Go Language dns seeder for Bitcoin based networks
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

473 lines
14 KiB

// Copyright (c) 2013-2015 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package txscript
import (
"bytes"
"encoding/binary"
"fmt"
"time"
"github.com/btcsuite/btcd/wire"
)
// Bip16Activation is the timestamp where BIP0016 is valid to use in the
// blockchain. To be used to determine if BIP0016 should be called for or not.
// This timestamp corresponds to Sun Apr 1 00:00:00 UTC 2012.
var Bip16Activation = time.Unix(1333238400, 0)
// SigHashType represents hash type bits at the end of a signature.
type SigHashType byte
// Hash type bits from the end of a signature.
const (
SigHashOld SigHashType = 0x0
SigHashAll SigHashType = 0x1
SigHashNone SigHashType = 0x2
SigHashSingle SigHashType = 0x3
SigHashAnyOneCanPay SigHashType = 0x80
// sigHashMask defines the number of bits of the hash type which is used
// to identify which outputs are signed.
sigHashMask = 0x1f
)
// These are the constants specified for maximums in individual scripts.
const (
MaxOpsPerScript = 201 // Max number of non-push operations.
MaxPubKeysPerMultiSig = 20 // Multisig can't have more sigs than this.
MaxScriptElementSize = 520 // Max bytes pushable to the stack.
)
// isSmallInt returns whether or not the opcode is considered a small integer,
// which is an OP_0, or OP_1 through OP_16.
func isSmallInt(op *opcode) bool {
if op.value == OP_0 || (op.value >= OP_1 && op.value <= OP_16) {
return true
}
return false
}
// isScriptHash returns true if the script passed is a pay-to-script-hash
// transaction, false otherwise.
func isScriptHash(pops []parsedOpcode) bool {
return len(pops) == 3 &&
pops[0].opcode.value == OP_HASH160 &&
pops[1].opcode.value == OP_DATA_20 &&
pops[2].opcode.value == OP_EQUAL
}
// IsPayToScriptHash returns true if the script is in the standard
// pay-to-script-hash (P2SH) format, false otherwise.
func IsPayToScriptHash(script []byte) bool {
pops, err := parseScript(script)
if err != nil {
return false
}
return isScriptHash(pops)
}
// isPushOnly returns true if the script only pushes data, false otherwise.
func isPushOnly(pops []parsedOpcode) bool {
// NOTE: This function does NOT verify opcodes directly since it is
// internal and is only called with parsed opcodes for scripts that did
// not have any parse errors. Thus, consensus is properly maintained.
for _, pop := range pops {
// All opcodes up to OP_16 are data push instructions.
// NOTE: This does consider OP_RESERVED to be a data push
// instruction, but execution of OP_RESERVED will fail anyways
// and matches the behavior required by consensus.
if pop.opcode.value > OP_16 {
return false
}
}
return true
}
// IsPushOnlyScript returns whether or not the passed script only pushes data.
//
// False will be returned when the script does not parse.
func IsPushOnlyScript(script []byte) bool {
pops, err := parseScript(script)
if err != nil {
return false
}
return isPushOnly(pops)
}
// parseScriptTemplate is the same as parseScript but allows the passing of the
// template list for testing purposes. When there are parse errors, it returns
// the list of parsed opcodes up to the point of failure along with the error.
func parseScriptTemplate(script []byte, opcodes *[256]opcode) ([]parsedOpcode, error) {
retScript := make([]parsedOpcode, 0, len(script))
for i := 0; i < len(script); {
instr := script[i]
op := opcodes[instr]
pop := parsedOpcode{opcode: &op}
// Parse data out of instruction.
switch {
// No additional data. Note that some of the opcodes, notably
// OP_1NEGATE, OP_0, and OP_[1-16] represent the data
// themselves.
case op.length == 1:
i++
// Data pushes of specific lengths -- OP_DATA_[1-75].
case op.length > 1:
if len(script[i:]) < op.length {
return retScript, ErrStackShortScript
}
// Slice out the data.
pop.data = script[i+1 : i+op.length]
i += op.length
// Data pushes with parsed lengths -- OP_PUSHDATAP{1,2,4}.
case op.length < 0:
var l uint
off := i + 1
if len(script[off:]) < -op.length {
return retScript, ErrStackShortScript
}
// Next -length bytes are little endian length of data.
switch op.length {
case -1:
l = uint(script[off])
case -2:
l = ((uint(script[off+1]) << 8) |
uint(script[off]))
case -4:
l = ((uint(script[off+3]) << 24) |
(uint(script[off+2]) << 16) |
(uint(script[off+1]) << 8) |
uint(script[off]))
default:
return retScript,
fmt.Errorf("invalid opcode length %d",
op.length)
}
// Move offset to beginning of the data.
off += -op.length
// Disallow entries that do not fit script or were
// sign extended.
if int(l) > len(script[off:]) || int(l) < 0 {
return retScript, ErrStackShortScript
}
pop.data = script[off : off+int(l)]
i += 1 - op.length + int(l)
}
retScript = append(retScript, pop)
}
return retScript, nil
}
// parseScript preparses the script in bytes into a list of parsedOpcodes while
// applying a number of sanity checks.
func parseScript(script []byte) ([]parsedOpcode, error) {
return parseScriptTemplate(script, &opcodeArray)
}
// unparseScript reversed the action of parseScript and returns the
// parsedOpcodes as a list of bytes
func unparseScript(pops []parsedOpcode) ([]byte, error) {
script := make([]byte, 0, len(pops))
for _, pop := range pops {
b, err := pop.bytes()
if err != nil {
return nil, err
}
script = append(script, b...)
}
return script, nil
}
// DisasmString formats a disassembled script for one line printing. When the
// script fails to parse, the returned string will contain the disassembled
// script up to the point the failure occurred along with the string '[error]'
// appended. In addition, the reason the script failed to parse is returned
// if the caller wants more information about the failure.
func DisasmString(buf []byte) (string, error) {
disbuf := ""
opcodes, err := parseScript(buf)
for _, pop := range opcodes {
disbuf += pop.print(true) + " "
}
if disbuf != "" {
disbuf = disbuf[:len(disbuf)-1]
}
if err != nil {
disbuf += "[error]"
}
return disbuf, err
}
// removeOpcode will remove any opcode matching ``opcode'' from the opcode
// stream in pkscript
func removeOpcode(pkscript []parsedOpcode, opcode byte) []parsedOpcode {
retScript := make([]parsedOpcode, 0, len(pkscript))
for _, pop := range pkscript {
if pop.opcode.value != opcode {
retScript = append(retScript, pop)
}
}
return retScript
}
// canonicalPush returns true if the object is either not a push instruction
// or the push instruction contained wherein is matches the canonical form
// or using the smallest instruction to do the job. False otherwise.
func canonicalPush(pop parsedOpcode) bool {
opcode := pop.opcode.value
data := pop.data
dataLen := len(pop.data)
if opcode > OP_16 {
return true
}
if opcode < OP_PUSHDATA1 && opcode > OP_0 && (dataLen == 1 && data[0] <= 16) {
return false
}
if opcode == OP_PUSHDATA1 && dataLen < OP_PUSHDATA1 {
return false
}
if opcode == OP_PUSHDATA2 && dataLen <= 0xff {
return false
}
if opcode == OP_PUSHDATA4 && dataLen <= 0xffff {
return false
}
return true
}
// removeOpcodeByData will return the script minus any opcodes that would push
// the passed data to the stack.
func removeOpcodeByData(pkscript []parsedOpcode, data []byte) []parsedOpcode {
retScript := make([]parsedOpcode, 0, len(pkscript))
for _, pop := range pkscript {
if !canonicalPush(pop) || !bytes.Contains(pop.data, data) {
retScript = append(retScript, pop)
}
}
return retScript
}
// calcSignatureHash will, given a script and hash type for the current script
// engine instance, calculate the signature hash to be used for signing and
// verification.
func calcSignatureHash(script []parsedOpcode, hashType SigHashType, tx *wire.MsgTx, idx int) []byte {
// The SigHashSingle signature type signs only the corresponding input
// and output (the output with the same index number as the input).
//
// Since transactions can have more inputs than outputs, this means it
// is improper to use SigHashSingle on input indices that don't have a
// corresponding output.
//
// A bug in the original Satoshi client implementation means specifying
// an index that is out of range results in a signature hash of 1 (as a
// uint256 little endian). The original intent appeared to be to
// indicate failure, but unfortunately, it was never checked and thus is
// treated as the actual signature hash. This buggy behavior is now
// part of the consensus and a hard fork would be required to fix it.
//
// Due to this, care must be taken by software that creates transactions
// which make use of SigHashSingle because it can lead to an extremely
// dangerous situation where the invalid inputs will end up signing a
// hash of 1. This in turn presents an opportunity for attackers to
// cleverly construct transactions which can steal those coins provided
// they can reuse signatures.
if hashType&sigHashMask == SigHashSingle && idx >= len(tx.TxOut) {
var hash wire.ShaHash
hash[0] = 0x01
return hash[:]
}
// Remove all instances of OP_CODESEPARATOR from the script.
script = removeOpcode(script, OP_CODESEPARATOR)
// Make a deep copy of the transaction, zeroing out the script for all
// inputs that are not currently being processed.
txCopy := tx.Copy()
for i := range txCopy.TxIn {
if i == idx {
// UnparseScript cannot fail here because removeOpcode
// above only returns a valid script.
sigScript, _ := unparseScript(script)
txCopy.TxIn[idx].SignatureScript = sigScript
} else {
txCopy.TxIn[i].SignatureScript = nil
}
}
switch hashType & sigHashMask {
case SigHashNone:
txCopy.TxOut = txCopy.TxOut[0:0] // Empty slice.
for i := range txCopy.TxIn {
if i != idx {
txCopy.TxIn[i].Sequence = 0
}
}
case SigHashSingle:
// Resize output array to up to and including requested index.
txCopy.TxOut = txCopy.TxOut[:idx+1]
// All but current output get zeroed out.
for i := 0; i < idx; i++ {
txCopy.TxOut[i].Value = -1
txCopy.TxOut[i].PkScript = nil
}
// Sequence on all other inputs is 0, too.
for i := range txCopy.TxIn {
if i != idx {
txCopy.TxIn[i].Sequence = 0
}
}
default:
// Consensus treats undefined hashtypes like normal SigHashAll
// for purposes of hash generation.
fallthrough
case SigHashOld:
fallthrough
case SigHashAll:
// Nothing special here.
}
if hashType&SigHashAnyOneCanPay != 0 {
txCopy.TxIn = txCopy.TxIn[idx : idx+1]
idx = 0
}
// The final hash is the double sha256 of both the serialized modified
// transaction and the hash type (encoded as a 4-byte little-endian
// value) appended.
var wbuf bytes.Buffer
txCopy.Serialize(&wbuf)
binary.Write(&wbuf, binary.LittleEndian, uint32(hashType))
return wire.DoubleSha256(wbuf.Bytes())
}
// asSmallInt returns the passed opcode, which must be true according to
// isSmallInt(), as an integer.
func asSmallInt(op *opcode) int {
if op.value == OP_0 {
return 0
}
return int(op.value - (OP_1 - 1))
}
// getSigOpCount is the implementation function for counting the number of
// signature operations in the script provided by pops. If precise mode is
// requested then we attempt to count the number of operations for a multisig
// op. Otherwise we use the maximum.
func getSigOpCount(pops []parsedOpcode, precise bool) int {
nSigs := 0
for i, pop := range pops {
switch pop.opcode.value {
case OP_CHECKSIG:
fallthrough
case OP_CHECKSIGVERIFY:
nSigs++
case OP_CHECKMULTISIG:
fallthrough
case OP_CHECKMULTISIGVERIFY:
// If we are being precise then look for familiar
// patterns for multisig, for now all we recognise is
// OP_1 - OP_16 to signify the number of pubkeys.
// Otherwise, we use the max of 20.
if precise && i > 0 &&
pops[i-1].opcode.value >= OP_1 &&
pops[i-1].opcode.value <= OP_16 {
nSigs += asSmallInt(pops[i-1].opcode)
} else {
nSigs += MaxPubKeysPerMultiSig
}
default:
// Not a sigop.
}
}
return nSigs
}
// GetSigOpCount provides a quick count of the number of signature operations
// in a script. a CHECKSIG operations counts for 1, and a CHECK_MULTISIG for 20.
// If the script fails to parse, then the count up to the point of failure is
// returned.
func GetSigOpCount(script []byte) int {
// Don't check error since parseScript returns the parsed-up-to-error
// list of pops.
pops, _ := parseScript(script)
return getSigOpCount(pops, false)
}
// GetPreciseSigOpCount returns the number of signature operations in
// scriptPubKey. If bip16 is true then scriptSig may be searched for the
// Pay-To-Script-Hash script in order to find the precise number of signature
// operations in the transaction. If the script fails to parse, then the count
// up to the point of failure is returned.
func GetPreciseSigOpCount(scriptSig, scriptPubKey []byte, bip16 bool) int {
// Don't check error since parseScript returns the parsed-up-to-error
// list of pops.
pops, _ := parseScript(scriptPubKey)
// Treat non P2SH transactions as normal.
if !(bip16 && isScriptHash(pops)) {
return getSigOpCount(pops, true)
}
// The public key script is a pay-to-script-hash, so parse the signature
// script to get the final item. Scripts that fail to fully parse count
// as 0 signature operations.
sigPops, err := parseScript(scriptSig)
if err != nil {
return 0
}
// The signature script must only push data to the stack for P2SH to be
// a valid pair, so the signature operation count is 0 when that is not
// the case.
if !isPushOnly(sigPops) || len(sigPops) == 0 {
return 0
}
// The P2SH script is the last item the signature script pushes to the
// stack. When the script is empty, there are no signature operations.
shScript := sigPops[len(sigPops)-1].data
if len(shScript) == 0 {
return 0
}
// Parse the P2SH script and don't check the error since parseScript
// returns the parsed-up-to-error list of pops and the consensus rules
// dictate signature operations are counted up to the first parse
// failure.
shPops, _ := parseScript(shScript)
return getSigOpCount(shPops, true)
}
// IsUnspendable returns whether the passed public key script is unspendable, or
// guaranteed to fail at execution. This allows inputs to be pruned instantly
// when entering the UTXO set.
func IsUnspendable(pkScript []byte) bool {
pops, err := parseScript(pkScript)
if err != nil {
return true
}
return len(pops) > 0 && pops[0].opcode.value == OP_RETURN
}