You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
361 lines
13 KiB
361 lines
13 KiB
// Copyright (c) 2013-2014 The btcsuite developers |
|
// Use of this source code is governed by an ISC |
|
// license that can be found in the LICENSE file. |
|
|
|
package blockchain |
|
|
|
import ( |
|
"fmt" |
|
"math/big" |
|
"time" |
|
|
|
"github.com/btcsuite/btcd/wire" |
|
) |
|
|
|
const ( |
|
// targetTimespan is the desired amount of time that should elapse |
|
// before block difficulty requirement is examined to determine how |
|
// it should be changed in order to maintain the desired block |
|
// generation rate. |
|
targetTimespan = time.Hour * 24 * 14 |
|
|
|
// targetSpacing is the desired amount of time to generate each block. |
|
targetSpacing = time.Minute * 10 |
|
|
|
// BlocksPerRetarget is the number of blocks between each difficulty |
|
// retarget. It is calculated based on the desired block generation |
|
// rate. |
|
BlocksPerRetarget = int64(targetTimespan / targetSpacing) |
|
|
|
// retargetAdjustmentFactor is the adjustment factor used to limit |
|
// the minimum and maximum amount of adjustment that can occur between |
|
// difficulty retargets. |
|
retargetAdjustmentFactor = 4 |
|
|
|
// minRetargetTimespan is the minimum amount of adjustment that can |
|
// occur between difficulty retargets. It equates to 25% of the |
|
// previous difficulty. |
|
minRetargetTimespan = int64(targetTimespan / retargetAdjustmentFactor) |
|
|
|
// maxRetargetTimespan is the maximum amount of adjustment that can |
|
// occur between difficulty retargets. It equates to 400% of the |
|
// previous difficulty. |
|
maxRetargetTimespan = int64(targetTimespan * retargetAdjustmentFactor) |
|
) |
|
|
|
var ( |
|
// bigOne is 1 represented as a big.Int. It is defined here to avoid |
|
// the overhead of creating it multiple times. |
|
bigOne = big.NewInt(1) |
|
|
|
// oneLsh256 is 1 shifted left 256 bits. It is defined here to avoid |
|
// the overhead of creating it multiple times. |
|
oneLsh256 = new(big.Int).Lsh(bigOne, 256) |
|
) |
|
|
|
// ShaHashToBig converts a wire.ShaHash into a big.Int that can be used to |
|
// perform math comparisons. |
|
func ShaHashToBig(hash *wire.ShaHash) *big.Int { |
|
// A ShaHash is in little-endian, but the big package wants the bytes |
|
// in big-endian, so reverse them. |
|
buf := *hash |
|
blen := len(buf) |
|
for i := 0; i < blen/2; i++ { |
|
buf[i], buf[blen-1-i] = buf[blen-1-i], buf[i] |
|
} |
|
|
|
return new(big.Int).SetBytes(buf[:]) |
|
} |
|
|
|
// CompactToBig converts a compact representation of a whole number N to an |
|
// unsigned 32-bit number. The representation is similar to IEEE754 floating |
|
// point numbers. |
|
// |
|
// Like IEEE754 floating point, there are three basic components: the sign, |
|
// the exponent, and the mantissa. They are broken out as follows: |
|
// |
|
// * the most significant 8 bits represent the unsigned base 256 exponent |
|
// * bit 23 (the 24th bit) represents the sign bit |
|
// * the least significant 23 bits represent the mantissa |
|
// |
|
// ------------------------------------------------- |
|
// | Exponent | Sign | Mantissa | |
|
// ------------------------------------------------- |
|
// | 8 bits [31-24] | 1 bit [23] | 23 bits [22-00] | |
|
// ------------------------------------------------- |
|
// |
|
// The formula to calculate N is: |
|
// N = (-1^sign) * mantissa * 256^(exponent-3) |
|
// |
|
// This compact form is only used in bitcoin to encode unsigned 256-bit numbers |
|
// which represent difficulty targets, thus there really is not a need for a |
|
// sign bit, but it is implemented here to stay consistent with bitcoind. |
|
func CompactToBig(compact uint32) *big.Int { |
|
// Extract the mantissa, sign bit, and exponent. |
|
mantissa := compact & 0x007fffff |
|
isNegative := compact&0x00800000 != 0 |
|
exponent := uint(compact >> 24) |
|
|
|
// Since the base for the exponent is 256, the exponent can be treated |
|
// as the number of bytes to represent the full 256-bit number. So, |
|
// treat the exponent as the number of bytes and shift the mantissa |
|
// right or left accordingly. This is equivalent to: |
|
// N = mantissa * 256^(exponent-3) |
|
var bn *big.Int |
|
if exponent <= 3 { |
|
mantissa >>= 8 * (3 - exponent) |
|
bn = big.NewInt(int64(mantissa)) |
|
} else { |
|
bn = big.NewInt(int64(mantissa)) |
|
bn.Lsh(bn, 8*(exponent-3)) |
|
} |
|
|
|
// Make it negative if the sign bit is set. |
|
if isNegative { |
|
bn = bn.Neg(bn) |
|
} |
|
|
|
return bn |
|
} |
|
|
|
// BigToCompact converts a whole number N to a compact representation using |
|
// an unsigned 32-bit number. The compact representation only provides 23 bits |
|
// of precision, so values larger than (2^23 - 1) only encode the most |
|
// significant digits of the number. See CompactToBig for details. |
|
func BigToCompact(n *big.Int) uint32 { |
|
// No need to do any work if it's zero. |
|
if n.Sign() == 0 { |
|
return 0 |
|
} |
|
|
|
// Since the base for the exponent is 256, the exponent can be treated |
|
// as the number of bytes. So, shift the number right or left |
|
// accordingly. This is equivalent to: |
|
// mantissa = mantissa / 256^(exponent-3) |
|
var mantissa uint32 |
|
exponent := uint(len(n.Bytes())) |
|
if exponent <= 3 { |
|
mantissa = uint32(n.Bits()[0]) |
|
mantissa <<= 8 * (3 - exponent) |
|
} else { |
|
// Use a copy to avoid modifying the caller's original number. |
|
tn := new(big.Int).Set(n) |
|
mantissa = uint32(tn.Rsh(tn, 8*(exponent-3)).Bits()[0]) |
|
} |
|
|
|
// When the mantissa already has the sign bit set, the number is too |
|
// large to fit into the available 23-bits, so divide the number by 256 |
|
// and increment the exponent accordingly. |
|
if mantissa&0x00800000 != 0 { |
|
mantissa >>= 8 |
|
exponent++ |
|
} |
|
|
|
// Pack the exponent, sign bit, and mantissa into an unsigned 32-bit |
|
// int and return it. |
|
compact := uint32(exponent<<24) | mantissa |
|
if n.Sign() < 0 { |
|
compact |= 0x00800000 |
|
} |
|
return compact |
|
} |
|
|
|
// CalcWork calculates a work value from difficulty bits. Bitcoin increases |
|
// the difficulty for generating a block by decreasing the value which the |
|
// generated hash must be less than. This difficulty target is stored in each |
|
// block header using a compact representation as described in the documenation |
|
// for CompactToBig. The main chain is selected by choosing the chain that has |
|
// the most proof of work (highest difficulty). Since a lower target difficulty |
|
// value equates to higher actual difficulty, the work value which will be |
|
// accumulated must be the inverse of the difficulty. Also, in order to avoid |
|
// potential division by zero and really small floating point numbers, the |
|
// result adds 1 to the denominator and multiplies the numerator by 2^256. |
|
func CalcWork(bits uint32) *big.Int { |
|
// Return a work value of zero if the passed difficulty bits represent |
|
// a negative number. Note this should not happen in practice with valid |
|
// blocks, but an invalid block could trigger it. |
|
difficultyNum := CompactToBig(bits) |
|
if difficultyNum.Sign() <= 0 { |
|
return big.NewInt(0) |
|
} |
|
|
|
// (1 << 256) / (difficultyNum + 1) |
|
denominator := new(big.Int).Add(difficultyNum, bigOne) |
|
return new(big.Int).Div(oneLsh256, denominator) |
|
} |
|
|
|
// calcEasiestDifficulty calculates the easiest possible difficulty that a block |
|
// can have given starting difficulty bits and a duration. It is mainly used to |
|
// verify that claimed proof of work by a block is sane as compared to a |
|
// known good checkpoint. |
|
func (b *BlockChain) calcEasiestDifficulty(bits uint32, duration time.Duration) uint32 { |
|
// Convert types used in the calculations below. |
|
durationVal := int64(duration) |
|
adjustmentFactor := big.NewInt(retargetAdjustmentFactor) |
|
|
|
// The test network rules allow minimum difficulty blocks after more |
|
// than twice the desired amount of time needed to generate a block has |
|
// elapsed. |
|
if b.chainParams.ResetMinDifficulty { |
|
if durationVal > int64(targetSpacing)*2 { |
|
return b.chainParams.PowLimitBits |
|
} |
|
} |
|
|
|
// Since easier difficulty equates to higher numbers, the easiest |
|
// difficulty for a given duration is the largest value possible given |
|
// the number of retargets for the duration and starting difficulty |
|
// multiplied by the max adjustment factor. |
|
newTarget := CompactToBig(bits) |
|
for durationVal > 0 && newTarget.Cmp(b.chainParams.PowLimit) < 0 { |
|
newTarget.Mul(newTarget, adjustmentFactor) |
|
durationVal -= maxRetargetTimespan |
|
} |
|
|
|
// Limit new value to the proof of work limit. |
|
if newTarget.Cmp(b.chainParams.PowLimit) > 0 { |
|
newTarget.Set(b.chainParams.PowLimit) |
|
} |
|
|
|
return BigToCompact(newTarget) |
|
} |
|
|
|
// findPrevTestNetDifficulty returns the difficulty of the previous block which |
|
// did not have the special testnet minimum difficulty rule applied. |
|
func (b *BlockChain) findPrevTestNetDifficulty(startNode *blockNode) (uint32, error) { |
|
// Search backwards through the chain for the last block without |
|
// the special rule applied. |
|
iterNode := startNode |
|
for iterNode != nil && iterNode.height%BlocksPerRetarget != 0 && |
|
iterNode.bits == b.chainParams.PowLimitBits { |
|
|
|
// Get the previous block node. This function is used over |
|
// simply accessing iterNode.parent directly as it will |
|
// dynamically create previous block nodes as needed. This |
|
// helps allow only the pieces of the chain that are needed |
|
// to remain in memory. |
|
var err error |
|
iterNode, err = b.getPrevNodeFromNode(iterNode) |
|
if err != nil { |
|
log.Errorf("getPrevNodeFromNode: %v", err) |
|
return 0, err |
|
} |
|
} |
|
|
|
// Return the found difficulty or the minimum difficulty if no |
|
// appropriate block was found. |
|
lastBits := b.chainParams.PowLimitBits |
|
if iterNode != nil { |
|
lastBits = iterNode.bits |
|
} |
|
return lastBits, nil |
|
} |
|
|
|
// calcNextRequiredDifficulty calculates the required difficulty for the block |
|
// after the passed previous block node based on the difficulty retarget rules. |
|
// This function differs from the exported CalcNextRequiredDifficulty in that |
|
// the exported version uses the current best chain as the previous block node |
|
// while this function accepts any block node. |
|
func (b *BlockChain) calcNextRequiredDifficulty(lastNode *blockNode, newBlockTime time.Time) (uint32, error) { |
|
// Genesis block. |
|
if lastNode == nil { |
|
return b.chainParams.PowLimitBits, nil |
|
} |
|
|
|
// Return the previous block's difficulty requirements if this block |
|
// is not at a difficulty retarget interval. |
|
if (lastNode.height+1)%BlocksPerRetarget != 0 { |
|
// The test network rules allow minimum difficulty blocks after |
|
// more than twice the desired amount of time needed to generate |
|
// a block has elapsed. |
|
if b.chainParams.ResetMinDifficulty { |
|
// Return minimum difficulty when more than twice the |
|
// desired amount of time needed to generate a block has |
|
// elapsed. |
|
allowMinTime := lastNode.timestamp.Add(targetSpacing * 2) |
|
if newBlockTime.After(allowMinTime) { |
|
return b.chainParams.PowLimitBits, nil |
|
} |
|
|
|
// The block was mined within the desired timeframe, so |
|
// return the difficulty for the last block which did |
|
// not have the special minimum difficulty rule applied. |
|
prevBits, err := b.findPrevTestNetDifficulty(lastNode) |
|
if err != nil { |
|
return 0, err |
|
} |
|
return prevBits, nil |
|
} |
|
|
|
// For the main network (or any unrecognized networks), simply |
|
// return the previous block's difficulty requirements. |
|
return lastNode.bits, nil |
|
} |
|
|
|
// Get the block node at the previous retarget (targetTimespan days |
|
// worth of blocks). |
|
firstNode := lastNode |
|
for i := int64(0); i < BlocksPerRetarget-1 && firstNode != nil; i++ { |
|
// Get the previous block node. This function is used over |
|
// simply accessing firstNode.parent directly as it will |
|
// dynamically create previous block nodes as needed. This |
|
// helps allow only the pieces of the chain that are needed |
|
// to remain in memory. |
|
var err error |
|
firstNode, err = b.getPrevNodeFromNode(firstNode) |
|
if err != nil { |
|
return 0, err |
|
} |
|
} |
|
|
|
if firstNode == nil { |
|
return 0, fmt.Errorf("unable to obtain previous retarget block") |
|
} |
|
|
|
// Limit the amount of adjustment that can occur to the previous |
|
// difficulty. |
|
actualTimespan := lastNode.timestamp.UnixNano() - firstNode.timestamp.UnixNano() |
|
adjustedTimespan := actualTimespan |
|
if actualTimespan < minRetargetTimespan { |
|
adjustedTimespan = minRetargetTimespan |
|
} else if actualTimespan > maxRetargetTimespan { |
|
adjustedTimespan = maxRetargetTimespan |
|
} |
|
|
|
// Calculate new target difficulty as: |
|
// currentDifficulty * (adjustedTimespan / targetTimespan) |
|
// The result uses integer division which means it will be slightly |
|
// rounded down. Bitcoind also uses integer division to calculate this |
|
// result. |
|
oldTarget := CompactToBig(lastNode.bits) |
|
newTarget := new(big.Int).Mul(oldTarget, big.NewInt(adjustedTimespan)) |
|
newTarget.Div(newTarget, big.NewInt(int64(targetTimespan))) |
|
|
|
// Limit new value to the proof of work limit. |
|
if newTarget.Cmp(b.chainParams.PowLimit) > 0 { |
|
newTarget.Set(b.chainParams.PowLimit) |
|
} |
|
|
|
// Log new target difficulty and return it. The new target logging is |
|
// intentionally converting the bits back to a number instead of using |
|
// newTarget since conversion to the compact representation loses |
|
// precision. |
|
newTargetBits := BigToCompact(newTarget) |
|
log.Debugf("Difficulty retarget at block height %d", lastNode.height+1) |
|
log.Debugf("Old target %08x (%064x)", lastNode.bits, oldTarget) |
|
log.Debugf("New target %08x (%064x)", newTargetBits, CompactToBig(newTargetBits)) |
|
log.Debugf("Actual timespan %v, adjusted timespan %v, target timespan %v", |
|
time.Duration(actualTimespan), time.Duration(adjustedTimespan), |
|
targetTimespan) |
|
|
|
return newTargetBits, nil |
|
} |
|
|
|
// CalcNextRequiredDifficulty calculates the required difficulty for the block |
|
// after the end of the current best chain based on the difficulty retarget |
|
// rules. |
|
// |
|
// This function is NOT safe for concurrent access. |
|
func (b *BlockChain) CalcNextRequiredDifficulty(timestamp time.Time) (uint32, error) { |
|
return b.calcNextRequiredDifficulty(b.bestChain, timestamp) |
|
}
|
|
|