|
|
|
// Copyright (c) 2009-2012 The Bitcoin developers
|
|
|
|
// Distributed under the MIT/X11 software license, see the accompanying
|
|
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
|
|
|
|
#include <openssl/ecdsa.h>
|
|
|
|
#include <openssl/rand.h>
|
|
|
|
#include <openssl/obj_mac.h>
|
|
|
|
#include <openssl/ecdh.h>
|
|
|
|
#include <openssl/evp.h>
|
|
|
|
#include <openssl/hmac.h>
|
|
|
|
|
|
|
|
#include "key.h"
|
|
|
|
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
#include "util.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// anonymous namespace with local implementation code (OpenSSL interaction)
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
// Generate a private key from just the secret parameter
|
|
|
|
int EC_KEY_regenerate_key(EC_KEY *eckey, BIGNUM *priv_key)
|
|
|
|
{
|
|
|
|
int ok = 0;
|
|
|
|
BN_CTX *ctx = NULL;
|
|
|
|
EC_POINT *pub_key = NULL;
|
|
|
|
|
|
|
|
if (!eckey) return 0;
|
|
|
|
|
|
|
|
const EC_GROUP *group = EC_KEY_get0_group(eckey);
|
|
|
|
|
|
|
|
if ((ctx = BN_CTX_new()) == NULL)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
pub_key = EC_POINT_new(group);
|
|
|
|
|
|
|
|
if (pub_key == NULL)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
if (!EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, ctx))
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
EC_KEY_set_private_key(eckey,priv_key);
|
|
|
|
EC_KEY_set_public_key(eckey,pub_key);
|
|
|
|
|
|
|
|
ok = 1;
|
|
|
|
|
|
|
|
err:
|
|
|
|
|
|
|
|
if (pub_key)
|
|
|
|
EC_POINT_free(pub_key);
|
|
|
|
if (ctx != NULL)
|
|
|
|
BN_CTX_free(ctx);
|
|
|
|
|
|
|
|
return(ok);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Perform ECDSA key recovery (see SEC1 4.1.6) for curves over (mod p)-fields
|
|
|
|
// recid selects which key is recovered
|
|
|
|
// if check is non-zero, additional checks are performed
|
|
|
|
int ECDSA_SIG_recover_key_GFp(EC_KEY *eckey, ECDSA_SIG *ecsig, const unsigned char *msg, int msglen, int recid, int check)
|
|
|
|
{
|
|
|
|
if (!eckey) return 0;
|
|
|
|
|
|
|
|
int ret = 0;
|
|
|
|
BN_CTX *ctx = NULL;
|
|
|
|
|
|
|
|
BIGNUM *x = NULL;
|
|
|
|
BIGNUM *e = NULL;
|
|
|
|
BIGNUM *order = NULL;
|
|
|
|
BIGNUM *sor = NULL;
|
|
|
|
BIGNUM *eor = NULL;
|
|
|
|
BIGNUM *field = NULL;
|
|
|
|
EC_POINT *R = NULL;
|
|
|
|
EC_POINT *O = NULL;
|
|
|
|
EC_POINT *Q = NULL;
|
|
|
|
BIGNUM *rr = NULL;
|
|
|
|
BIGNUM *zero = NULL;
|
|
|
|
int n = 0;
|
|
|
|
int i = recid / 2;
|
|
|
|
|
|
|
|
const EC_GROUP *group = EC_KEY_get0_group(eckey);
|
|
|
|
if ((ctx = BN_CTX_new()) == NULL) { ret = -1; goto err; }
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
order = BN_CTX_get(ctx);
|
|
|
|
if (!EC_GROUP_get_order(group, order, ctx)) { ret = -2; goto err; }
|
|
|
|
x = BN_CTX_get(ctx);
|
|
|
|
if (!BN_copy(x, order)) { ret=-1; goto err; }
|
|
|
|
if (!BN_mul_word(x, i)) { ret=-1; goto err; }
|
|
|
|
if (!BN_add(x, x, ecsig->r)) { ret=-1; goto err; }
|
|
|
|
field = BN_CTX_get(ctx);
|
|
|
|
if (!EC_GROUP_get_curve_GFp(group, field, NULL, NULL, ctx)) { ret=-2; goto err; }
|
|
|
|
if (BN_cmp(x, field) >= 0) { ret=0; goto err; }
|
|
|
|
if ((R = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
|
|
|
|
if (!EC_POINT_set_compressed_coordinates_GFp(group, R, x, recid % 2, ctx)) { ret=0; goto err; }
|
|
|
|
if (check)
|
|
|
|
{
|
|
|
|
if ((O = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
|
|
|
|
if (!EC_POINT_mul(group, O, NULL, R, order, ctx)) { ret=-2; goto err; }
|
|
|
|
if (!EC_POINT_is_at_infinity(group, O)) { ret = 0; goto err; }
|
|
|
|
}
|
|
|
|
if ((Q = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
|
|
|
|
n = EC_GROUP_get_degree(group);
|
|
|
|
e = BN_CTX_get(ctx);
|
|
|
|
if (!BN_bin2bn(msg, msglen, e)) { ret=-1; goto err; }
|
|
|
|
if (8*msglen > n) BN_rshift(e, e, 8-(n & 7));
|
|
|
|
zero = BN_CTX_get(ctx);
|
|
|
|
if (!BN_zero(zero)) { ret=-1; goto err; }
|
|
|
|
if (!BN_mod_sub(e, zero, e, order, ctx)) { ret=-1; goto err; }
|
|
|
|
rr = BN_CTX_get(ctx);
|
|
|
|
if (!BN_mod_inverse(rr, ecsig->r, order, ctx)) { ret=-1; goto err; }
|
|
|
|
sor = BN_CTX_get(ctx);
|
|
|
|
if (!BN_mod_mul(sor, ecsig->s, rr, order, ctx)) { ret=-1; goto err; }
|
|
|
|
eor = BN_CTX_get(ctx);
|
|
|
|
if (!BN_mod_mul(eor, e, rr, order, ctx)) { ret=-1; goto err; }
|
|
|
|
if (!EC_POINT_mul(group, Q, eor, R, sor, ctx)) { ret=-2; goto err; }
|
|
|
|
if (!EC_KEY_set_public_key(eckey, Q)) { ret=-2; goto err; }
|
|
|
|
|
|
|
|
ret = 1;
|
|
|
|
|
|
|
|
err:
|
|
|
|
if (ctx) {
|
|
|
|
BN_CTX_end(ctx);
|
|
|
|
BN_CTX_free(ctx);
|
|
|
|
}
|
|
|
|
if (R != NULL) EC_POINT_free(R);
|
|
|
|
if (O != NULL) EC_POINT_free(O);
|
|
|
|
if (Q != NULL) EC_POINT_free(Q);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
void * ecies_key_derivation(const void *input, size_t ilen, void *output, size_t *olen) {
|
|
|
|
if (*olen < SHA512_DIGEST_LENGTH) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
*olen = SHA512_DIGEST_LENGTH;
|
|
|
|
return SHA512(static_cast<const unsigned char*>(input), ilen, static_cast<unsigned char*>(output));
|
|
|
|
}
|
|
|
|
|
|
|
|
// RAII Wrapper around OpenSSL's EC_KEY
|
|
|
|
class CECKey {
|
|
|
|
private:
|
|
|
|
EC_KEY *pkey;
|
|
|
|
|
|
|
|
public:
|
|
|
|
CECKey() {
|
|
|
|
pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
|
|
|
|
assert(pkey != NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
~CECKey() {
|
|
|
|
EC_KEY_free(pkey);
|
|
|
|
}
|
|
|
|
|
|
|
|
void GetSecretBytes(unsigned char vch[32]) const {
|
|
|
|
const BIGNUM *bn = EC_KEY_get0_private_key(pkey);
|
|
|
|
assert(bn);
|
|
|
|
int nBytes = BN_num_bytes(bn);
|
|
|
|
int n=BN_bn2bin(bn,&vch[32 - nBytes]);
|
|
|
|
assert(n == nBytes);
|
|
|
|
memset(vch, 0, 32 - nBytes);
|
|
|
|
}
|
|
|
|
|
|
|
|
void SetSecretBytes(const unsigned char vch[32]) {
|
|
|
|
BIGNUM bn;
|
|
|
|
BN_init(&bn);
|
|
|
|
bool check = BN_bin2bn(vch, 32, &bn);
|
|
|
|
assert(check);
|
|
|
|
check = EC_KEY_regenerate_key(pkey, &bn);
|
|
|
|
assert(check);
|
|
|
|
BN_clear_free(&bn);
|
|
|
|
}
|
|
|
|
|
|
|
|
void GetPrivKey(CPrivKey &privkey, bool fCompressed) {
|
|
|
|
EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED);
|
|
|
|
int nSize = i2d_ECPrivateKey(pkey, NULL);
|
|
|
|
assert(nSize);
|
|
|
|
privkey.resize(nSize);
|
|
|
|
unsigned char* pbegin = &privkey[0];
|
|
|
|
int nSize2 = i2d_ECPrivateKey(pkey, &pbegin);
|
|
|
|
assert(nSize == nSize2);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool SetPrivKey(const CPrivKey &privkey) {
|
|
|
|
const unsigned char* pbegin = &privkey[0];
|
|
|
|
if (d2i_ECPrivateKey(&pkey, &pbegin, privkey.size())) {
|
|
|
|
// d2i_ECPrivateKey returns true if parsing succeeds.
|
|
|
|
// This doesn't necessarily mean the key is valid.
|
|
|
|
if (EC_KEY_check_key(pkey))
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
void GetPubKey(CPubKey &pubkey, bool fCompressed) {
|
|
|
|
EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED);
|
|
|
|
int nSize = i2o_ECPublicKey(pkey, NULL);
|
|
|
|
assert(nSize);
|
|
|
|
assert(nSize <= 65);
|
|
|
|
unsigned char c[65];
|
|
|
|
unsigned char *pbegin = c;
|
|
|
|
int nSize2 = i2o_ECPublicKey(pkey, &pbegin);
|
|
|
|
assert(nSize == nSize2);
|
|
|
|
pubkey.Set(&c[0], &c[nSize]);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool SetPubKey(const CPubKey &pubkey) {
|
|
|
|
const unsigned char* pbegin = pubkey.begin();
|
|
|
|
return o2i_ECPublicKey(&pkey, &pbegin, pubkey.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Sign(const uint256 &hash, std::vector<unsigned char>& vchSig) {
|
|
|
|
unsigned int nSize = ECDSA_size(pkey);
|
|
|
|
vchSig.resize(nSize); // Make sure it is big enough
|
|
|
|
bool check = ECDSA_sign(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], &nSize, pkey);
|
|
|
|
assert(check);
|
|
|
|
vchSig.resize(nSize); // Shrink to fit actual size
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) {
|
|
|
|
// -1 = error, 0 = bad sig, 1 = good
|
|
|
|
if (ECDSA_verify(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], vchSig.size(), pkey) != 1)
|
|
|
|
return false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool SignCompact(const uint256 &hash, unsigned char *p64, int &rec) {
|
|
|
|
bool fOk = false;
|
|
|
|
ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey);
|
|
|
|
if (sig==NULL)
|
|
|
|
return false;
|
|
|
|
memset(p64, 0, 64);
|
|
|
|
int nBitsR = BN_num_bits(sig->r);
|
|
|
|
int nBitsS = BN_num_bits(sig->s);
|
|
|
|
if (nBitsR <= 256 && nBitsS <= 256) {
|
|
|
|
CPubKey pubkey;
|
|
|
|
GetPubKey(pubkey, true);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
|
|
CECKey keyRec;
|
|
|
|
if (ECDSA_SIG_recover_key_GFp(keyRec.pkey, sig, (unsigned char*)&hash, sizeof(hash), i, 1) == 1) {
|
|
|
|
CPubKey pubkeyRec;
|
|
|
|
keyRec.GetPubKey(pubkeyRec, true);
|
|
|
|
if (pubkeyRec == pubkey) {
|
|
|
|
rec = i;
|
|
|
|
fOk = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert(fOk);
|
|
|
|
BN_bn2bin(sig->r,&p64[32-(nBitsR+7)/8]);
|
|
|
|
BN_bn2bin(sig->s,&p64[64-(nBitsS+7)/8]);
|
|
|
|
}
|
|
|
|
ECDSA_SIG_free(sig);
|
|
|
|
return fOk;
|
|
|
|
}
|
|
|
|
|
|
|
|
// reconstruct public key from a compact signature
|
|
|
|
// This is only slightly more CPU intensive than just verifying it.
|
|
|
|
// If this function succeeds, the recovered public key is guaranteed to be valid
|
|
|
|
// (the signature is a valid signature of the given data for that key)
|
|
|
|
bool Recover(const uint256 &hash, const unsigned char *p64, int rec)
|
|
|
|
{
|
|
|
|
if (rec<0 || rec>=3)
|
|
|
|
return false;
|
|
|
|
ECDSA_SIG *sig = ECDSA_SIG_new();
|
|
|
|
BN_bin2bn(&p64[0], 32, sig->r);
|
|
|
|
BN_bin2bn(&p64[32], 32, sig->s);
|
|
|
|
bool ret = ECDSA_SIG_recover_key_GFp(pkey, sig, (unsigned char*)&hash, sizeof(hash), rec, 0) == 1;
|
|
|
|
ECDSA_SIG_free(sig);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @file /cryptron/ecies.c
|
|
|
|
*
|
|
|
|
* @brief ECIES encryption/decryption functions.
|
|
|
|
*
|
|
|
|
* $Author: Ladar Levison $
|
|
|
|
* $Website: http://lavabit.com $
|
|
|
|
* $Date: 2010/08/06 06:02:03 $
|
|
|
|
* $Revision: a51931d0f81f6abe29ca91470931d41a374508a7 $
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
bool Encrypt(std::string const &vchText, ecies_secure_t &cryptex)
|
|
|
|
{
|
|
|
|
size_t length = vchText.size();
|
|
|
|
size_t envelope_length, block_length, key_length;
|
|
|
|
if ((key_length = EVP_CIPHER_key_length(ECIES_CIPHER)) * 2 > SHA512_DIGEST_LENGTH) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("The key derivation method will not produce enough envelope key material for the chosen ciphers. {envelope = %i / required = %zu}\n",
|
|
|
|
SHA512_DIGEST_LENGTH / 8, (key_length * 2) / 8);
|
|
|
|
#endif
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create the ephemeral key used specifically for this block of data.
|
|
|
|
EC_KEY *ephemeral;
|
|
|
|
if (!(ephemeral = EC_KEY_new())) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("An error occurred while trying to generate the ephemeral key.\n");
|
|
|
|
#endif
|
|
|
|
return false;
|
|
|
|
} else {
|
|
|
|
const EC_GROUP *group = NULL;
|
|
|
|
if( !(group = EC_KEY_get0_group(pkey))) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("An error occurred in EC_KEY_get0_group.\n");
|
|
|
|
#endif
|
|
|
|
EC_KEY_free(ephemeral);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
if (EC_KEY_set_group(ephemeral, group) != 1) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("EC_KEY_set_group failed.\n");
|
|
|
|
#endif
|
|
|
|
EC_KEY_free(ephemeral);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (EC_KEY_generate_key(ephemeral) != 1) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("EC_KEY_generate_key failed.\n");
|
|
|
|
#endif
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Use the intersection of the provided keys to generate the envelope data used by the ciphers below. The ecies_key_derivation() function uses
|
|
|
|
// SHA 512 to ensure we have a sufficient amount of envelope key material and that the material created is sufficiently secure.
|
|
|
|
unsigned char envelope_key[SHA512_DIGEST_LENGTH];
|
|
|
|
if (ECDH_compute_key(envelope_key, SHA512_DIGEST_LENGTH,
|
|
|
|
EC_KEY_get0_public_key(pkey),
|
|
|
|
ephemeral,
|
|
|
|
ecies_key_derivation) != SHA512_DIGEST_LENGTH) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("An error occurred while trying to compute the envelope key.\n");
|
|
|
|
#endif
|
|
|
|
EC_KEY_free(ephemeral);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Determine the envelope and block lengths so we can allocate a buffer for the result.
|
|
|
|
if ((block_length = EVP_CIPHER_block_size(ECIES_CIPHER)) == 0 ||
|
|
|
|
block_length > EVP_MAX_BLOCK_LENGTH ||
|
|
|
|
(envelope_length = EC_POINT_point2oct(EC_KEY_get0_group(ephemeral), EC_KEY_get0_public_key(ephemeral),
|
|
|
|
POINT_CONVERSION_COMPRESSED, NULL, 0, NULL)) == 0) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("Invalid block or envelope length. {block = %zu / envelope = %zu}\n", block_length, envelope_length);
|
|
|
|
#endif
|
|
|
|
EC_KEY_free(ephemeral);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// We use a conditional to pad the length if the input buffer is not evenly divisible by the block size.
|
|
|
|
cryptex.key.resize(envelope_length);
|
|
|
|
cryptex.mac.resize(EVP_MD_size(ECIES_HASHER));
|
|
|
|
cryptex.orig = length;
|
|
|
|
cryptex.body.resize(length + (length % block_length ? (block_length - (length % block_length)) : 0));
|
|
|
|
|
|
|
|
// Store the public key portion of the ephemeral key.
|
|
|
|
if (EC_POINT_point2oct(EC_KEY_get0_group(ephemeral),
|
|
|
|
EC_KEY_get0_public_key(ephemeral),
|
|
|
|
POINT_CONVERSION_COMPRESSED,
|
|
|
|
reinterpret_cast<unsigned char*>(&cryptex.key[0]), envelope_length,
|
|
|
|
NULL) != envelope_length) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("An error occurred while trying to record the public portion of the envelope key.\n");
|
|
|
|
#endif
|
|
|
|
EC_KEY_free(ephemeral);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
// The envelope key has been stored so we no longer need to keep the keys around.
|
|
|
|
EC_KEY_free(ephemeral);
|
|
|
|
|
|
|
|
unsigned char iv[EVP_MAX_IV_LENGTH], block[EVP_MAX_BLOCK_LENGTH];
|
|
|
|
// For now we use an empty initialization vector.
|
|
|
|
memset(iv, 0, EVP_MAX_IV_LENGTH);
|
|
|
|
|
|
|
|
// Setup the cipher context, the body length, and store a pointer to the body buffer location.
|
|
|
|
EVP_CIPHER_CTX cipher;
|
|
|
|
EVP_CIPHER_CTX_init(&cipher);
|
|
|
|
|
|
|
|
unsigned char *body = reinterpret_cast<unsigned char *>(&cryptex.body[0]);
|
|
|
|
int body_length = cryptex.body.size();
|
|
|
|
|
|
|
|
// Initialize the cipher with the envelope key.
|
|
|
|
if (EVP_EncryptInit_ex(&cipher, ECIES_CIPHER, NULL, envelope_key, iv) != 1 ||
|
|
|
|
EVP_CIPHER_CTX_set_padding(&cipher, 0) != 1 ||
|
|
|
|
EVP_EncryptUpdate(&cipher, body, &body_length, reinterpret_cast<const unsigned char *>(&vchText[0]), length - (length % block_length)) != 1) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("An error occurred while trying to secure the data using the chosen symmetric cipher.\n");
|
|
|
|
#endif
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
// Check whether all of the data was encrypted. If they don't match up, we either have a partial block remaining, or an error occurred.
|
|
|
|
if (body_length != (int)length) {
|
|
|
|
// Make sure all that remains is a partial block, and their wasn't an error.
|
|
|
|
if (length - body_length >= block_length) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("Unable to secure the data using the chosen symmetric cipher.\n");
|
|
|
|
#endif
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Copy the remaining data into our partial block buffer. The memset() call ensures any extra bytes will be zero'ed out.
|
|
|
|
memset(block, 0, EVP_MAX_BLOCK_LENGTH);
|
|
|
|
memcpy(block, vchText.data() + body_length, length - body_length);
|
|
|
|
|
|
|
|
// Advance the body pointer to the location of the remaining space, and calculate just how much room is still available.
|
|
|
|
body += body_length;
|
|
|
|
if ((body_length = cryptex.body.size() - body_length) < 0) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("The symmetric cipher overflowed!\n");
|
|
|
|
#endif
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Pass the final partially filled data block into the cipher as a complete block. The padding will be removed during the decryption process.
|
|
|
|
else if (EVP_EncryptUpdate(&cipher, body, &body_length, block, block_length) != 1) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("Unable to secure the data using the chosen symmetric cipher\n");
|
|
|
|
#endif
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Advance the pointer, then use pointer arithmetic to calculate how much of the body buffer has been used. The complex logic is needed so that we get
|
|
|
|
// the correct status regardless of whether there was a partial data block.
|
|
|
|
body += body_length;
|
|
|
|
if ((body_length = cryptex.body.size() - (body - reinterpret_cast<const unsigned char *>(cryptex.body.data()))) < 0) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("The symmetric cipher overflowed!\n");
|
|
|
|
#endif
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
else if (EVP_EncryptFinal_ex(&cipher, body, &body_length) != 1) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("Unable to secure the data using the chosen symmetric cipher.\n");
|
|
|
|
#endif
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher);
|
|
|
|
|
|
|
|
// Generate an authenticated hash which can be used to validate the data during decryption.
|
|
|
|
HMAC_CTX hmac;
|
|
|
|
HMAC_CTX_init(&hmac);
|
|
|
|
unsigned int mac_length = cryptex.mac.size();
|
|
|
|
|
|
|
|
// At the moment we are generating the hash using encrypted data. At some point we may want to validate the original text instead.
|
|
|
|
#if (OPENSSL_VERSION_NUMBER < 0x000909000)
|
|
|
|
HMAC_Init_ex(&hmac, envelope_key + key_length, key_length, ECIES_HASHER, NULL);
|
|
|
|
HMAC_Update(&hmac, reinterpret_cast<const unsigned char *>(cryptex.body.data()), cryptex.body.size());
|
|
|
|
HMAC_Final(&hmac, reinterpret_cast<unsigned char *>(&cryptex.mac[0]), &mac_length);
|
|
|
|
#else
|
|
|
|
if (HMAC_Init_ex(&hmac, envelope_key + key_length, key_length, ECIES_HASHER, NULL) != 1 ||
|
|
|
|
HMAC_Update(&hmac, reinterpret_cast<const unsigned char *>(cryptex.body.data()), cryptex.body.size()) != 1 ||
|
|
|
|
HMAC_Final(&hmac, reinterpret_cast<unsigned char *>(&cryptex.mac[0]), &mac_length) != 1) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("Unable to generate a data authentication code.\n");
|
|
|
|
#endif
|
|
|
|
HMAC_CTX_cleanup(&hmac);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
HMAC_CTX_cleanup(&hmac);
|
|
|
|
return true;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Decrypt(ecies_secure_t const &cryptex, std::string &vchText )
|
|
|
|
{
|
|
|
|
size_t key_length;
|
|
|
|
if ((key_length = EVP_CIPHER_key_length(ECIES_CIPHER)) * 2 > SHA512_DIGEST_LENGTH) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("The key derivation method will not produce enough envelope key material for the chosen ciphers. {envelope = %i / required = %zu}\n",
|
|
|
|
SHA512_DIGEST_LENGTH / 8, (key_length * 2) / 8);
|
|
|
|
#endif
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create the ephemeral key used specifically for this block of data.
|
|
|
|
EC_KEY *ephemeral;
|
|
|
|
if (!(ephemeral = EC_KEY_new())) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("An error occurred while trying to generate the ephemeral key.\n");
|
|
|
|
#endif
|
|
|
|
return false;
|
|
|
|
} else {
|
|
|
|
const EC_GROUP *group = NULL;
|
|
|
|
if( !(group = EC_KEY_get0_group(pkey))) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("An error occurred in EC_KEY_get0_group.\n");
|
|
|
|
#endif
|
|
|
|
EC_KEY_free(ephemeral);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
if (EC_KEY_set_group(ephemeral, group) != 1) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("EC_KEY_set_group failed.\n");
|
|
|
|
#endif
|
|
|
|
EC_KEY_free(ephemeral);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
EC_POINT *point = NULL;
|
|
|
|
if (!(point = EC_POINT_new(group))) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("EC_POINT_new failed.\n");
|
|
|
|
#endif
|
|
|
|
EC_KEY_free(ephemeral);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (EC_POINT_oct2point(group, point, reinterpret_cast<const unsigned char *>(cryptex.key.data()), cryptex.key.size(), NULL) != 1) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("EC_POINT_oct2point failed.\n");
|
|
|
|
#endif
|
|
|
|
EC_KEY_free(ephemeral);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (EC_KEY_set_public_key(ephemeral, point) != 1) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("EC_KEY_set_public_key failed.\n");
|
|
|
|
#endif
|
|
|
|
EC_POINT_free(point);
|
|
|
|
EC_KEY_free(ephemeral);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
EC_POINT_free(point);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (EC_KEY_check_key(ephemeral) != 1) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("EC_KEY_check_key ephemeral failed.\n");
|
|
|
|
#endif
|
|
|
|
EC_KEY_free(ephemeral);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Use the intersection of the provided keys to generate the envelope data used by the ciphers below. The ecies_key_derivation() function uses
|
|
|
|
// SHA 512 to ensure we have a sufficient amount of envelope key material and that the material created is sufficiently secure.
|
|
|
|
unsigned char envelope_key[SHA512_DIGEST_LENGTH];
|
|
|
|
if (ECDH_compute_key(envelope_key, SHA512_DIGEST_LENGTH,
|
|
|
|
EC_KEY_get0_public_key(ephemeral),
|
|
|
|
pkey,
|
|
|
|
ecies_key_derivation) != SHA512_DIGEST_LENGTH) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("An error occurred while trying to compute the envelope key.\n");
|
|
|
|
#endif
|
|
|
|
EC_KEY_free(ephemeral);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The envelope key material has been extracted, so we no longer need the user and ephemeral keys.
|
|
|
|
EC_KEY_free(ephemeral);
|
|
|
|
|
|
|
|
// Use the authenticated hash of the ciphered data to ensure it was not modified after being encrypted.
|
|
|
|
HMAC_CTX hmac;
|
|
|
|
HMAC_CTX_init(&hmac);
|
|
|
|
unsigned int mac_length = EVP_MAX_MD_SIZE;
|
|
|
|
unsigned char md[EVP_MAX_MD_SIZE];
|
|
|
|
|
|
|
|
// At the moment we are generating the hash using encrypted data. At some point we may want to validate the original text instead.
|
|
|
|
#if (OPENSSL_VERSION_NUMBER < 0x000909000)
|
|
|
|
HMAC_Init_ex(&hmac, envelope_key + key_length, key_length, ECIES_HASHER, NULL);
|
|
|
|
HMAC_Update(&hmac, reinterpret_cast<const unsigned char *>(cryptex.body.data()), cryptex.body.size());
|
|
|
|
HMAC_Final(&hmac, md, &mac_length);
|
|
|
|
#else
|
|
|
|
if (HMAC_Init_ex(&hmac, envelope_key + key_length, key_length, ECIES_HASHER, NULL) != 1 ||
|
|
|
|
HMAC_Update(&hmac, reinterpret_cast<const unsigned char *>(cryptex.body.data()), cryptex.body.size()) != 1 ||
|
|
|
|
HMAC_Final(&hmac, md, &mac_length) != 1) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("Unable to generate a data authentication code.\n");
|
|
|
|
#endif
|
|
|
|
HMAC_CTX_cleanup(&hmac);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
HMAC_CTX_cleanup(&hmac);
|
|
|
|
|
|
|
|
// We can use the generated hash to ensure the encrypted data was not altered after being encrypted.
|
|
|
|
if (mac_length != cryptex.mac.size() || memcmp(md, cryptex.mac.data(), mac_length)) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("The authentication code was invalid! The ciphered data has been corrupted!\n");
|
|
|
|
#endif
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create a buffer to hold the result.
|
|
|
|
int output_length = cryptex.body.size();
|
|
|
|
vchText.resize(output_length+1);
|
|
|
|
unsigned char *block, *output;
|
|
|
|
block = output = reinterpret_cast<unsigned char *>(&vchText[0]);
|
|
|
|
|
|
|
|
unsigned char iv[EVP_MAX_IV_LENGTH];
|
|
|
|
// For now we use an empty initialization vector. We also clear out the result buffer just to be on the safe side.
|
|
|
|
memset(iv, 0, EVP_MAX_IV_LENGTH);
|
|
|
|
memset(output, 0, output_length + 1);
|
|
|
|
|
|
|
|
// Setup the cipher context, the body length, and store a pointer to the body buffer location.
|
|
|
|
EVP_CIPHER_CTX cipher;
|
|
|
|
EVP_CIPHER_CTX_init(&cipher);
|
|
|
|
|
|
|
|
// Decrypt the data using the chosen symmetric cipher.
|
|
|
|
if (EVP_DecryptInit_ex(&cipher, ECIES_CIPHER, NULL, envelope_key, iv) != 1 ||
|
|
|
|
EVP_CIPHER_CTX_set_padding(&cipher, 0) != 1 ||
|
|
|
|
EVP_DecryptUpdate(&cipher, block, &output_length, reinterpret_cast<const unsigned char *>(cryptex.body.data()), cryptex.body.size()) != 1) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("Unable to decrypt the data using the chosen symmetric cipher.\n");
|
|
|
|
#endif
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
block += output_length;
|
|
|
|
if ((output_length = cryptex.body.size() - output_length) != 0) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("The symmetric cipher failed to properly decrypt the correct amount of data!\n");
|
|
|
|
#endif
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (EVP_DecryptFinal_ex(&cipher, block, &output_length) != 1) {
|
|
|
|
#ifdef DEBUG_ECIES
|
|
|
|
printf("Unable to decrypt the data using the chosen symmetric cipher.\n");
|
|
|
|
#endif
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher);
|
|
|
|
|
|
|
|
vchText.resize(cryptex.orig);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
}; // end of anonymous namespace
|
|
|
|
|
|
|
|
bool CKey::Check(const unsigned char *vch) {
|
|
|
|
// Do not convert to OpenSSL's data structures for range-checking keys,
|
|
|
|
// it's easy enough to do directly.
|
|
|
|
static const unsigned char vchMax[32] = {
|
|
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
|
|
|
|
0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
|
|
|
|
0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x40
|
|
|
|
};
|
|
|
|
bool fIsZero = true;
|
|
|
|
for (int i=0; i<32 && fIsZero; i++)
|
|
|
|
if (vch[i] != 0)
|
|
|
|
fIsZero = false;
|
|
|
|
if (fIsZero)
|
|
|
|
return false;
|
|
|
|
for (int i=0; i<32; i++) {
|
|
|
|
if (vch[i] < vchMax[i])
|
|
|
|
return true;
|
|
|
|
if (vch[i] > vchMax[i])
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CKey::MakeNewKey(bool fCompressedIn) {
|
|
|
|
do {
|
|
|
|
RAND_bytes(vch, sizeof(vch));
|
|
|
|
} while (!Check(vch));
|
|
|
|
fValid = true;
|
|
|
|
fCompressed = fCompressedIn;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) {
|
|
|
|
CECKey key;
|
|
|
|
if (!key.SetPrivKey(privkey))
|
|
|
|
return false;
|
|
|
|
key.GetSecretBytes(vch);
|
|
|
|
fCompressed = fCompressedIn;
|
|
|
|
fValid = true;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
CPrivKey CKey::GetPrivKey() const {
|
|
|
|
assert(fValid);
|
|
|
|
CECKey key;
|
|
|
|
key.SetSecretBytes(vch);
|
|
|
|
CPrivKey privkey;
|
|
|
|
key.GetPrivKey(privkey, fCompressed);
|
|
|
|
return privkey;
|
|
|
|
}
|
|
|
|
|
|
|
|
CPubKey CKey::GetPubKey() const {
|
|
|
|
assert(fValid);
|
|
|
|
CECKey key;
|
|
|
|
key.SetSecretBytes(vch);
|
|
|
|
CPubKey pubkey;
|
|
|
|
key.GetPubKey(pubkey, fCompressed);
|
|
|
|
return pubkey;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
|
|
|
|
if (!fValid)
|
|
|
|
return false;
|
|
|
|
CECKey key;
|
|
|
|
key.SetSecretBytes(vch);
|
|
|
|
return key.Sign(hash, vchSig);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
|
|
|
|
if (!fValid)
|
|
|
|
return false;
|
|
|
|
CECKey key;
|
|
|
|
key.SetSecretBytes(vch);
|
|
|
|
vchSig.resize(65);
|
|
|
|
int rec = -1;
|
|
|
|
if (!key.SignCompact(hash, &vchSig[1], rec))
|
|
|
|
return false;
|
|
|
|
assert(rec != -1);
|
|
|
|
vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CKey::Decrypt(ecies_secure_t const &cryptex, std::string &vchText )
|
|
|
|
{
|
|
|
|
if (!fValid)
|
|
|
|
return false;
|
|
|
|
CECKey key;
|
|
|
|
key.SetSecretBytes(vch);
|
|
|
|
return key.Decrypt(cryptex, vchText);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CPubKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) const {
|
|
|
|
if (!IsValid())
|
|
|
|
return false;
|
|
|
|
CECKey key;
|
|
|
|
if (!key.SetPubKey(*this))
|
|
|
|
return false;
|
|
|
|
if (!key.Verify(hash, vchSig))
|
|
|
|
return false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CPubKey::RecoverCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) {
|
|
|
|
if (vchSig.size() != 65)
|
|
|
|
return false;
|
|
|
|
CECKey key;
|
|
|
|
if (!key.Recover(hash, &vchSig[1], (vchSig[0] - 27) & ~4))
|
|
|
|
return false;
|
|
|
|
key.GetPubKey(*this, (vchSig[0] - 27) & 4);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CPubKey::VerifyCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) const {
|
|
|
|
if (!IsValid())
|
|
|
|
return false;
|
|
|
|
if (vchSig.size() != 65)
|
|
|
|
return false;
|
|
|
|
CECKey key;
|
|
|
|
if (!key.Recover(hash, &vchSig[1], (vchSig[0] - 27) & ~4))
|
|
|
|
return false;
|
|
|
|
CPubKey pubkeyRec;
|
|
|
|
key.GetPubKey(pubkeyRec, IsCompressed());
|
|
|
|
if (*this != pubkeyRec)
|
|
|
|
return false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CPubKey::IsFullyValid() const {
|
|
|
|
if (!IsValid())
|
|
|
|
return false;
|
|
|
|
CECKey key;
|
|
|
|
if (!key.SetPubKey(*this))
|
|
|
|
return false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CPubKey::Decompress() {
|
|
|
|
if (!IsValid())
|
|
|
|
return false;
|
|
|
|
CECKey key;
|
|
|
|
if (!key.SetPubKey(*this))
|
|
|
|
return false;
|
|
|
|
key.GetPubKey(*this, false);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CPubKey::Encrypt(std::string const &vchText, ecies_secure_t &cryptex)
|
|
|
|
{
|
|
|
|
if (!IsValid())
|
|
|
|
return false;
|
|
|
|
CECKey key;
|
|
|
|
if (!key.SetPubKey(*this))
|
|
|
|
return false;
|
|
|
|
return key.Encrypt(vchText, cryptex);
|
|
|
|
}
|
|
|
|
|