Telegram Web, preconfigured for usage in I2P. http://web.telegram.i2p/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2043 lines
64 KiB

11 years ago
/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
/**
* CryptoJS core components.
*/
var CryptoJS = CryptoJS || (function (Math, undefined) {
/**
* CryptoJS namespace.
*/
var C = {};
/**
* Library namespace.
*/
var C_lib = C.lib = {};
/**
* Base object for prototypal inheritance.
*/
var Base = C_lib.Base = (function () {
function F() {}
return {
/**
* Creates a new object that inherits from this object.
*
* @param {Object} overrides Properties to copy into the new object.
*
* @return {Object} The new object.
*
* @static
*
* @example
*
* var MyType = CryptoJS.lib.Base.extend({
* field: 'value',
*
* method: function () {
* }
* });
*/
extend: function (overrides) {
// Spawn
F.prototype = this;
var subtype = new F();
// Augment
if (overrides) {
subtype.mixIn(overrides);
}
// Create default initializer
if (!subtype.hasOwnProperty('init')) {
subtype.init = function () {
subtype.$super.init.apply(this, arguments);
};
}
// Initializer's prototype is the subtype object
subtype.init.prototype = subtype;
// Reference supertype
subtype.$super = this;
return subtype;
},
/**
* Extends this object and runs the init method.
* Arguments to create() will be passed to init().
*
* @return {Object} The new object.
*
* @static
*
* @example
*
* var instance = MyType.create();
*/
create: function () {
var instance = this.extend();
instance.init.apply(instance, arguments);
return instance;
},
/**
* Initializes a newly created object.
* Override this method to add some logic when your objects are created.
*
* @example
*
* var MyType = CryptoJS.lib.Base.extend({
* init: function () {
* // ...
* }
* });
*/
init: function () {
},
/**
* Copies properties into this object.
*
* @param {Object} properties The properties to mix in.
*
* @example
*
* MyType.mixIn({
* field: 'value'
* });
*/
mixIn: function (properties) {
for (var propertyName in properties) {
if (properties.hasOwnProperty(propertyName)) {
this[propertyName] = properties[propertyName];
}
}
// IE won't copy toString using the loop above
if (properties.hasOwnProperty('toString')) {
this.toString = properties.toString;
}
},
/**
* Creates a copy of this object.
*
* @return {Object} The clone.
*
* @example
*
* var clone = instance.clone();
*/
clone: function () {
return this.init.prototype.extend(this);
}
};
}());
/**
* An array of 32-bit words.
*
* @property {Array} words The array of 32-bit words.
* @property {number} sigBytes The number of significant bytes in this word array.
*/
var WordArray = C_lib.WordArray = Base.extend({
/**
* Initializes a newly created word array.
*
* @param {Array} words (Optional) An array of 32-bit words.
* @param {number} sigBytes (Optional) The number of significant bytes in the words.
*
* @example
*
* var wordArray = CryptoJS.lib.WordArray.create();
* var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607]);
* var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607], 6);
*/
init: function (words, sigBytes) {
words = this.words = words || [];
if (sigBytes != undefined) {
this.sigBytes = sigBytes;
} else {
this.sigBytes = words.length * 4;
}
},
/**
* Converts this word array to a string.
*
* @param {Encoder} encoder (Optional) The encoding strategy to use. Default: CryptoJS.enc.Hex
*
* @return {string} The stringified word array.
*
* @example
*
* var string = wordArray + '';
* var string = wordArray.toString();
* var string = wordArray.toString(CryptoJS.enc.Utf8);
*/
toString: function (encoder) {
return (encoder || Hex).stringify(this);
},
/**
* Concatenates a word array to this word array.
*
* @param {WordArray} wordArray The word array to append.
*
* @return {WordArray} This word array.
*
* @example
*
* wordArray1.concat(wordArray2);
*/
concat: function (wordArray) {
// Shortcuts
var thisWords = this.words;
var thatWords = wordArray.words;
var thisSigBytes = this.sigBytes;
var thatSigBytes = wordArray.sigBytes;
// Clamp excess bits
this.clamp();
// Concat
if (thisSigBytes % 4) {
// Copy one byte at a time
for (var i = 0; i < thatSigBytes; i++) {
var thatByte = (thatWords[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
thisWords[(thisSigBytes + i) >>> 2] |= thatByte << (24 - ((thisSigBytes + i) % 4) * 8);
}
} else if (thatWords.length > 0xffff) {
// Copy one word at a time
for (var i = 0; i < thatSigBytes; i += 4) {
thisWords[(thisSigBytes + i) >>> 2] = thatWords[i >>> 2];
}
} else {
// Copy all words at once
thisWords.push.apply(thisWords, thatWords);
}
this.sigBytes += thatSigBytes;
// Chainable
return this;
},
/**
* Removes insignificant bits.
*
* @example
*
* wordArray.clamp();
*/
clamp: function () {
// Shortcuts
var words = this.words;
var sigBytes = this.sigBytes;
// Clamp
words[sigBytes >>> 2] &= 0xffffffff << (32 - (sigBytes % 4) * 8);
words.length = Math.ceil(sigBytes / 4);
},
/**
* Creates a copy of this word array.
*
* @return {WordArray} The clone.
*
* @example
*
* var clone = wordArray.clone();
*/
clone: function () {
var clone = Base.clone.call(this);
clone.words = this.words.slice(0);
return clone;
},
/**
* Creates a word array filled with random bytes.
*
* @param {number} nBytes The number of random bytes to generate.
*
* @return {WordArray} The random word array.
*
* @static
*
* @example
*
* var wordArray = CryptoJS.lib.WordArray.random(16);
*/
random: function (nBytes) {
var words = [];
for (var i = 0; i < nBytes; i += 4) {
words.push((Math.random() * 0x100000000) | 0);
}
return new WordArray.init(words, nBytes);
}
});
/**
* Encoder namespace.
*/
var C_enc = C.enc = {};
/**
* Hex encoding strategy.
*/
var Hex = C_enc.Hex = {
/**
* Converts a word array to a hex string.
*
* @param {WordArray} wordArray The word array.
*
* @return {string} The hex string.
*
* @static
*
* @example
*
* var hexString = CryptoJS.enc.Hex.stringify(wordArray);
*/
stringify: function (wordArray) {
// Shortcuts
var words = wordArray.words;
var sigBytes = wordArray.sigBytes;
// Convert
var hexChars = [];
for (var i = 0; i < sigBytes; i++) {
var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
hexChars.push((bite >>> 4).toString(16));
hexChars.push((bite & 0x0f).toString(16));
}
return hexChars.join('');
},
/**
* Converts a hex string to a word array.
*
* @param {string} hexStr The hex string.
*
* @return {WordArray} The word array.
*
* @static
*
* @example
*
* var wordArray = CryptoJS.enc.Hex.parse(hexString);
*/
parse: function (hexStr) {
// Shortcut
var hexStrLength = hexStr.length;
// Convert
var words = [];
for (var i = 0; i < hexStrLength; i += 2) {
words[i >>> 3] |= parseInt(hexStr.substr(i, 2), 16) << (24 - (i % 8) * 4);
}
return new WordArray.init(words, hexStrLength / 2);
}
};
/**
* Latin1 encoding strategy.
*/
var Latin1 = C_enc.Latin1 = {
/**
* Converts a word array to a Latin1 string.
*
* @param {WordArray} wordArray The word array.
*
* @return {string} The Latin1 string.
*
* @static
*
* @example
*
* var latin1String = CryptoJS.enc.Latin1.stringify(wordArray);
*/
stringify: function (wordArray) {
// Shortcuts
var words = wordArray.words;
var sigBytes = wordArray.sigBytes;
// Convert
var latin1Chars = [];
for (var i = 0; i < sigBytes; i++) {
var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
latin1Chars.push(String.fromCharCode(bite));
}
return latin1Chars.join('');
},
/**
* Converts a Latin1 string to a word array.
*
* @param {string} latin1Str The Latin1 string.
*
* @return {WordArray} The word array.
*
* @static
*
* @example
*
* var wordArray = CryptoJS.enc.Latin1.parse(latin1String);
*/
parse: function (latin1Str) {
// Shortcut
var latin1StrLength = latin1Str.length;
// Convert
var words = [];
for (var i = 0; i < latin1StrLength; i++) {
words[i >>> 2] |= (latin1Str.charCodeAt(i) & 0xff) << (24 - (i % 4) * 8);
}
return new WordArray.init(words, latin1StrLength);
}
};
/**
* UTF-8 encoding strategy.
*/
var Utf8 = C_enc.Utf8 = {
/**
* Converts a word array to a UTF-8 string.
*
* @param {WordArray} wordArray The word array.
*
* @return {string} The UTF-8 string.
*
* @static
*
* @example
*
* var utf8String = CryptoJS.enc.Utf8.stringify(wordArray);
*/
stringify: function (wordArray) {
try {
return decodeURIComponent(escape(Latin1.stringify(wordArray)));
} catch (e) {
throw new Error('Malformed UTF-8 data');
}
},
/**
* Converts a UTF-8 string to a word array.
*
* @param {string} utf8Str The UTF-8 string.
*
* @return {WordArray} The word array.
*
* @static
*
* @example
*
* var wordArray = CryptoJS.enc.Utf8.parse(utf8String);
*/
parse: function (utf8Str) {
return Latin1.parse(unescape(encodeURIComponent(utf8Str)));
}
};
/**
* Abstract buffered block algorithm template.
*
* The property blockSize must be implemented in a concrete subtype.
*
* @property {number} _minBufferSize The number of blocks that should be kept unprocessed in the buffer. Default: 0
*/
var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm = Base.extend({
/**
* Resets this block algorithm's data buffer to its initial state.
*
* @example
*
* bufferedBlockAlgorithm.reset();
*/
reset: function () {
// Initial values
this._data = new WordArray.init();
this._nDataBytes = 0;
},
/**
* Adds new data to this block algorithm's buffer.
*
* @param {WordArray|string} data The data to append. Strings are converted to a WordArray using UTF-8.
*
* @example
*
* bufferedBlockAlgorithm._append('data');
* bufferedBlockAlgorithm._append(wordArray);
*/
_append: function (data) {
// Convert string to WordArray, else assume WordArray already
if (typeof data == 'string') {
data = Utf8.parse(data);
}
// Append
this._data.concat(data);
this._nDataBytes += data.sigBytes;
},
/**
* Processes available data blocks.
*
* This method invokes _doProcessBlock(offset), which must be implemented by a concrete subtype.
*
* @param {boolean} doFlush Whether all blocks and partial blocks should be processed.
*
* @return {WordArray} The processed data.
*
* @example
*
* var processedData = bufferedBlockAlgorithm._process();
* var processedData = bufferedBlockAlgorithm._process(!!'flush');
*/
_process: function (doFlush) {
// Shortcuts
var data = this._data;
var dataWords = data.words;
var dataSigBytes = data.sigBytes;
var blockSize = this.blockSize;
var blockSizeBytes = blockSize * 4;
// Count blocks ready
var nBlocksReady = dataSigBytes / blockSizeBytes;
if (doFlush) {
// Round up to include partial blocks
nBlocksReady = Math.ceil(nBlocksReady);
} else {
// Round down to include only full blocks,
// less the number of blocks that must remain in the buffer
nBlocksReady = Math.max((nBlocksReady | 0) - this._minBufferSize, 0);
}
// Count words ready
var nWordsReady = nBlocksReady * blockSize;
// Count bytes ready
var nBytesReady = Math.min(nWordsReady * 4, dataSigBytes);
// Process blocks
if (nWordsReady) {
for (var offset = 0; offset < nWordsReady; offset += blockSize) {
// Perform concrete-algorithm logic
this._doProcessBlock(dataWords, offset);
}
// Remove processed words
var processedWords = dataWords.splice(0, nWordsReady);
data.sigBytes -= nBytesReady;
}
// Return processed words
return new WordArray.init(processedWords, nBytesReady);
},
/**
* Creates a copy of this object.
*
* @return {Object} The clone.
*
* @example
*
* var clone = bufferedBlockAlgorithm.clone();
*/
clone: function () {
var clone = Base.clone.call(this);
clone._data = this._data.clone();
return clone;
},
_minBufferSize: 0
});
/**
* Abstract hasher template.
*
* @property {number} blockSize The number of 32-bit words this hasher operates on. Default: 16 (512 bits)
*/
var Hasher = C_lib.Hasher = BufferedBlockAlgorithm.extend({
/**
* Configuration options.
*/
cfg: Base.extend(),
/**
* Initializes a newly created hasher.
*
* @param {Object} cfg (Optional) The configuration options to use for this hash computation.
*
* @example
*
* var hasher = CryptoJS.algo.SHA256.create();
*/
init: function (cfg) {
// Apply config defaults
this.cfg = this.cfg.extend(cfg);
// Set initial values
this.reset();
},
/**
* Resets this hasher to its initial state.
*
* @example
*
* hasher.reset();
*/
reset: function () {
// Reset data buffer
BufferedBlockAlgorithm.reset.call(this);
// Perform concrete-hasher logic
this._doReset();
},
/**
* Updates this hasher with a message.
*
* @param {WordArray|string} messageUpdate The message to append.
*
* @return {Hasher} This hasher.
*
* @example
*
* hasher.update('message');
* hasher.update(wordArray);
*/
update: function (messageUpdate) {
// Append
this._append(messageUpdate);
// Update the hash
this._process();
// Chainable
return this;
},
/**
* Finalizes the hash computation.
* Note that the finalize operation is effectively a destructive, read-once operation.
*
* @param {WordArray|string} messageUpdate (Optional) A final message update.
*
* @return {WordArray} The hash.
*
* @example
*
* var hash = hasher.finalize();
* var hash = hasher.finalize('message');
* var hash = hasher.finalize(wordArray);
*/
finalize: function (messageUpdate) {
// Final message update
if (messageUpdate) {
this._append(messageUpdate);
}
// Perform concrete-hasher logic
var hash = this._doFinalize();
return hash;
},
blockSize: 512/32,
/**
* Creates a shortcut function to a hasher's object interface.
*
* @param {Hasher} hasher The hasher to create a helper for.
*
* @return {Function} The shortcut function.
*
* @static
*
* @example
*
* var SHA256 = CryptoJS.lib.Hasher._createHelper(CryptoJS.algo.SHA256);
*/
_createHelper: function (hasher) {
return function (message, cfg) {
return new hasher.init(cfg).finalize(message);
};
},
/**
* Creates a shortcut function to the HMAC's object interface.
*
* @param {Hasher} hasher The hasher to use in this HMAC helper.
*
* @return {Function} The shortcut function.
*
* @static
*
* @example
*
* var HmacSHA256 = CryptoJS.lib.Hasher._createHmacHelper(CryptoJS.algo.SHA256);
*/
_createHmacHelper: function (hasher) {
return function (message, key) {
return new C_algo.HMAC.init(hasher, key).finalize(message);
};
}
});
/**
* Algorithm namespace.
*/
var C_algo = C.algo = {};
return C;
}(Math));
/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
/**
* Cipher core components.
*/
CryptoJS.lib.Cipher || (function (undefined) {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var Base = C_lib.Base;
var WordArray = C_lib.WordArray;
var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm;
var C_enc = C.enc;
var Utf8 = C_enc.Utf8;
var Base64 = C_enc.Base64;
var C_algo = C.algo;
var EvpKDF = C_algo.EvpKDF;
/**
* Abstract base cipher template.
*
* @property {number} keySize This cipher's key size. Default: 4 (128 bits)
* @property {number} ivSize This cipher's IV size. Default: 4 (128 bits)
* @property {number} _ENC_XFORM_MODE A constant representing encryption mode.
* @property {number} _DEC_XFORM_MODE A constant representing decryption mode.
*/
var Cipher = C_lib.Cipher = BufferedBlockAlgorithm.extend({
/**
* Configuration options.
*
* @property {WordArray} iv The IV to use for this operation.
*/
cfg: Base.extend(),
/**
* Creates this cipher in encryption mode.
*
* @param {WordArray} key The key.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {Cipher} A cipher instance.
*
* @static
*
* @example
*
* var cipher = CryptoJS.algo.AES.createEncryptor(keyWordArray, { iv: ivWordArray });
*/
createEncryptor: function (key, cfg) {
return this.create(this._ENC_XFORM_MODE, key, cfg);
},
/**
* Creates this cipher in decryption mode.
*
* @param {WordArray} key The key.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {Cipher} A cipher instance.
*
* @static
*
* @example
*
* var cipher = CryptoJS.algo.AES.createDecryptor(keyWordArray, { iv: ivWordArray });
*/
createDecryptor: function (key, cfg) {
return this.create(this._DEC_XFORM_MODE, key, cfg);
},
/**
* Initializes a newly created cipher.
*
* @param {number} xformMode Either the encryption or decryption transormation mode constant.
* @param {WordArray} key The key.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @example
*
* var cipher = CryptoJS.algo.AES.create(CryptoJS.algo.AES._ENC_XFORM_MODE, keyWordArray, { iv: ivWordArray });
*/
init: function (xformMode, key, cfg) {
// Apply config defaults
this.cfg = this.cfg.extend(cfg);
// Store transform mode and key
this._xformMode = xformMode;
this._key = key;
// Set initial values
this.reset();
},
/**
* Resets this cipher to its initial state.
*
* @example
*
* cipher.reset();
*/
reset: function () {
// Reset data buffer
BufferedBlockAlgorithm.reset.call(this);
// Perform concrete-cipher logic
this._doReset();
},
/**
* Adds data to be encrypted or decrypted.
*
* @param {WordArray|string} dataUpdate The data to encrypt or decrypt.
*
* @return {WordArray} The data after processing.
*
* @example
*
* var encrypted = cipher.process('data');
* var encrypted = cipher.process(wordArray);
*/
process: function (dataUpdate) {
// Append
this._append(dataUpdate);
// Process available blocks
return this._process();
},
/**
* Finalizes the encryption or decryption process.
* Note that the finalize operation is effectively a destructive, read-once operation.
*
* @param {WordArray|string} dataUpdate The final data to encrypt or decrypt.
*
* @return {WordArray} The data after final processing.
*
* @example
*
* var encrypted = cipher.finalize();
* var encrypted = cipher.finalize('data');
* var encrypted = cipher.finalize(wordArray);
*/
finalize: function (dataUpdate) {
// Final data update
if (dataUpdate) {
this._append(dataUpdate);
}
// Perform concrete-cipher logic
var finalProcessedData = this._doFinalize();
return finalProcessedData;
},
keySize: 128/32,
ivSize: 128/32,
_ENC_XFORM_MODE: 1,
_DEC_XFORM_MODE: 2,
/**
* Creates shortcut functions to a cipher's object interface.
*
* @param {Cipher} cipher The cipher to create a helper for.
*
* @return {Object} An object with encrypt and decrypt shortcut functions.
*
* @static
*
* @example
*
* var AES = CryptoJS.lib.Cipher._createHelper(CryptoJS.algo.AES);
*/
_createHelper: (function () {
function selectCipherStrategy(key) {
if (typeof key == 'string') {
return PasswordBasedCipher;
} else {
return SerializableCipher;
}
}
return function (cipher) {
return {
encrypt: function (message, key, cfg) {
return selectCipherStrategy(key).encrypt(cipher, message, key, cfg);
},
decrypt: function (ciphertext, key, cfg) {
return selectCipherStrategy(key).decrypt(cipher, ciphertext, key, cfg);
}
};
};
}())
});
/**
* Abstract base stream cipher template.
*
* @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 1 (32 bits)
*/
var StreamCipher = C_lib.StreamCipher = Cipher.extend({
_doFinalize: function () {
// Process partial blocks
var finalProcessedBlocks = this._process(!!'flush');
return finalProcessedBlocks;
},
blockSize: 1
});
/**
* Mode namespace.
*/
var C_mode = C.mode = {};
/**
* Abstract base block cipher mode template.
*/
var BlockCipherMode = C_lib.BlockCipherMode = Base.extend({
/**
* Creates this mode for encryption.
*
* @param {Cipher} cipher A block cipher instance.
* @param {Array} iv The IV words.
*
* @static
*
* @example
*
* var mode = CryptoJS.mode.CBC.createEncryptor(cipher, iv.words);
*/
createEncryptor: function (cipher, iv) {
return this.Encryptor.create(cipher, iv);
},
/**
* Creates this mode for decryption.
*
* @param {Cipher} cipher A block cipher instance.
* @param {Array} iv The IV words.
*
* @static
*
* @example
*
* var mode = CryptoJS.mode.CBC.createDecryptor(cipher, iv.words);
*/
createDecryptor: function (cipher, iv) {
return this.Decryptor.create(cipher, iv);
},
/**
* Initializes a newly created mode.
*
* @param {Cipher} cipher A block cipher instance.
* @param {Array} iv The IV words.
*
* @example
*
* var mode = CryptoJS.mode.CBC.Encryptor.create(cipher, iv.words);
*/
init: function (cipher, iv) {
this._cipher = cipher;
this._iv = iv;
}
});
/**
* Cipher Block Chaining mode.
*/
var CBC = C_mode.CBC = (function () {
/**
* Abstract base CBC mode.
*/
var CBC = BlockCipherMode.extend();
/**
* CBC encryptor.
*/
CBC.Encryptor = CBC.extend({
/**
* Processes the data block at offset.
*
* @param {Array} words The data words to operate on.
* @param {number} offset The offset where the block starts.
*
* @example
*
* mode.processBlock(data.words, offset);
*/
processBlock: function (words, offset) {
// Shortcuts
var cipher = this._cipher;
var blockSize = cipher.blockSize;
// XOR and encrypt
xorBlock.call(this, words, offset, blockSize);
cipher.encryptBlock(words, offset);
// Remember this block to use with next block
this._prevBlock = words.slice(offset, offset + blockSize);
}
});
/**
* CBC decryptor.
*/
CBC.Decryptor = CBC.extend({
/**
* Processes the data block at offset.
*
* @param {Array} words The data words to operate on.
* @param {number} offset The offset where the block starts.
*
* @example
*
* mode.processBlock(data.words, offset);
*/
processBlock: function (words, offset) {
// Shortcuts
var cipher = this._cipher;
var blockSize = cipher.blockSize;
// Remember this block to use with next block
var thisBlock = words.slice(offset, offset + blockSize);
// Decrypt and XOR
cipher.decryptBlock(words, offset);
xorBlock.call(this, words, offset, blockSize);
// This block becomes the previous block
this._prevBlock = thisBlock;
}
});
function xorBlock(words, offset, blockSize) {
// Shortcut
var iv = this._iv;
// Choose mixing block
if (iv) {
var block = iv;
// Remove IV for subsequent blocks
this._iv = undefined;
} else {
var block = this._prevBlock;
}
// XOR blocks
for (var i = 0; i < blockSize; i++) {
words[offset + i] ^= block[i];
}
}
return CBC;
}());
/**
* Infinite Garble Extension mode.
*/
var IGE = C_mode.IGE = (function () {
/**
* Abstract base IGE mode.
*/
var IGE = BlockCipherMode.extend();
/**
* IGE encryptor.
*/
IGE.Encryptor = IGE.extend({
/**
* Processes the data block at offset.
*
* @param {Array} words The data words to operate on.
* @param {number} offset The offset where the block starts.
*
* @example
*
* mode.processBlock(data.words, offset);
*/
processBlock: function (words, offset) {
// Shortcuts
var cipher = this._cipher;
var blockSize = cipher.blockSize;
if (this._ivp === undefined) {
this._ivp = this._iv.slice(0, blockSize);
this._iv2p = this._iv.slice(blockSize, blockSize + blockSize);
}
// Remember this block to use with next block
var nextIv2p = words.slice(offset, offset + blockSize);
// XOR with previous ciphertext
xorBlock(words, this._ivp, offset, blockSize);
// Block cipher
cipher.encryptBlock(words, offset);
// XOR with previous plaintext
xorBlock(words, this._iv2p, offset, blockSize);
this._ivp = words.slice(offset, offset + blockSize);
this._iv2p = nextIv2p;
}
});
/**
* IGE decryptor.
*/
IGE.Decryptor = IGE.extend({
/**
* Processes the data block at offset.
*
* @param {Array} words The data words to operate on.
* @param {number} offset The offset where the block starts.
*
* @example
*
* mode.processBlock(data.words, offset);
*/
processBlock: function (words, offset) {
// Shortcuts
var cipher = this._cipher;
var blockSize = cipher.blockSize;
if (this._ivp === undefined) {
this._ivp = this._iv.slice(0, blockSize);
this._iv2p = this._iv.slice(blockSize, 2 * blockSize);
}
// Remember this block to use with next block
var nextIvp = words.slice(offset, offset + blockSize);
// XOR with previous ciphertext
xorBlock(words, this._iv2p, offset, blockSize);
// Block cipher
cipher.decryptBlock(words, offset);
// XOR with previous plaintext
xorBlock(words, this._ivp, offset, blockSize);
this._ivp = nextIvp;
this._iv2p = words.slice(offset, offset + blockSize);
}
});
function xorBlock(words, block, offset, blockSize) {
for (var i = 0; i < blockSize; i++) {
words[offset + i] ^= block[i];
}
}
return IGE;
}());
/**
* Padding namespace.
*/
var C_pad = C.pad = {};
/**
* PKCS #5/7 padding strategy.
*/
var Pkcs7 = C_pad.Pkcs7 = {
/**
* Pads data using the algorithm defined in PKCS #5/7.
*
* @param {WordArray} data The data to pad.
* @param {number} blockSize The multiple that the data should be padded to.
*
* @static
*
* @example
*
* CryptoJS.pad.Pkcs7.pad(wordArray, 4);
*/
pad: function (data, blockSize) {
// Shortcut
var blockSizeBytes = blockSize * 4;
// Count padding bytes
var nPaddingBytes = blockSizeBytes - data.sigBytes % blockSizeBytes;
// Create padding word
var paddingWord = (nPaddingBytes << 24) | (nPaddingBytes << 16) | (nPaddingBytes << 8) | nPaddingBytes;
// Create padding
var paddingWords = [];
for (var i = 0; i < nPaddingBytes; i += 4) {
paddingWords.push(paddingWord);
}
var padding = WordArray.create(paddingWords, nPaddingBytes);
// Add padding
data.concat(padding);
},
/**
* Unpads data that had been padded using the algorithm defined in PKCS #5/7.
*
* @param {WordArray} data The data to unpad.
*
* @static
*
* @example
*
* CryptoJS.pad.Pkcs7.unpad(wordArray);
*/
unpad: function (data) {
// Get number of padding bytes from last byte
var nPaddingBytes = data.words[(data.sigBytes - 1) >>> 2] & 0xff;
// Remove padding
data.sigBytes -= nPaddingBytes;
}
};
var NoPadding = C_pad.NoPadding = {
pad: function () {
},
unpad: function () {
}
};
/**
* Abstract base block cipher template.
*
* @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 4 (128 bits)
*/
var BlockCipher = C_lib.BlockCipher = Cipher.extend({
/**
* Configuration options.
*
* @property {Mode} mode The block mode to use. Default: CBC
* @property {Padding} padding The padding strategy to use. Default: Pkcs7
*/
cfg: Cipher.cfg.extend({
mode: CBC,
padding: Pkcs7
}),
reset: function () {
// Reset cipher
Cipher.reset.call(this);
// Shortcuts
var cfg = this.cfg;
var iv = cfg.iv;
var mode = cfg.mode;
// Reset block mode
if (this._xformMode == this._ENC_XFORM_MODE) {
var modeCreator = mode.createEncryptor;
} else /* if (this._xformMode == this._DEC_XFORM_MODE) */ {
var modeCreator = mode.createDecryptor;
// Keep at least one block in the buffer for unpadding
this._minBufferSize = 1;
}
this._mode = modeCreator.call(mode, this, iv && iv.words);
},
_doProcessBlock: function (words, offset) {
this._mode.processBlock(words, offset);
},
_doFinalize: function () {
// Shortcut
var padding = this.cfg.padding;
// Finalize
if (this._xformMode == this._ENC_XFORM_MODE) {
// Pad data
padding.pad(this._data, this.blockSize);
// Process final blocks
var finalProcessedBlocks = this._process(!!'flush');
} else /* if (this._xformMode == this._DEC_XFORM_MODE) */ {
// Process final blocks
var finalProcessedBlocks = this._process(!!'flush');
// Unpad data
padding.unpad(finalProcessedBlocks);
}
return finalProcessedBlocks;
},
blockSize: 128/32
});
/**
* A collection of cipher parameters.
*
* @property {WordArray} ciphertext The raw ciphertext.
* @property {WordArray} key The key to this ciphertext.
* @property {WordArray} iv The IV used in the ciphering operation.
* @property {WordArray} salt The salt used with a key derivation function.
* @property {Cipher} algorithm The cipher algorithm.
* @property {Mode} mode The block mode used in the ciphering operation.
* @property {Padding} padding The padding scheme used in the ciphering operation.
* @property {number} blockSize The block size of the cipher.
* @property {Format} formatter The default formatting strategy to convert this cipher params object to a string.
*/
var CipherParams = C_lib.CipherParams = Base.extend({
/**
* Initializes a newly created cipher params object.
*
* @param {Object} cipherParams An object with any of the possible cipher parameters.
*
* @example
*
* var cipherParams = CryptoJS.lib.CipherParams.create({
* ciphertext: ciphertextWordArray,
* key: keyWordArray,
* iv: ivWordArray,
* salt: saltWordArray,
* algorithm: CryptoJS.algo.AES,
* mode: CryptoJS.mode.CBC,
* padding: CryptoJS.pad.PKCS7,
* blockSize: 4,
* formatter: CryptoJS.format.OpenSSL
* });
*/
init: function (cipherParams) {
this.mixIn(cipherParams);
},
/**
* Converts this cipher params object to a string.
*
* @param {Format} formatter (Optional) The formatting strategy to use.
*
* @return {string} The stringified cipher params.
*
* @throws Error If neither the formatter nor the default formatter is set.
*
* @example
*
* var string = cipherParams + '';
* var string = cipherParams.toString();
* var string = cipherParams.toString(CryptoJS.format.OpenSSL);
*/
toString: function (formatter) {
return (formatter || this.formatter).stringify(this);
}
});
/**
* Format namespace.
*/
var C_format = C.format = {};
/**
* OpenSSL formatting strategy.
*/
var OpenSSLFormatter = C_format.OpenSSL = {
/**
* Converts a cipher params object to an OpenSSL-compatible string.
*
* @param {CipherParams} cipherParams The cipher params object.
*
* @return {string} The OpenSSL-compatible string.
*
* @static
*
* @example
*
* var openSSLString = CryptoJS.format.OpenSSL.stringify(cipherParams);
*/
stringify: function (cipherParams) {
// Shortcuts
var ciphertext = cipherParams.ciphertext;
var salt = cipherParams.salt;
// Format
if (salt) {
var wordArray = WordArray.create([0x53616c74, 0x65645f5f]).concat(salt).concat(ciphertext);
} else {
var wordArray = ciphertext;
}
return wordArray.toString(Base64);
},
/**
* Converts an OpenSSL-compatible string to a cipher params object.
*
* @param {string} openSSLStr The OpenSSL-compatible string.
*
* @return {CipherParams} The cipher params object.
*
* @static
*
* @example
*
* var cipherParams = CryptoJS.format.OpenSSL.parse(openSSLString);
*/
parse: function (openSSLStr) {
// Parse base64
var ciphertext = Base64.parse(openSSLStr);
// Shortcut
var ciphertextWords = ciphertext.words;
// Test for salt
if (ciphertextWords[0] == 0x53616c74 && ciphertextWords[1] == 0x65645f5f) {
// Extract salt
var salt = WordArray.create(ciphertextWords.slice(2, 4));
// Remove salt from ciphertext
ciphertextWords.splice(0, 4);
ciphertext.sigBytes -= 16;
}
return CipherParams.create({ ciphertext: ciphertext, salt: salt });
}
};
/**
* A cipher wrapper that returns ciphertext as a serializable cipher params object.
*/
var SerializableCipher = C_lib.SerializableCipher = Base.extend({
/**
* Configuration options.
*
* @property {Formatter} format The formatting strategy to convert cipher param objects to and from a string. Default: OpenSSL
*/
cfg: Base.extend({
format: OpenSSLFormatter
}),
/**
* Encrypts a message.
*
* @param {Cipher} cipher The cipher algorithm to use.
* @param {WordArray|string} message The message to encrypt.
* @param {WordArray} key The key.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {CipherParams} A cipher params object.
*
* @static
*
* @example
*
* var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key);
* var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv });
* var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv, format: CryptoJS.format.OpenSSL });
*/
encrypt: function (cipher, message, key, cfg) {
// Apply config defaults
cfg = this.cfg.extend(cfg);
// Encrypt
var encryptor = cipher.createEncryptor(key, cfg);
var ciphertext = encryptor.finalize(message);
// Shortcut
var cipherCfg = encryptor.cfg;
// Create and return serializable cipher params
return CipherParams.create({
ciphertext: ciphertext,
key: key,
iv: cipherCfg.iv,
algorithm: cipher,
mode: cipherCfg.mode,
padding: cipherCfg.padding,
blockSize: cipher.blockSize,
formatter: cfg.format
});
},
/**
* Decrypts serialized ciphertext.
*
* @param {Cipher} cipher The cipher algorithm to use.
* @param {CipherParams|string} ciphertext The ciphertext to decrypt.
* @param {WordArray} key The key.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {WordArray} The plaintext.
*
* @static
*
* @example
*
* var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, key, { iv: iv, format: CryptoJS.format.OpenSSL });
* var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, key, { iv: iv, format: CryptoJS.format.OpenSSL });
*/
decrypt: function (cipher, ciphertext, key, cfg) {
// Apply config defaults
cfg = this.cfg.extend(cfg);
// Convert string to CipherParams
ciphertext = this._parse(ciphertext, cfg.format);
// Decrypt
var plaintext = cipher.createDecryptor(key, cfg).finalize(ciphertext.ciphertext);
return plaintext;
},
/**
* Converts serialized ciphertext to CipherParams,
* else assumed CipherParams already and returns ciphertext unchanged.
*
* @param {CipherParams|string} ciphertext The ciphertext.
* @param {Formatter} format The formatting strategy to use to parse serialized ciphertext.
*
* @return {CipherParams} The unserialized ciphertext.
*
* @static
*
* @example
*
* var ciphertextParams = CryptoJS.lib.SerializableCipher._parse(ciphertextStringOrParams, format);
*/
_parse: function (ciphertext, format) {
if (typeof ciphertext == 'string') {
return format.parse(ciphertext, this);
} else {
return ciphertext;
}
}
});
/**
* Key derivation function namespace.
*/
var C_kdf = C.kdf = {};
/**
* OpenSSL key derivation function.
*/
var OpenSSLKdf = C_kdf.OpenSSL = {
/**
* Derives a key and IV from a password.
*
* @param {string} password The password to derive from.
* @param {number} keySize The size in words of the key to generate.
* @param {number} ivSize The size in words of the IV to generate.
* @param {WordArray|string} salt (Optional) A 64-bit salt to use. If omitted, a salt will be generated randomly.
*
* @return {CipherParams} A cipher params object with the key, IV, and salt.
*
* @static
*
* @example
*
* var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32);
* var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32, 'saltsalt');
*/
execute: function (password, keySize, ivSize, salt) {
// Generate random salt
if (!salt) {
salt = WordArray.random(64/8);
}
// Derive key and IV
var key = EvpKDF.create({ keySize: keySize + ivSize }).compute(password, salt);
// Separate key and IV
var iv = WordArray.create(key.words.slice(keySize), ivSize * 4);
key.sigBytes = keySize * 4;
// Return params
return CipherParams.create({ key: key, iv: iv, salt: salt });
}
};
/**
* A serializable cipher wrapper that derives the key from a password,
* and returns ciphertext as a serializable cipher params object.
*/
var PasswordBasedCipher = C_lib.PasswordBasedCipher = SerializableCipher.extend({
/**
* Configuration options.
*
* @property {KDF} kdf The key derivation function to use to generate a key and IV from a password. Default: OpenSSL
*/
cfg: SerializableCipher.cfg.extend({
kdf: OpenSSLKdf
}),
/**
* Encrypts a message using a password.
*
* @param {Cipher} cipher The cipher algorithm to use.
* @param {WordArray|string} message The message to encrypt.
* @param {string} password The password.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {CipherParams} A cipher params object.
*
* @static
*
* @example
*
* var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password');
* var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password', { format: CryptoJS.format.OpenSSL });
*/
encrypt: function (cipher, message, password, cfg) {
// Apply config defaults
cfg = this.cfg.extend(cfg);
// Derive key and other params
var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize);
// Add IV to config
cfg.iv = derivedParams.iv;
// Encrypt
var ciphertext = SerializableCipher.encrypt.call(this, cipher, message, derivedParams.key, cfg);
// Mix in derived params
ciphertext.mixIn(derivedParams);
return ciphertext;
},
/**
* Decrypts serialized ciphertext using a password.
*
* @param {Cipher} cipher The cipher algorithm to use.
* @param {CipherParams|string} ciphertext The ciphertext to decrypt.
* @param {string} password The password.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {WordArray} The plaintext.
*
* @static
*
* @example
*
* var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, 'password', { format: CryptoJS.format.OpenSSL });
* var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, 'password', { format: CryptoJS.format.OpenSSL });
*/
decrypt: function (cipher, ciphertext, password, cfg) {
// Apply config defaults
cfg = this.cfg.extend(cfg);
// Convert string to CipherParams
ciphertext = this._parse(ciphertext, cfg.format);
// Derive key and other params
var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize, ciphertext.salt);
// Add IV to config
cfg.iv = derivedParams.iv;
// Decrypt
var plaintext = SerializableCipher.decrypt.call(this, cipher, ciphertext, derivedParams.key, cfg);
return plaintext;
}
});
}());
/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
(function () {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var BlockCipher = C_lib.BlockCipher;
var C_algo = C.algo;
// Lookup tables
var SBOX = [];
var INV_SBOX = [];
var SUB_MIX_0 = [];
var SUB_MIX_1 = [];
var SUB_MIX_2 = [];
var SUB_MIX_3 = [];
var INV_SUB_MIX_0 = [];
var INV_SUB_MIX_1 = [];
var INV_SUB_MIX_2 = [];
var INV_SUB_MIX_3 = [];
// Compute lookup tables
(function () {
// Compute double table
var d = [];
for (var i = 0; i < 256; i++) {
if (i < 128) {
d[i] = i << 1;
} else {
d[i] = (i << 1) ^ 0x11b;
}
}
// Walk GF(2^8)
var x = 0;
var xi = 0;
for (var i = 0; i < 256; i++) {
// Compute sbox
var sx = xi ^ (xi << 1) ^ (xi << 2) ^ (xi << 3) ^ (xi << 4);
sx = (sx >>> 8) ^ (sx & 0xff) ^ 0x63;
SBOX[x] = sx;
INV_SBOX[sx] = x;
// Compute multiplication
var x2 = d[x];
var x4 = d[x2];
var x8 = d[x4];
// Compute sub bytes, mix columns tables
var t = (d[sx] * 0x101) ^ (sx * 0x1010100);
SUB_MIX_0[x] = (t << 24) | (t >>> 8);
SUB_MIX_1[x] = (t << 16) | (t >>> 16);
SUB_MIX_2[x] = (t << 8) | (t >>> 24);
SUB_MIX_3[x] = t;
// Compute inv sub bytes, inv mix columns tables
var t = (x8 * 0x1010101) ^ (x4 * 0x10001) ^ (x2 * 0x101) ^ (x * 0x1010100);
INV_SUB_MIX_0[sx] = (t << 24) | (t >>> 8);
INV_SUB_MIX_1[sx] = (t << 16) | (t >>> 16);
INV_SUB_MIX_2[sx] = (t << 8) | (t >>> 24);
INV_SUB_MIX_3[sx] = t;
// Compute next counter
if (!x) {
x = xi = 1;
} else {
x = x2 ^ d[d[d[x8 ^ x2]]];
xi ^= d[d[xi]];
}
}
}());
// Precomputed Rcon lookup
var RCON = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36];
/**
* AES block cipher algorithm.
*/
var AES = C_algo.AES = BlockCipher.extend({
_doReset: function () {
// Shortcuts
var key = this._key;
var keyWords = key.words;
var keySize = key.sigBytes / 4;
// Compute number of rounds
var nRounds = this._nRounds = keySize + 6
// Compute number of key schedule rows
var ksRows = (nRounds + 1) * 4;
// Compute key schedule
var keySchedule = this._keySchedule = [];
for (var ksRow = 0; ksRow < ksRows; ksRow++) {
if (ksRow < keySize) {
keySchedule[ksRow] = keyWords[ksRow];
} else {
var t = keySchedule[ksRow - 1];
if (!(ksRow % keySize)) {
// Rot word
t = (t << 8) | (t >>> 24);
// Sub word
t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff];
// Mix Rcon
t ^= RCON[(ksRow / keySize) | 0] << 24;
} else if (keySize > 6 && ksRow % keySize == 4) {
// Sub word
t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff];
}
keySchedule[ksRow] = keySchedule[ksRow - keySize] ^ t;
}
}
// Compute inv key schedule
var invKeySchedule = this._invKeySchedule = [];
for (var invKsRow = 0; invKsRow < ksRows; invKsRow++) {
var ksRow = ksRows - invKsRow;
if (invKsRow % 4) {
var t = keySchedule[ksRow];
} else {
var t = keySchedule[ksRow - 4];
}
if (invKsRow < 4 || ksRow <= 4) {
invKeySchedule[invKsRow] = t;
} else {
invKeySchedule[invKsRow] = INV_SUB_MIX_0[SBOX[t >>> 24]] ^ INV_SUB_MIX_1[SBOX[(t >>> 16) & 0xff]] ^
INV_SUB_MIX_2[SBOX[(t >>> 8) & 0xff]] ^ INV_SUB_MIX_3[SBOX[t & 0xff]];
}
}
},
encryptBlock: function (M, offset) {
this._doCryptBlock(M, offset, this._keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX);
},
decryptBlock: function (M, offset) {
// Swap 2nd and 4th rows
var t = M[offset + 1];
M[offset + 1] = M[offset + 3];
M[offset + 3] = t;
this._doCryptBlock(M, offset, this._invKeySchedule, INV_SUB_MIX_0, INV_SUB_MIX_1, INV_SUB_MIX_2, INV_SUB_MIX_3, INV_SBOX);
// Inv swap 2nd and 4th rows
var t = M[offset + 1];
M[offset + 1] = M[offset + 3];
M[offset + 3] = t;
},
_doCryptBlock: function (M, offset, keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX) {
// Shortcut
var nRounds = this._nRounds;
// Get input, add round key
var s0 = M[offset] ^ keySchedule[0];
var s1 = M[offset + 1] ^ keySchedule[1];
var s2 = M[offset + 2] ^ keySchedule[2];
var s3 = M[offset + 3] ^ keySchedule[3];
// Key schedule row counter
var ksRow = 4;
// Rounds
for (var round = 1; round < nRounds; round++) {
// Shift rows, sub bytes, mix columns, add round key
var t0 = SUB_MIX_0[s0 >>> 24] ^ SUB_MIX_1[(s1 >>> 16) & 0xff] ^ SUB_MIX_2[(s2 >>> 8) & 0xff] ^ SUB_MIX_3[s3 & 0xff] ^ keySchedule[ksRow++];
var t1 = SUB_MIX_0[s1 >>> 24] ^ SUB_MIX_1[(s2 >>> 16) & 0xff] ^ SUB_MIX_2[(s3 >>> 8) & 0xff] ^ SUB_MIX_3[s0 & 0xff] ^ keySchedule[ksRow++];
var t2 = SUB_MIX_0[s2 >>> 24] ^ SUB_MIX_1[(s3 >>> 16) & 0xff] ^ SUB_MIX_2[(s0 >>> 8) & 0xff] ^ SUB_MIX_3[s1 & 0xff] ^ keySchedule[ksRow++];
var t3 = SUB_MIX_0[s3 >>> 24] ^ SUB_MIX_1[(s0 >>> 16) & 0xff] ^ SUB_MIX_2[(s1 >>> 8) & 0xff] ^ SUB_MIX_3[s2 & 0xff] ^ keySchedule[ksRow++];
// Update state
s0 = t0;
s1 = t1;
s2 = t2;
s3 = t3;
}
// Shift rows, sub bytes, add round key
var t0 = ((SBOX[s0 >>> 24] << 24) | (SBOX[(s1 >>> 16) & 0xff] << 16) | (SBOX[(s2 >>> 8) & 0xff] << 8) | SBOX[s3 & 0xff]) ^ keySchedule[ksRow++];
var t1 = ((SBOX[s1 >>> 24] << 24) | (SBOX[(s2 >>> 16) & 0xff] << 16) | (SBOX[(s3 >>> 8) & 0xff] << 8) | SBOX[s0 & 0xff]) ^ keySchedule[ksRow++];
var t2 = ((SBOX[s2 >>> 24] << 24) | (SBOX[(s3 >>> 16) & 0xff] << 16) | (SBOX[(s0 >>> 8) & 0xff] << 8) | SBOX[s1 & 0xff]) ^ keySchedule[ksRow++];
var t3 = ((SBOX[s3 >>> 24] << 24) | (SBOX[(s0 >>> 16) & 0xff] << 16) | (SBOX[(s1 >>> 8) & 0xff] << 8) | SBOX[s2 & 0xff]) ^ keySchedule[ksRow++];
// Set output
M[offset] = t0;
M[offset + 1] = t1;
M[offset + 2] = t2;
M[offset + 3] = t3;
},
keySize: 256/32
});
/**
* Shortcut functions to the cipher's object interface.
*
* @example
*
* var ciphertext = CryptoJS.AES.encrypt(message, key, cfg);
* var plaintext = CryptoJS.AES.decrypt(ciphertext, key, cfg);
*/
C.AES = BlockCipher._createHelper(AES);
}());
/**
* Copyright (c) 2012 T. Michael Keesey
* LICENSE: http://opensource.org/licenses/MIT
*/
var sha1;
(function (sha1) {
var POW_2_24 = Math.pow(2, 24);
var POW_2_32 = Math.pow(2, 32);
function hex(n) {
var s = "", v;
for(var i = 7; i >= 0; --i) {
v = (n >>> (i << 2)) & 15;
s += v.toString(16);
}
return s;
};
function toBytes(n) {
var b = [], v;
for(var i = 3; i >= 0; --i) {
v = (n >> (i * 8)) & 255;
b.push(v);
}
return b;
};
function lrot(n, bits) {
return ((n << bits) | (n >>> (32 - bits)));
}
var Uint32ArrayBigEndian = (function () {
function Uint32ArrayBigEndian(length) {
this.bytes = new Uint8Array(length << 2);
}
Uint32ArrayBigEndian.prototype.get = function (index) {
index <<= 2;
return (this.bytes[index] * POW_2_24) + ((this.bytes[index + 1] << 16) | (this.bytes[index + 2] << 8) | this.bytes[index + 3]);
};
Uint32ArrayBigEndian.prototype.set = function (index, value) {
var high = Math.floor(value / POW_2_24), rest = value - (high * POW_2_24);
index <<= 2;
this.bytes[index] = high;
this.bytes[index + 1] = rest >> 16;
this.bytes[index + 2] = (rest >> 8) & 255;
this.bytes[index + 3] = rest & 255;
};
return Uint32ArrayBigEndian;
})();
function string2ArrayBuffer(s) {
s = s.replace(/[\u0080-\u07ff]/g, function (c) {
var code = c.charCodeAt(0);
return String.fromCharCode(192 | code >> 6, 128 | code & 63);
});
s = s.replace(/[\u0080-\uffff]/g, function (c) {
var code = c.charCodeAt(0);
return String.fromCharCode(224 | code >> 12, 128 | code >> 6 & 63, 128 | code & 63);
});
var n = s.length, array = new Uint8Array(n);
for(var i = 0; i < n; ++i) {
array[i] = s.charCodeAt(i);
}
return array.buffer;
}
function bytes2ArrayBuffer(b) {
var n = b.length, array = new Uint8Array(n);
for(var i = 0; i < n; ++i) {
array[i] = b[i];
}
return array.buffer;
}
function hash(bufferOrString, byteArray) {
var source;
if (bufferOrString instanceof ArrayBuffer) {
source = bufferOrString;
} else if (Object.prototype.toString.apply(bufferOrString) == '[object Array]') {
source = bytes2ArrayBuffer(bufferOrString);
} else {
source = string2ArrayBuffer(String(bufferOrString));
}
var h0 = 1732584193, h1 = 4023233417, h2 = 2562383102, h3 = 271733878, h4 = 3285377520, i, sbytes = source.byteLength, sbits = sbytes << 3, minbits = sbits + 65, bits = Math.ceil(minbits / 512) << 9, bytes = bits >>> 3, slen = bytes >>> 2, s = new Uint32ArrayBigEndian(slen), s8 = s.bytes, j, w = new Uint32Array(80), sourceArray = new Uint8Array(source);
for(i = 0; i < sbytes; ++i) {
s8[i] = sourceArray[i];
}
s8[sbytes] = 128;
s.set(slen - 2, Math.floor(sbits / POW_2_32));
s.set(slen - 1, sbits & 4294967295);
for(i = 0; i < slen; i += 16) {
for(j = 0; j < 16; ++j) {
w[j] = s.get(i + j);
}
for(; j < 80; ++j) {
w[j] = lrot(w[j - 3] ^ w[j - 8] ^ w[j - 14] ^ w[j - 16], 1);
}
var a = h0, b = h1, c = h2, d = h3, e = h4, f, k, temp;
for(j = 0; j < 80; ++j) {
if(j < 20) {
f = (b & c) | ((~b) & d);
k = 1518500249;
} else {
if(j < 40) {
f = b ^ c ^ d;
k = 1859775393;
} else {
if(j < 60) {
f = (b & c) ^ (b & d) ^ (c & d);
k = 2400959708;
} else {
f = b ^ c ^ d;
k = 3395469782;
}
}
}
temp = (lrot(a, 5) + f + e + k + w[j]) & 4294967295;
e = d;
d = c;
c = lrot(b, 30);
b = a;
a = temp;
}
h0 = (h0 + a) & 4294967295;
h1 = (h1 + b) & 4294967295;
h2 = (h2 + c) & 4294967295;
h3 = (h3 + d) & 4294967295;
h4 = (h4 + e) & 4294967295;
}
if (byteArray) {
return toBytes(h0).concat(toBytes(h1), toBytes(h2), toBytes(h3), toBytes(h4));
}
return hex(h0) + hex(h1) + hex(h2) + hex(h3) + hex(h4);
}
sha1.hash = hash;
})(sha1 || (sha1 = {}));