Go Language dns seeder for Bitcoin based networks
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

233 lines
5.6 KiB

package dns
import (
"time"
)
// Envelope is used when doing a zone transfer with a remote server.
type Envelope struct {
RR []RR // The set of RRs in the answer section of the xfr reply message.
Error error // If something went wrong, this contains the error.
}
// A Transfer defines parameters that are used during a zone transfer.
type Transfer struct {
*Conn
DialTimeout time.Duration // net.DialTimeout, defaults to 2 seconds
ReadTimeout time.Duration // net.Conn.SetReadTimeout value for connections, defaults to 2 seconds
WriteTimeout time.Duration // net.Conn.SetWriteTimeout value for connections, defaults to 2 seconds
TsigSecret map[string]string // Secret(s) for Tsig map[<zonename>]<base64 secret>, zonename must be fully qualified
tsigTimersOnly bool
}
// Think we need to away to stop the transfer
// In performs an incoming transfer with the server in a.
func (t *Transfer) In(q *Msg, a string) (env chan *Envelope, err error) {
timeout := dnsTimeout
if t.DialTimeout != 0 {
timeout = t.DialTimeout
}
t.Conn, err = DialTimeout("tcp", a, timeout)
if err != nil {
return nil, err
}
if err := t.WriteMsg(q); err != nil {
return nil, err
}
env = make(chan *Envelope)
go func() {
if q.Question[0].Qtype == TypeAXFR {
go t.inAxfr(q.Id, env)
return
}
if q.Question[0].Qtype == TypeIXFR {
go t.inIxfr(q.Id, env)
return
}
}()
return env, nil
}
func (t *Transfer) inAxfr(id uint16, c chan *Envelope) {
first := true
defer t.Close()
defer close(c)
timeout := dnsTimeout
if t.ReadTimeout != 0 {
timeout = t.ReadTimeout
}
for {
t.Conn.SetReadDeadline(time.Now().Add(timeout))
in, err := t.ReadMsg()
if err != nil {
c <- &Envelope{nil, err}
return
}
if id != in.Id {
c <- &Envelope{in.Answer, ErrId}
return
}
if first {
if !isSOAFirst(in) {
c <- &Envelope{in.Answer, ErrSoa}
return
}
first = !first
// only one answer that is SOA, receive more
if len(in.Answer) == 1 {
t.tsigTimersOnly = true
c <- &Envelope{in.Answer, nil}
continue
}
}
if !first {
t.tsigTimersOnly = true // Subsequent envelopes use this.
if isSOALast(in) {
c <- &Envelope{in.Answer, nil}
return
}
c <- &Envelope{in.Answer, nil}
}
}
panic("dns: not reached")
}
func (t *Transfer) inIxfr(id uint16, c chan *Envelope) {
serial := uint32(0) // The first serial seen is the current server serial
first := true
defer t.Close()
defer close(c)
timeout := dnsTimeout
if t.ReadTimeout != 0 {
timeout = t.ReadTimeout
}
for {
t.SetReadDeadline(time.Now().Add(timeout))
in, err := t.ReadMsg()
if err != nil {
c <- &Envelope{nil, err}
return
}
if id != in.Id {
c <- &Envelope{in.Answer, ErrId}
return
}
if first {
// A single SOA RR signals "no changes"
if len(in.Answer) == 1 && isSOAFirst(in) {
c <- &Envelope{in.Answer, nil}
return
}
// Check if the returned answer is ok
if !isSOAFirst(in) {
c <- &Envelope{in.Answer, ErrSoa}
return
}
// This serial is important
serial = in.Answer[0].(*SOA).Serial
first = !first
}
// Now we need to check each message for SOA records, to see what we need to do
if !first {
t.tsigTimersOnly = true
// If the last record in the IXFR contains the servers' SOA, we should quit
if v, ok := in.Answer[len(in.Answer)-1].(*SOA); ok {
if v.Serial == serial {
c <- &Envelope{in.Answer, nil}
return
}
}
c <- &Envelope{in.Answer, nil}
}
}
}
// Out performs an outgoing transfer with the client connecting in w.
// Basic use pattern:
//
// ch := make(chan *dns.Envelope)
// tr := new(dns.Transfer)
// tr.Out(w, r, ch)
// c <- &dns.Envelope{RR: []dns.RR{soa, rr1, rr2, rr3, soa}}
// close(ch)
// w.Hijack()
// // w.Close() // Client closes connection
//
// The server is responsible for sending the correct sequence of RRs through the
// channel ch.
func (t *Transfer) Out(w ResponseWriter, q *Msg, ch chan *Envelope) error {
for x := range ch {
r := new(Msg)
// Compress?
r.SetReply(q)
r.Authoritative = true
// assume it fits TODO(miek): fix
r.Answer = append(r.Answer, x.RR...)
if err := w.WriteMsg(r); err != nil {
return err
}
}
w.TsigTimersOnly(true)
return nil
}
// ReadMsg reads a message from the transfer connection t.
func (t *Transfer) ReadMsg() (*Msg, error) {
m := new(Msg)
p := make([]byte, MaxMsgSize)
n, err := t.Read(p)
if err != nil && n == 0 {
return nil, err
}
p = p[:n]
if err := m.Unpack(p); err != nil {
return nil, err
}
if ts := m.IsTsig(); ts != nil && t.TsigSecret != nil {
if _, ok := t.TsigSecret[ts.Hdr.Name]; !ok {
return m, ErrSecret
}
// Need to work on the original message p, as that was used to calculate the tsig.
err = TsigVerify(p, t.TsigSecret[ts.Hdr.Name], t.tsigRequestMAC, t.tsigTimersOnly)
t.tsigRequestMAC = ts.MAC
}
return m, err
}
// WriteMsg writes a message through the transfer connection t.
func (t *Transfer) WriteMsg(m *Msg) (err error) {
var out []byte
if ts := m.IsTsig(); ts != nil && t.TsigSecret != nil {
if _, ok := t.TsigSecret[ts.Hdr.Name]; !ok {
return ErrSecret
}
out, t.tsigRequestMAC, err = TsigGenerate(m, t.TsigSecret[ts.Hdr.Name], t.tsigRequestMAC, t.tsigTimersOnly)
} else {
out, err = m.Pack()
}
if err != nil {
return err
}
if _, err = t.Write(out); err != nil {
return err
}
return nil
}
func isSOAFirst(in *Msg) bool {
if len(in.Answer) > 0 {
return in.Answer[0].Header().Rrtype == TypeSOA
}
return false
}
func isSOALast(in *Msg) bool {
if len(in.Answer) > 0 {
return in.Answer[len(in.Answer)-1].Header().Rrtype == TypeSOA
}
return false
}