 4]);
|
|
|
|
x05 = (B[ 5] ^= Bx[ 5]);
|
|
|
|
x06 = (B[ 6] ^= Bx[ 6]);
|
|
|
|
x07 = (B[ 7] ^= Bx[ 7]);
|
|
|
|
x08 = (B[ 8] ^= Bx[ 8]);
|
|
|
|
x09 = (B[ 9] ^= Bx[ 9]);
|
|
|
|
x10 = (B[10] ^= Bx[10]);
|
|
|
|
x11 = (B[11] ^= Bx[11]);
|
|
|
|
x12 = (B[12] ^= Bx[12]);
|
|
|
|
x13 = (B[13] ^= Bx[13]);
|
|
|
|
x14 = (B[14] ^= Bx[14]);
|
|
|
|
x15 = (B[15] ^= Bx[15]);
|
|
|
|
for (i = 0; i < 8; i += 2) {
|
|
|
|
/* Operate on columns. */
|
|
|
|
x04 ^= ROTL(x00 + x12, 7); x09 ^= ROTL(x05 + x01, 7);
|
|
|
|
x14 ^= ROTL(x10 + x06, 7); x03 ^= ROTL(x15 + x11, 7);
|
|
|
|
|
|
|
|
x08 ^= ROTL(x04 + x00, 9); x13 ^= ROTL(x09 + x05, 9);
|
|
|
|
x02 ^= ROTL(x14 + x10, 9); x07 ^= ROTL(x03 + x15, 9);
|
|
|
|
|
|
|
|
x12 ^= ROTL(x08 + x04, 13); x01 ^= ROTL(x13 + x09, 13);
|
|
|
|
x06 ^= ROTL(x02 + x14, 13); x11 ^= ROTL(x07 + x03, 13);
|
|
|
|
|
|
|
|
x00 ^= ROTL(x12 + x08, 18); x05 ^= ROTL(x01 + x13, 18);
|
|
|
|
x10 ^= ROTL(x06 + x02, 18); x15 ^= ROTL(x11 + x07, 18);
|
|
|
|
|
|
|
|
/* Operate on rows. */
|
|
|
|
x01 ^= ROTL(x00 + x03, 7); x06 ^= ROTL(x05 + x04, 7);
|
|
|
|
x11 ^= ROTL(x10 + x09, 7); x12 ^= ROTL(x15 + x14, 7);
|
|
|
|
|
|
|
|
x02 ^= ROTL(x01 + x00, 9); x07 ^= ROTL(x06 + x05, 9);
|
|
|
|
x08 ^= ROTL(x11 + x10, 9); x13 ^= ROTL(x12 + x15, 9);
|
|
|
|
|
|
|
|
x03 ^= ROTL(x02 + x01, 13); x04 ^= ROTL(x07 + x06, 13);
|
|
|
|
x09 ^= ROTL(x08 + x11, 13); x14 ^= ROTL(x13 + x12, 13);
|
|
|
|
|
|
|
|
x00 ^= ROTL(x03 + x02, 18); x05 ^= ROTL(x04 + x07, 18);
|
|
|
|
x10 ^= ROTL(x09 + x08, 18); x15 ^= ROTL(x14 + x13, 18);
|
|
|
|
}
|
|
|
|
B[ 0] += x00;
|
|
|
|
B[ 1] += x01;
|
|
|
|
B[ 2] += x02;
|
|
|
|
B[ 3] += x03;
|
|
|
|
B[ 4] += x04;
|
|
|
|
B[ 5] += x05;
|
|
|
|
B[ 6] += x06;
|
|
|
|
B[ 7] += x07;
|
|
|
|
B[ 8] += x08;
|
|
|
|
B[ 9] += x09;
|
|
|
|
B[10] += x10;
|
|
|
|
B[11] += x11;
|
|
|
|
B[12] += x12;
|
|
|
|
B[13] += x13;
|
|
|
|
B[14] += x14;
|
|
|
|
B[15] += x15;
|
|
|
|
}
|
|
|
|
|
|
|
|
void scrypt_1024_1_1_256_sp_generic(const char *input, char *output, char *scratchpad)
|
|
|
|
{
|
|
|
|
uint8_t B[128];
|
|
|
|
uint32_t X[32];
|
|
|
|
uint32_t *V;
|
|
|
|
uint32_t i, j, k;
|
|
|
|
|
|
|
|
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
|
|
|
|
|
2013-11-14 00:57:51 -02:00
|
|
|
PBKDF2_SHA256((const uint8_t *)input, 84, (const uint8_t *)input, 84, 1, B, 128);
|
2013-11-13 22:34:18 -02:00
|
|
|
|
|
|
|
for (k = 0; k < 32; k++)
|
|
|
|
X[k] = le32dec(&B[4 * k]);
|
|
|
|
|
|
|
|
for (i = 0; i < 1024; i++) {
|
|
|
|
memcpy(&V[i * 32], X, 128);
|
|
|
|
xor_salsa8(&X[0], &X[16]);
|
|
|
|
xor_salsa8(&X[16], &X[0]);
|
|
|
|
}
|
|
|
|
for (i = 0; i < 1024; i++) {
|
|
|
|
j = 32 * (X[16] & 1023);
|
|
|
|
for (k = 0; k < 32; k++)
|
|
|
|
X[k] ^= V[j + k];
|
|
|
|
xor_salsa8(&X[0], &X[16]);
|
|
|
|
xor_salsa8(&X[16], &X[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (k = 0; k < 32; k++)
|
|
|
|
le32enc(&B[4 * k], X[k]);
|
|
|
|
|
2013-11-14 00:57:51 -02:00
|
|
|
PBKDF2_SHA256((const uint8_t *)input, 84, B, 128, 1, (uint8_t *)output, 32);
|
2013-11-13 22:34:18 -02:00
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(USE_SSE2)
|
|
|
|
#if defined(_M_X64) || defined(__x86_64__) || defined(_M_AMD64) || (defined(MAC_OSX) && defined(__i386__))
|
|
|
|
/* Always SSE2 */
|
|
|
|
void scrypt_detect_sse2(unsigned int cpuid_edx)
|
|
|
|
{
|
|
|
|
printf("scrypt: using scrypt-sse2 as built.\n");
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
/* Detect SSE2 */
|
|
|
|
void (*scrypt_1024_1_1_256_sp)(const char *input, char *output, char *scratchpad);
|
|
|
|
|
|
|
|
void scrypt_detect_sse2(unsigned int cpuid_edx)
|
|
|
|
{
|
|
|
|
if (cpuid_edx & 1<<26)
|
|
|
|
{
|
|
|
|
scrypt_1024_1_1_256_sp = &scrypt_1024_1_1_256_sp_sse2;
|
|
|
|
printf("scrypt: using scrypt-sse2 as detected.\n");
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
scrypt_1024_1_1_256_sp = &scrypt_1024_1_1_256_sp_generic;
|
|
|
|
printf("scrypt: using scrypt-generic, SSE2 unavailable.\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void scrypt_1024_1_1_256(const char *input, char *output)
|
|
|
|
{
|
|
|
|
char scratchpad[SCRYPT_SCRATCHPAD_SIZE];
|
|
|
|
#if defined(USE_SSE2)
|
|
|
|
// Detection would work, but in cases where we KNOW it always has SSE2,
|
|
|
|
// it is faster to use directly than to use a function pointer or conditional.
|
|
|
|
#if defined(_M_X64) || defined(__x86_64__) || defined(_M_AMD64) || (defined(MAC_OSX) && defined(__i386__))
|
|
|
|
// Always SSE2: x86_64 or Intel MacOS X
|
|
|
|
scrypt_1024_1_1_256_sp_sse2(input, output, scratchpad);
|
|
|
|
#else
|
|
|
|
// Detect SSE2: 32bit x86 Linux or Windows
|
|
|
|
scrypt_1024_1_1_256_sp(input, output, scratchpad);
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
// Generic scrypt
|
|
|
|
scrypt_1024_1_1_256_sp_generic(input, output, scratchpad);
|
|
|
|
#endif
|
|
|
|
}
|