package dns import ( "encoding/hex" "errors" "net" "strconv" ) // EDNS0 Option codes. const ( EDNS0LLQ = 0x1 // long lived queries: http://tools.ietf.org/html/draft-sekar-dns-llq-01 EDNS0UL = 0x2 // update lease draft: http://files.dns-sd.org/draft-sekar-dns-ul.txt EDNS0NSID = 0x3 // nsid (RFC5001) EDNS0DAU = 0x5 // DNSSEC Algorithm Understood EDNS0DHU = 0x6 // DS Hash Understood EDNS0N3U = 0x7 // NSEC3 Hash Understood EDNS0SUBNET = 0x8 // client-subnet (RFC6891) EDNS0EXPIRE = 0x9 // EDNS0 expire EDNS0SUBNETDRAFT = 0x50fa // Don't use! Use EDNS0SUBNET EDNS0LOCALSTART = 0xFDE9 // Beginning of range reserved for local/experimental use (RFC6891) EDNS0LOCALEND = 0xFFFE // End of range reserved for local/experimental use (RFC6891) _DO = 1 << 15 // dnssec ok ) // OPT is the EDNS0 RR appended to messages to convey extra (meta) information. // See RFC 6891. type OPT struct { Hdr RR_Header Option []EDNS0 `dns:"opt"` } func (rr *OPT) Header() *RR_Header { return &rr.Hdr } func (rr *OPT) String() string { s := "\n;; OPT PSEUDOSECTION:\n; EDNS: version " + strconv.Itoa(int(rr.Version())) + "; " if rr.Do() { s += "flags: do; " } else { s += "flags: ; " } s += "udp: " + strconv.Itoa(int(rr.UDPSize())) for _, o := range rr.Option { switch o.(type) { case *EDNS0_NSID: s += "\n; NSID: " + o.String() h, e := o.pack() var r string if e == nil { for _, c := range h { r += "(" + string(c) + ")" } s += " " + r } case *EDNS0_SUBNET: s += "\n; SUBNET: " + o.String() if o.(*EDNS0_SUBNET).DraftOption { s += " (draft)" } case *EDNS0_UL: s += "\n; UPDATE LEASE: " + o.String() case *EDNS0_LLQ: s += "\n; LONG LIVED QUERIES: " + o.String() case *EDNS0_DAU: s += "\n; DNSSEC ALGORITHM UNDERSTOOD: " + o.String() case *EDNS0_DHU: s += "\n; DS HASH UNDERSTOOD: " + o.String() case *EDNS0_N3U: s += "\n; NSEC3 HASH UNDERSTOOD: " + o.String() case *EDNS0_LOCAL: s += "\n; LOCAL OPT: " + o.String() } } return s } func (rr *OPT) len() int { l := rr.Hdr.len() for i := 0; i < len(rr.Option); i++ { l += 4 // Account for 2-byte option code and 2-byte option length. lo, _ := rr.Option[i].pack() l += len(lo) } return l } func (rr *OPT) copy() RR { return &OPT{*rr.Hdr.copyHeader(), rr.Option} } // return the old value -> delete SetVersion? // Version returns the EDNS version used. Only zero is defined. func (rr *OPT) Version() uint8 { return uint8((rr.Hdr.Ttl & 0x00FF0000) >> 16) } // SetVersion sets the version of EDNS. This is usually zero. func (rr *OPT) SetVersion(v uint8) { rr.Hdr.Ttl = rr.Hdr.Ttl&0xFF00FFFF | (uint32(v) << 16) } // ExtendedRcode returns the EDNS extended RCODE field (the upper 8 bits of the TTL). func (rr *OPT) ExtendedRcode() uint8 { return uint8((rr.Hdr.Ttl & 0xFF000000) >> 24) } // SetExtendedRcode sets the EDNS extended RCODE field. func (rr *OPT) SetExtendedRcode(v uint8) { rr.Hdr.Ttl = rr.Hdr.Ttl&0x00FFFFFF | (uint32(v) << 24) } // UDPSize returns the UDP buffer size. func (rr *OPT) UDPSize() uint16 { return rr.Hdr.Class } // SetUDPSize sets the UDP buffer size. func (rr *OPT) SetUDPSize(size uint16) { rr.Hdr.Class = size } // Do returns the value of the DO (DNSSEC OK) bit. func (rr *OPT) Do() bool { return rr.Hdr.Ttl&_DO == _DO } // SetDo sets the DO (DNSSEC OK) bit. func (rr *OPT) SetDo() { rr.Hdr.Ttl |= _DO } // EDNS0 defines an EDNS0 Option. An OPT RR can have multiple options appended to // it. type EDNS0 interface { // Option returns the option code for the option. Option() uint16 // pack returns the bytes of the option data. pack() ([]byte, error) // unpack sets the data as found in the buffer. Is also sets // the length of the slice as the length of the option data. unpack([]byte) error // String returns the string representation of the option. String() string } // The nsid EDNS0 option is used to retrieve a nameserver // identifier. When sending a request Nsid must be set to the empty string // The identifier is an opaque string encoded as hex. // Basic use pattern for creating an nsid option: // // o := new(dns.OPT) // o.Hdr.Name = "." // o.Hdr.Rrtype = dns.TypeOPT // e := new(dns.EDNS0_NSID) // e.Code = dns.EDNS0NSID // e.Nsid = "AA" // o.Option = append(o.Option, e) type EDNS0_NSID struct { Code uint16 // Always EDNS0NSID Nsid string // This string needs to be hex encoded } func (e *EDNS0_NSID) pack() ([]byte, error) { h, err := hex.DecodeString(e.Nsid) if err != nil { return nil, err } return h, nil } func (e *EDNS0_NSID) Option() uint16 { return EDNS0NSID } func (e *EDNS0_NSID) unpack(b []byte) error { e.Nsid = hex.EncodeToString(b); return nil } func (e *EDNS0_NSID) String() string { return string(e.Nsid) } // The subnet EDNS0 option is used to give the remote nameserver // an idea of where the client lives. It can then give back a different // answer depending on the location or network topology. // Basic use pattern for creating an subnet option: // // o := new(dns.OPT) // o.Hdr.Name = "." // o.Hdr.Rrtype = dns.TypeOPT // e := new(dns.EDNS0_SUBNET) // e.Code = dns.EDNS0SUBNET // e.Family = 1 // 1 for IPv4 source address, 2 for IPv6 // e.NetMask = 32 // 32 for IPV4, 128 for IPv6 // e.SourceScope = 0 // e.Address = net.ParseIP("127.0.0.1").To4() // for IPv4 // // e.Address = net.ParseIP("2001:7b8:32a::2") // for IPV6 // o.Option = append(o.Option, e) type EDNS0_SUBNET struct { Code uint16 // Always EDNS0SUBNET Family uint16 // 1 for IP, 2 for IP6 SourceNetmask uint8 SourceScope uint8 Address net.IP DraftOption bool // Set to true if using the old (0x50fa) option code } func (e *EDNS0_SUBNET) Option() uint16 { if e.DraftOption { return EDNS0SUBNETDRAFT } return EDNS0SUBNET } func (e *EDNS0_SUBNET) pack() ([]byte, error) { b := make([]byte, 4) b[0], b[1] = packUint16(e.Family) b[2] = e.SourceNetmask b[3] = e.SourceScope switch e.Family { case 1: if e.SourceNetmask > net.IPv4len*8 { return nil, errors.New("dns: bad netmask") } ip := make([]byte, net.IPv4len) a := e.Address.To4().Mask(net.CIDRMask(int(e.SourceNetmask), net.IPv4len*8)) for i := 0; i < net.IPv4len; i++ { if i+1 > len(e.Address) { break } ip[i] = a[i] } needLength := e.SourceNetmask / 8 if e.SourceNetmask%8 > 0 { needLength++ } ip = ip[:needLength] b = append(b, ip...) case 2: if e.SourceNetmask > net.IPv6len*8 { return nil, errors.New("dns: bad netmask") } ip := make([]byte, net.IPv6len) a := e.Address.Mask(net.CIDRMask(int(e.SourceNetmask), net.IPv6len*8)) for i := 0; i < net.IPv6len; i++ { if i+1 > len(e.Address) { break } ip[i] = a[i] } needLength := e.SourceNetmask / 8 if e.SourceNetmask%8 > 0 { needLength++ } ip = ip[:needLength] b = append(b, ip...) default: return nil, errors.New("dns: bad address family") } return b, nil } func (e *EDNS0_SUBNET) unpack(b []byte) error { lb := len(b) if lb < 4 { return ErrBuf } e.Family, _ = unpackUint16(b, 0) e.SourceNetmask = b[2] e.SourceScope = b[3] switch e.Family { case 1: addr := make([]byte, 4) for i := 0; i < int(e.SourceNetmask/8); i++ { if i >= len(addr) || 4+i >= len(b) { return ErrBuf } addr[i] = b[4+i] } e.Address = net.IPv4(addr[0], addr[1], addr[2], addr[3]) case 2: addr := make([]byte, 16) for i := 0; i < int(e.SourceNetmask/8); i++ { if i >= len(addr) || 4+i >= len(b) { return ErrBuf } addr[i] = b[4+i] } e.Address = net.IP{addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], addr[6], addr[7], addr[8], addr[9], addr[10], addr[11], addr[12], addr[13], addr[14], addr[15]} } return nil } func (e *EDNS0_SUBNET) String() (s string) { if e.Address == nil { s = "" } else if e.Address.To4() != nil { s = e.Address.String() } else { s = "[" + e.Address.String() + "]" } s += "/" + strconv.Itoa(int(e.SourceNetmask)) + "/" + strconv.Itoa(int(e.SourceScope)) return } // The UL (Update Lease) EDNS0 (draft RFC) option is used to tell the server to set // an expiration on an update RR. This is helpful for clients that cannot clean // up after themselves. This is a draft RFC and more information can be found at // http://files.dns-sd.org/draft-sekar-dns-ul.txt // // o := new(dns.OPT) // o.Hdr.Name = "." // o.Hdr.Rrtype = dns.TypeOPT // e := new(dns.EDNS0_UL) // e.Code = dns.EDNS0UL // e.Lease = 120 // in seconds // o.Option = append(o.Option, e) type EDNS0_UL struct { Code uint16 // Always EDNS0UL Lease uint32 } func (e *EDNS0_UL) Option() uint16 { return EDNS0UL } func (e *EDNS0_UL) String() string { return strconv.FormatUint(uint64(e.Lease), 10) } // Copied: http://golang.org/src/pkg/net/dnsmsg.go func (e *EDNS0_UL) pack() ([]byte, error) { b := make([]byte, 4) b[0] = byte(e.Lease >> 24) b[1] = byte(e.Lease >> 16) b[2] = byte(e.Lease >> 8) b[3] = byte(e.Lease) return b, nil } func (e *EDNS0_UL) unpack(b []byte) error { if len(b) < 4 { return ErrBuf } e.Lease = uint32(b[0])<<24 | uint32(b[1])<<16 | uint32(b[2])<<8 | uint32(b[3]) return nil } // Long Lived Queries: http://tools.ietf.org/html/draft-sekar-dns-llq-01 // Implemented for completeness, as the EDNS0 type code is assigned. type EDNS0_LLQ struct { Code uint16 // Always EDNS0LLQ Version uint16 Opcode uint16 Error uint16 Id uint64 LeaseLife uint32 } func (e *EDNS0_LLQ) Option() uint16 { return EDNS0LLQ } func (e *EDNS0_LLQ) pack() ([]byte, error) { b := make([]byte, 18) b[0], b[1] = packUint16(e.Version) b[2], b[3] = packUint16(e.Opcode) b[4], b[5] = packUint16(e.Error) b[6] = byte(e.Id >> 56) b[7] = byte(e.Id >> 48) b[8] = byte(e.Id >> 40) b[9] = byte(e.Id >> 32) b[10] = byte(e.Id >> 24) b[11] = byte(e.Id >> 16) b[12] = byte(e.Id >> 8) b[13] = byte(e.Id) b[14] = byte(e.LeaseLife >> 24) b[15] = byte(e.LeaseLife >> 16) b[16] = byte(e.LeaseLife >> 8) b[17] = byte(e.LeaseLife) return b, nil } func (e *EDNS0_LLQ) unpack(b []byte) error { if len(b) < 18 { return ErrBuf } e.Version, _ = unpackUint16(b, 0) e.Opcode, _ = unpackUint16(b, 2) e.Error, _ = unpackUint16(b, 4) e.Id = uint64(b[6])<<56 | uint64(b[6+1])<<48 | uint64(b[6+2])<<40 | uint64(b[6+3])<<32 | uint64(b[6+4])<<24 | uint64(b[6+5])<<16 | uint64(b[6+6])<<8 | uint64(b[6+7]) e.LeaseLife = uint32(b[14])<<24 | uint32(b[14+1])<<16 | uint32(b[14+2])<<8 | uint32(b[14+3]) return nil } func (e *EDNS0_LLQ) String() string { s := strconv.FormatUint(uint64(e.Version), 10) + " " + strconv.FormatUint(uint64(e.Opcode), 10) + " " + strconv.FormatUint(uint64(e.Error), 10) + " " + strconv.FormatUint(uint64(e.Id), 10) + " " + strconv.FormatUint(uint64(e.LeaseLife), 10) return s } type EDNS0_DAU struct { Code uint16 // Always EDNS0DAU AlgCode []uint8 } func (e *EDNS0_DAU) Option() uint16 { return EDNS0DAU } func (e *EDNS0_DAU) pack() ([]byte, error) { return e.AlgCode, nil } func (e *EDNS0_DAU) unpack(b []byte) error { e.AlgCode = b; return nil } func (e *EDNS0_DAU) String() string { s := "" for i := 0; i < len(e.AlgCode); i++ { if a, ok := AlgorithmToString[e.AlgCode[i]]; ok { s += " " + a } else { s += " " + strconv.Itoa(int(e.AlgCode[i])) } } return s } type EDNS0_DHU struct { Code uint16 // Always EDNS0DHU AlgCode []uint8 } func (e *EDNS0_DHU) Option() uint16 { return EDNS0DHU } func (e *EDNS0_DHU) pack() ([]byte, error) { return e.AlgCode, nil } func (e *EDNS0_DHU) unpack(b []byte) error { e.AlgCode = b; return nil } func (e *EDNS0_DHU) String() string { s := "" for i := 0; i < len(e.AlgCode); i++ { if a, ok := HashToString[e.AlgCode[i]]; ok { s += " " + a } else { s += " " + strconv.Itoa(int(e.AlgCode[i])) } } return s } type EDNS0_N3U struct { Code uint16 // Always EDNS0N3U AlgCode []uint8 } func (e *EDNS0_N3U) Option() uint16 { return EDNS0N3U } func (e *EDNS0_N3U) pack() ([]byte, error) { return e.AlgCode, nil } func (e *EDNS0_N3U) unpack(b []byte) error { e.AlgCode = b; return nil } func (e *EDNS0_N3U) String() string { // Re-use the hash map s := "" for i := 0; i < len(e.AlgCode); i++ { if a, ok := HashToString[e.AlgCode[i]]; ok { s += " " + a } else { s += " " + strconv.Itoa(int(e.AlgCode[i])) } } return s } type EDNS0_EXPIRE struct { Code uint16 // Always EDNS0EXPIRE Expire uint32 } func (e *EDNS0_EXPIRE) Option() uint16 { return EDNS0EXPIRE } func (e *EDNS0_EXPIRE) String() string { return strconv.FormatUint(uint64(e.Expire), 10) } func (e *EDNS0_EXPIRE) pack() ([]byte, error) { b := make([]byte, 4) b[0] = byte(e.Expire >> 24) b[1] = byte(e.Expire >> 16) b[2] = byte(e.Expire >> 8) b[3] = byte(e.Expire) return b, nil } func (e *EDNS0_EXPIRE) unpack(b []byte) error { if len(b) < 4 { return ErrBuf } e.Expire = uint32(b[0])<<24 | uint32(b[1])<<16 | uint32(b[2])<<8 | uint32(b[3]) return nil } // The local EDNS0 option is used for local/experimental purposes. The option // code is recommended to be within the range [EDNS0LOCALSTART, EDNS0LOCALEND] // (RFC6891), although any unassigned code can actually be used. The content of // the option is made available in Data, unaltered. // Basic use pattern for creating a local option: // // o := new(dns.OPT) // o.Hdr.Name = "." // o.Hdr.Rrtype = dns.TypeOPT // e := new(dns.EDNS0_LOCAL) // e.Code = dns.EDNS0LOCALSTART // e.Data = []byte{72, 82, 74} // o.Option = append(o.Option, e) type EDNS0_LOCAL struct { Code uint16 Data []byte } func (e *EDNS0_LOCAL) Option() uint16 { return e.Code } func (e *EDNS0_LOCAL) String() string { return strconv.FormatInt(int64(e.Code), 10) + ":0x" + hex.EncodeToString(e.Data) } func (e *EDNS0_LOCAL) pack() ([]byte, error) { b := make([]byte, len(e.Data)) copied := copy(b, e.Data) if copied != len(e.Data) { return nil, ErrBuf } return b, nil } func (e *EDNS0_LOCAL) unpack(b []byte) error { e.Data = make([]byte, len(b)) copied := copy(e.Data, b) if copied != len(b) { return ErrBuf } return nil }