package dns import ( "crypto" "crypto/dsa" "crypto/ecdsa" "crypto/rand" "crypto/rsa" "math/big" "strconv" ) const format = "Private-key-format: v1.3\n" // PrivateKey ... TODO(miek) type PrivateKey interface { Sign([]byte, uint8) ([]byte, error) String(uint8) string } // PrivateKeyString converts a PrivateKey to a string. This string has the same // format as the private-key-file of BIND9 (Private-key-format: v1.3). // It needs some info from the key (the algorithm), so its a method of the // DNSKEY and calls PrivateKey.String(alg). func (r *DNSKEY) PrivateKeyString(p PrivateKey) string { return p.String(r.Algorithm) } type RSAPrivateKey rsa.PrivateKey func (p *RSAPrivateKey) Sign(hashed []byte, alg uint8) ([]byte, error) { var hash crypto.Hash switch alg { case RSASHA1, RSASHA1NSEC3SHA1: hash = crypto.SHA1 case RSASHA256: hash = crypto.SHA256 case RSASHA512: hash = crypto.SHA512 default: return nil, ErrAlg } return rsa.SignPKCS1v15(nil, (*rsa.PrivateKey)(p), hash, hashed) } func (p *RSAPrivateKey) String(alg uint8) string { algorithm := strconv.Itoa(int(alg)) + " (" + AlgorithmToString[alg] + ")" modulus := toBase64(p.PublicKey.N.Bytes()) e := big.NewInt(int64(p.PublicKey.E)) publicExponent := toBase64(e.Bytes()) privateExponent := toBase64(p.D.Bytes()) prime1 := toBase64(p.Primes[0].Bytes()) prime2 := toBase64(p.Primes[1].Bytes()) // Calculate Exponent1/2 and Coefficient as per: http://en.wikipedia.org/wiki/RSA#Using_the_Chinese_remainder_algorithm // and from: http://code.google.com/p/go/issues/detail?id=987 one := big.NewInt(1) p1 := big.NewInt(0).Sub(p.Primes[0], one) q1 := big.NewInt(0).Sub(p.Primes[1], one) exp1 := big.NewInt(0).Mod(p.D, p1) exp2 := big.NewInt(0).Mod(p.D, q1) coeff := big.NewInt(0).ModInverse(p.Primes[1], p.Primes[0]) exponent1 := toBase64(exp1.Bytes()) exponent2 := toBase64(exp2.Bytes()) coefficient := toBase64(coeff.Bytes()) return format + "Algorithm: " + algorithm + "\n" + "Modulus: " + modulus + "\n" + "PublicExponent: " + publicExponent + "\n" + "PrivateExponent: " + privateExponent + "\n" + "Prime1: " + prime1 + "\n" + "Prime2: " + prime2 + "\n" + "Exponent1: " + exponent1 + "\n" + "Exponent2: " + exponent2 + "\n" + "Coefficient: " + coefficient + "\n" } type ECDSAPrivateKey ecdsa.PrivateKey func (p *ECDSAPrivateKey) Sign(hashed []byte, alg uint8) ([]byte, error) { var intlen int switch alg { case ECDSAP256SHA256: intlen = 32 case ECDSAP384SHA384: intlen = 48 default: return nil, ErrAlg } r1, s1, err := ecdsa.Sign(rand.Reader, (*ecdsa.PrivateKey)(p), hashed) if err != nil { return nil, err } signature := intToBytes(r1, intlen) signature = append(signature, intToBytes(s1, intlen)...) return signature, nil } func (p *ECDSAPrivateKey) String(alg uint8) string { algorithm := strconv.Itoa(int(alg)) + " (" + AlgorithmToString[alg] + ")" var intlen int switch alg { case ECDSAP256SHA256: intlen = 32 case ECDSAP384SHA384: intlen = 48 } private := toBase64(intToBytes(p.D, intlen)) return format + "Algorithm: " + algorithm + "\n" + "PrivateKey: " + private + "\n" } type DSAPrivateKey dsa.PrivateKey func (p *DSAPrivateKey) Sign(hashed []byte, alg uint8) ([]byte, error) { r1, s1, err := dsa.Sign(rand.Reader, (*dsa.PrivateKey)(p), hashed) if err != nil { return nil, err } t := divRoundUp(divRoundUp(p.PublicKey.Y.BitLen(), 8)-64, 8) signature := []byte{byte(t)} signature = append(signature, intToBytes(r1, 20)...) signature = append(signature, intToBytes(s1, 20)...) return signature, nil } func (p *DSAPrivateKey) String(alg uint8) string { algorithm := strconv.Itoa(int(alg)) + " (" + AlgorithmToString[alg] + ")" T := divRoundUp(divRoundUp(p.PublicKey.Parameters.G.BitLen(), 8)-64, 8) prime := toBase64(intToBytes(p.PublicKey.Parameters.P, 64+T*8)) subprime := toBase64(intToBytes(p.PublicKey.Parameters.Q, 20)) base := toBase64(intToBytes(p.PublicKey.Parameters.G, 64+T*8)) priv := toBase64(intToBytes(p.X, 20)) pub := toBase64(intToBytes(p.PublicKey.Y, 64+T*8)) return format + "Algorithm: " + algorithm + "\n" + "Prime(p): " + prime + "\n" + "Subprime(q): " + subprime + "\n" + "Base(g): " + base + "\n" + "Private_value(x): " + priv + "\n" + "Public_value(y): " + pub + "\n" }