Telegram Web, preconfigured for usage in I2P. http://web.telegram.i2p/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

393 lines
17 KiB

/*
* Rusha, a JavaScript implementation of the Secure Hash Algorithm, SHA-1,
* as defined in FIPS PUB 180-1, tuned for high performance with large inputs.
* (http://github.com/srijs/rusha)
*
* Inspired by Paul Johnstons implementation (http://pajhome.org.uk/crypt/md5).
*
* Copyright (c) 2013 Sam Rijs (http://awesam.de).
* Released under the terms of the MIT license as follows:
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
(function (global) {
// If we'e running in Node.JS, export a module.
if (typeof module !== 'undefined') {
module.exports = Rusha;
}
// If we're running in a DOM context, export
// the Rusha object to toplevel.
if (typeof global !== 'undefined') {
global.Rusha = Rusha;
}
// If we're running in a webworker, accept
// messages containing a jobid and a buffer
// or blob object, and return the hash result.
if (typeof FileReaderSync !== 'undefined') {
var reader = new FileReaderSync(), hasher = new Rusha(4 * 1024 * 1024);
self.onmessage = function onMessage(event) {
var hash, data = event.data.data;
if (data instanceof Blob) {
try {
data = reader.readAsBinaryString(data);
} catch (e) {
self.postMessage({
id: event.data.id,
error: e.name
});
return;
}
}
hash = hasher.digest(data);
self.postMessage({
id: event.data.id,
hash: hash
});
};
}
var util = {
getDataType: function (data) {
if (typeof data === 'string') {
return 'string';
}
if (data instanceof Array) {
return 'array';
}
if (typeof global !== 'undefined' && global.Buffer && global.Buffer.isBuffer(data)) {
return 'buffer';
}
if (data instanceof ArrayBuffer) {
return 'arraybuffer';
}
if (data.buffer instanceof ArrayBuffer) {
return 'view';
}
throw new Error('Unsupported data type.');
}
};
// The Rusha object is a wrapper around the low-level RushaCore.
// It provides means of converting different inputs to the
// format accepted by RushaCore as well as other utility methods.
function Rusha(chunkSize) {
'use strict';
// Private object structure.
var self$2 = { fill: 0 };
// Calculate the length of buffer that the sha1 routine uses
// including the padding.
var padlen = function (len) {
for (len += 9; len % 64 > 0; len += 1);
return len;
};
var padZeroes = function (bin, len) {
for (var i = len >> 2; i < bin.length; i++)
bin[i] = 0;
};
var padData = function (bin, chunkLen, msgLen) {
bin[chunkLen >> 2] |= 128 << 24 - (chunkLen % 4 << 3);
bin[((chunkLen >> 2) + 2 & ~15) + 15] = msgLen << 3;
};
// Convert a binary string and write it to the heap.
// A binary string is expected to only contain char codes < 256.
var convStr = function (H8, H32, start, len, off) {
var str = this, i, om = off % 4, lm = len % 4, j = len - lm;
if (j > 0) {
switch (om) {
case 0:
H8[off + 3 | 0] = str.charCodeAt(start);
case 1:
H8[off + 2 | 0] = str.charCodeAt(start + 1);
case 2:
H8[off + 1 | 0] = str.charCodeAt(start + 2);
case 3:
H8[off | 0] = str.charCodeAt(start + 3);
}
}
for (i = om; i < j; i = i + 4 | 0) {
H32[off + i >> 2] = str.charCodeAt(start + i) << 24 | str.charCodeAt(start + i + 1) << 16 | str.charCodeAt(start + i + 2) << 8 | str.charCodeAt(start + i + 3);
}
switch (lm) {
case 3:
H8[off + j + 1 | 0] = str.charCodeAt(start + j + 2);
case 2:
H8[off + j + 2 | 0] = str.charCodeAt(start + j + 1);
case 1:
H8[off + j + 3 | 0] = str.charCodeAt(start + j);
}
};
// Convert a buffer or array and write it to the heap.
// The buffer or array is expected to only contain elements < 256.
var convBuf = function (H8, H32, start, len, off) {
var buf = this, i, om = off % 4, lm = len % 4, j = len - lm;
if (j > 0) {
switch (om) {
case 0:
H8[off + 3 | 0] = buf[start];
case 1:
H8[off + 2 | 0] = buf[start + 1];
case 2:
H8[off + 1 | 0] = buf[start + 2];
case 3:
H8[off | 0] = buf[start + 3];
}
}
for (i = 4 - om; i < j; i = i += 4 | 0) {
H32[off + i >> 2] = buf[start + i] << 24 | buf[start + i + 1] << 16 | buf[start + i + 2] << 8 | buf[start + i + 3];
}
switch (lm) {
case 3:
H8[off + j + 1 | 0] = buf[start + j + 2];
case 2:
H8[off + j + 2 | 0] = buf[start + j + 1];
case 1:
H8[off + j + 3 | 0] = buf[start + j];
}
};
var convFn = function (data) {
switch (util.getDataType(data)) {
case 'string':
return convStr.bind(data);
case 'array':
return convBuf.bind(data);
case 'buffer':
return convBuf.bind(data);
case 'arraybuffer':
return convBuf.bind(new Uint8Array(data));
case 'view':
return convBuf.bind(new Uint8Array(data.buffer));
}
};
var slice = function (data, offset) {
switch (util.getDataType(data)) {
case 'string':
return data.slice(offset);
case 'array':
return data.slice(offset);
case 'buffer':
return data.slice(offset);
case 'arraybuffer':
return data.slice(offset);
case 'view':
return data.buffer.slice(offset);
}
};
// Convert an ArrayBuffer into its hexadecimal string representation.
var hex = function (arrayBuffer) {
var i, x, hex_tab = '0123456789abcdef', res = [], binarray = new Uint8Array(arrayBuffer);
for (i = 0; i < binarray.length; i++) {
x = binarray[i];
res[i] = hex_tab.charAt(x >> 4 & 15) + hex_tab.charAt(x >> 0 & 15);
}
return res.join('');
};
var ceilHeapSize = function (v) {
// The asm.js spec says:
// The heap object's byteLength must be either
// 2^n for n in [12, 24) or 2^24 * n for n ≥ 1.
// Also, byteLengths smaller than 2^16 are deprecated.
var p;
// If v is smaller than 2^16, the smallest possible solution
// is 2^16.
if (v <= 65536)
return 65536;
// If v < 2^24, we round up to 2^n,
// otherwise we round up to 2^24 * n.
if (v < 16777216) {
for (p = 1; p < v; p = p << 1);
} else {
for (p = 16777216; p < v; p += 16777216);
}
return p;
};
// Initialize the internal data structures to a new capacity.
var init = function (size) {
if (size % 64 > 0) {
throw new Error('Chunk size must be a multiple of 128 bit');
}
self$2.maxChunkLen = size;
self$2.padMaxChunkLen = padlen(size);
// The size of the heap is the sum of:
// 1. The padded input message size
// 2. The extended space the algorithm needs (320 byte)
// 3. The 160 bit state the algoritm uses
self$2.heap = new ArrayBuffer(ceilHeapSize(self$2.padMaxChunkLen + 320 + 20));
self$2.h32 = new Int32Array(self$2.heap);
self$2.h8 = new Int8Array(self$2.heap);
self$2.core = RushaCore({
Int32Array: Int32Array,
DataView: DataView
}, {}, self$2.heap);
self$2.buffer = null;
};
// Iinitializethe datastructures according
// to a chunk siyze.
init(chunkSize || 64 * 1024);
var initState = function (heap, padMsgLen) {
var io = new Int32Array(heap, padMsgLen + 320, 5);
io[0] = 1732584193;
io[1] = -271733879;
io[2] = -1732584194;
io[3] = 271733878;
io[4] = -1009589776;
};
var padChunk = function (chunkLen, msgLen) {
var padChunkLen = padlen(chunkLen);
var view = new Int32Array(self$2.heap, 0, padChunkLen >> 2);
padZeroes(view, chunkLen);
padData(view, chunkLen, msgLen);
return padChunkLen;
};
// Write data to the heap.
var write = function (data, chunkOffset, chunkLen) {
convFn(data)(self$2.h8, self$2.h32, chunkOffset, chunkLen, 0);
};
// Initialize and call the RushaCore,
// assuming an input buffer of length len * 4.
var coreCall = function (data, chunkOffset, chunkLen, msgLen, finalize) {
var padChunkLen = chunkLen;
if (finalize) {
padChunkLen = padChunk(chunkLen, msgLen);
}
write(data, chunkOffset, chunkLen);
self$2.core.hash(padChunkLen, self$2.padMaxChunkLen);
};
var getRawDigest = function (heap, padMaxChunkLen) {
var io = new Int32Array(heap, padMaxChunkLen + 320, 5);
var out = new Int32Array(5);
var arr = new DataView(out.buffer);
arr.setInt32(0, io[0], false);
arr.setInt32(4, io[1], false);
arr.setInt32(8, io[2], false);
arr.setInt32(12, io[3], false);
arr.setInt32(16, io[4], false);
return out;
};
// Calculate the hash digest as an array of 5 32bit integers.
var rawDigest = this.rawDigest = function (str) {
var msgLen = str.byteLength || str.length;
initState(self$2.heap, self$2.padMaxChunkLen);
var chunkOffset = 0, chunkLen = self$2.maxChunkLen, last;
for (chunkOffset = 0; msgLen > chunkOffset + chunkLen; chunkOffset += chunkLen) {
coreCall(str, chunkOffset, chunkLen, msgLen, false);
}
coreCall(str, chunkOffset, msgLen - chunkOffset, msgLen, true);
return getRawDigest(self$2.heap, self$2.padMaxChunkLen);
};
// The digest and digestFrom* interface returns the hash digest
// as a hex string.
this.digest = this.digestFromString = this.digestFromBuffer = this.digestFromArrayBuffer = function (str) {
return hex(rawDigest(str).buffer);
};
}
;
// The low-level RushCore module provides the heart of Rusha,
// a high-speed sha1 implementation working on an Int32Array heap.
// At first glance, the implementation seems complicated, however
// with the SHA1 spec at hand, it is obvious this almost a textbook
// implementation that has a few functions hand-inlined and a few loops
// hand-unrolled.
function RushaCore(stdlib, foreign, heap) {
'use asm';
var H = new stdlib.Int32Array(heap);
function hash(k, x) {
// k in bytes
k = k | 0;
x = x | 0;
var i = 0, j = 0, y0 = 0, z0 = 0, y1 = 0, z1 = 0, y2 = 0, z2 = 0, y3 = 0, z3 = 0, y4 = 0, z4 = 0, t0 = 0, t1 = 0;
y0 = H[x + 320 >> 2] | 0;
y1 = H[x + 324 >> 2] | 0;
y2 = H[x + 328 >> 2] | 0;
y3 = H[x + 332 >> 2] | 0;
y4 = H[x + 336 >> 2] | 0;
for (i = 0; (i | 0) < (k | 0); i = i + 64 | 0) {
z0 = y0;
z1 = y1;
z2 = y2;
z3 = y3;
z4 = y4;
for (j = 0; (j | 0) < 64; j = j + 4 | 0) {
t1 = H[i + j >> 2] | 0;
t0 = ((y0 << 5 | y0 >>> 27) + (y1 & y2 | ~y1 & y3) | 0) + ((t1 + y4 | 0) + 1518500249 | 0) | 0;
y4 = y3;
y3 = y2;
y2 = y1 << 30 | y1 >>> 2;
y1 = y0;
y0 = t0;
;
H[k + j >> 2] = t1;
}
for (j = k + 64 | 0; (j | 0) < (k + 80 | 0); j = j + 4 | 0) {
t1 = (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) << 1 | (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) >>> 31;
t0 = ((y0 << 5 | y0 >>> 27) + (y1 & y2 | ~y1 & y3) | 0) + ((t1 + y4 | 0) + 1518500249 | 0) | 0;
y4 = y3;
y3 = y2;
y2 = y1 << 30 | y1 >>> 2;
y1 = y0;
y0 = t0;
;
H[j >> 2] = t1;
}
for (j = k + 80 | 0; (j | 0) < (k + 160 | 0); j = j + 4 | 0) {
t1 = (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) << 1 | (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) >>> 31;
t0 = ((y0 << 5 | y0 >>> 27) + (y1 ^ y2 ^ y3) | 0) + ((t1 + y4 | 0) + 1859775393 | 0) | 0;
y4 = y3;
y3 = y2;
y2 = y1 << 30 | y1 >>> 2;
y1 = y0;
y0 = t0;
;
H[j >> 2] = t1;
}
for (j = k + 160 | 0; (j | 0) < (k + 240 | 0); j = j + 4 | 0) {
t1 = (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) << 1 | (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) >>> 31;
t0 = ((y0 << 5 | y0 >>> 27) + (y1 & y2 | y1 & y3 | y2 & y3) | 0) + ((t1 + y4 | 0) - 1894007588 | 0) | 0;
y4 = y3;
y3 = y2;
y2 = y1 << 30 | y1 >>> 2;
y1 = y0;
y0 = t0;
;
H[j >> 2] = t1;
}
for (j = k + 240 | 0; (j | 0) < (k + 320 | 0); j = j + 4 | 0) {
t1 = (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) << 1 | (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) >>> 31;
t0 = ((y0 << 5 | y0 >>> 27) + (y1 ^ y2 ^ y3) | 0) + ((t1 + y4 | 0) - 899497514 | 0) | 0;
y4 = y3;
y3 = y2;
y2 = y1 << 30 | y1 >>> 2;
y1 = y0;
y0 = t0;
;
H[j >> 2] = t1;
}
y0 = y0 + z0 | 0;
y1 = y1 + z1 | 0;
y2 = y2 + z2 | 0;
y3 = y3 + z3 | 0;
y4 = y4 + z4 | 0;
}
H[x + 320 >> 2] = y0;
H[x + 324 >> 2] = y1;
H[x + 328 >> 2] = y2;
H[x + 332 >> 2] = y3;
H[x + 336 >> 2] = y4;
}
return { hash: hash };
}
}(this));