'use strict' /* eslint-disable */ //@flow /** * * * * * * * * * * * Big Integer Library * * Created 2000 * * Leemon Baird * * www.leemon.com * * * * * * * * * * * * */ //////////////////////////////////////////////////////////////////////////////////////// // These functions are designed to avoid frequent dynamic memory allocation in the inner loop. // For most functions, if it needs a BigInt as a local variable it will actually use // a global, and will only allocate to it only when it's not the right size. This ensures // that when a function is called repeatedly with same-sized parameters, it only allocates // memory on the first call. // // Note that for cryptographic purposes, the calls to Math.random() must // be replaced with calls to a better pseudorandom number generator. // // In the following, "bigInt" means a bigInt with at least one leading zero element, // and "integer" means a nonnegative integer less than radix. In some cases, integer // can be negative. Negative bigInts are 2s complement. // // The following functions do not modify their inputs. // Those returning a bigInt, string, or Array will dynamically allocate memory for that value. // Those returning a boolean will return the integer 0 (false) or 1 (true). // Those returning boolean or int will not allocate memory except possibly on the first // time they're called with a given parameter size. // // bigInt add(x,y) //return (x+y) for bigInts x and y. // bigInt addInt(x,n) //return (x+n) where x is a bigInt and n is an integer. // string bigInt2str(x,base) //return a string form of bigInt x in a given base, with 2 <= base <= 95 // int bitSize(x) //return how many bits long the bigInt x is, not counting leading zeros // bigInt dup(x) //return a copy of bigInt x // boolean equals(x,y) //is the bigInt x equal to the bigint y? // boolean equalsInt(x,y) //is bigint x equal to integer y? // bigInt expand(x,n) //return a copy of x with at least n elements, adding leading zeros if needed // Array findPrimes(n) //return array of all primes less than integer n // bigInt GCD(x,y) //return greatest common divisor of bigInts x and y (each with same number of elements). // boolean greater(x,y) //is x>y? (x and y are nonnegative bigInts) // boolean greaterShift(x,y,shift)//is (x <<(shift*bpe)) > y? // bigInt int2bigInt(t,n,m) //return a bigInt equal to integer t, with at least n bits and m array elements // bigInt inverseMod(x,n) //return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null // int inverseModInt(x,n) //return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse // boolean isZero(x) //is the bigInt x equal to zero? // boolean millerRabin(x,b) //does one round of Miller-Rabin base integer b say that bigInt x is possibly prime? (b is bigInt, 1=1). If s=1, then the most significant of those n bits is set to 1. // bigInt randTruePrime(k) //return a new, random, k-bit, true prime bigInt using Maurer's algorithm. // bigInt randProbPrime(k) //return a new, random, k-bit, probable prime bigInt (probability it's composite less than 2^-80). // bigInt str2bigInt(s,b,n,m) //return a bigInt for number represented in string s in base b with at least n bits and m array elements // bigInt sub(x,y) //return (x-y) for bigInts x and y. Negative answers will be 2s complement // bigInt trim(x,k) //return a copy of x with exactly k leading zero elements // // // The following functions each have a non-underscored version, which most users should call instead. // These functions each write to a single parameter, and the caller is responsible for ensuring the array // passed in is large enough to hold the result. // // void addInt_(x,n) //do x=x+n where x is a bigInt and n is an integer // void add_(x,y) //do x=x+y for bigInts x and y // void copy_(x,y) //do x=y on bigInts x and y // void copyInt_(x,n) //do x=n on bigInt x and integer n // void GCD_(x,y) //set x to the greatest common divisor of bigInts x and y, (y is destroyed). (This never overflows its array). // boolean inverseMod_(x,n) //do x=x**(-1) mod n, for bigInts x and n. Returns 1 (0) if inverse does (doesn't) exist // void mod_(x,n) //do x=x mod n for bigInts x and n. (This never overflows its array). // void mult_(x,y) //do x=x*y for bigInts x and y. // void multMod_(x,y,n) //do x=x*y mod n for bigInts x,y,n. // void powMod_(x,y,n) //do x=x**y mod n, where x,y,n are bigInts (n is odd) and ** is exponentiation. 0**0=1. // void randBigInt_(b,n,s) //do b = an n-bit random BigInt. if s=1, then nth bit (most significant bit) is set to 1. n>=1. // void randTruePrime_(ans,k) //do ans = a random k-bit true random prime (not just probable prime) with 1 in the msb. // void sub_(x,y) //do x=x-y for bigInts x and y. Negative answers will be 2s complement. // // The following functions do NOT have a non-underscored version. // They each write a bigInt result to one or more parameters. The caller is responsible for // ensuring the arrays passed in are large enough to hold the results. // // void addShift_(x,y,ys) //do x=x+(y<<(ys*bpe)) // void carry_(x) //do carries and borrows so each element of the bigInt x fits in bpe bits. // void divide_(x,y,q,r) //divide x by y giving quotient q and remainder r // int divInt_(x,n) //do x=floor(x/n) for bigInt x and integer n, and return the remainder. (This never overflows its array). // void eGCD_(x,y,d,a,b) //sets a,b,d to positive bigInts such that d = GCD_(x,y) = a*x-b*y // void halve_(x) //do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement. (This never overflows its array). // void leftShift_(x,n) //left shift bigInt x by n bits. n64 multiplier, but not with JavaScript's 32*32->32) // - speeding up mont_(x,y,n,np) when x==y by doing a non-modular, non-Montgomery square // followed by a Montgomery reduction. The intermediate answer will be twice as long as x, so that // method would be slower. This is unfortunate because the code currently spends almost all of its time // doing mont_(x,x,...), both for randTruePrime_() and powMod_(). A faster method for Montgomery squaring // would have a large impact on the speed of randTruePrime_() and powMod_(). HAC has a couple of poorly-worded // sentences that seem to imply it's faster to do a non-modular square followed by a single // Montgomery reduction, but that's obviously wrong. //////////////////////////////////////////////////////////////////////////////////////// export type Bool = 1 | 0 //globals export var bpe = 0 //bits stored per array element var mask = 0 //AND this with an array element to chop it down to bpe bits var radix = mask + 1 //equals 2^bpe. A single 1 bit to the left of the last bit of mask. //the digits for converting to different bases var digitsStr = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_=!@#$%^&*()[]{}|;:,.<>/?`~ \\\'"+-' //initialize the global variables //bpe=number of bits in the mantissa on this platform for (bpe = 0; 1 << (bpe + 1) > 1 << bpe; bpe++); bpe >>= 1 //bpe=number of bits in one element of the array representing the bigInt mask = (1 << bpe) - 1 //AND the mask with an integer to get its bpe least significant bits radix = mask + 1 //2^bpe. a single 1 bit to the left of the first bit of mask export var one = int2bigInt(1, 1, 1) //constant used in powMod_() export var zero = int2bigInt(0, 1, 1) //the following global variables are scratchpad memory to //reduce dynamic memory allocation in the inner loop var t: number[] | number = new Array(0) var ss = t //used in mult_() var s0 = t //used in multMod_(), squareMod_() // var s1=t; //used in powMod_(), multMod_(), squareMod_() // var s2=t; //used in powMod_(), multMod_() var s3 = t //used in powMod_() var s4 = t, s5 = t //used in mod_() var s6 = t //used in bigInt2str() var s7 = t //used in powMod_() var T = t //used in GCD_() var sa = t //used in mont_() var mr_x1 = t, mr_r = t, mr_a = t, //used in millerRabin() eg_v = t, eg_u = t, eg_A = t, eg_B = t, eg_C = t, eg_D = t, //used in eGCD_(), inverseMod_() //, md_q1=t, md_q2=t, md_q3=t, md_r=t, md_r1=t, md_r2=t, md_tt=t, //used in mod_() primes = t, pows = t, s_i = t, s_i2 = t, s_R = t, s_rm = t, s_q = t, s_n1 = t, s_a = t, s_r2 = t, s_n = t, s_b = t, s_d = t, s_x1 = t, s_x2 = t, s_aa = t, //used in randTruePrime_() rpprb = t //used in randProbPrimeRounds() (which also uses "primes") //////////////////////////////////////////////////////////////////////////////////////// var k, buff /** * return array of all primes less than integer n * * @param {number} n * @returns {number[]} */ export function findPrimes(n: number): number[] { var i, s, p, ans s = new Array(n) for (i = 0; i < n; i++) s[i] = 0 s[0] = 2 p = 0 //first p elements of s are primes, the rest are a sieve for (; s[p] < n; ) { //s[p] is the pth prime for ( i = s[p] * s[p]; i < n; i += s[p] //mark multiples of s[p] ) s[i] = 1 p++ s[p] = s[p - 1] + 1 for (; s[p] < n && s[s[p]]; s[p]++); //find next prime (where s[p]==0) } ans = new Array(p) for (i = 0; i < p; i++) ans[i] = s[i] return ans } /** * does a single round of Miller-Rabin base b consider x to be a possible prime? * * x is a bigInt, and b is an integer, with b 0; j--); for (z = 0, w = x[j]; w; w >>= 1, z++); z += bpe * j return z } /** * return a copy of x with at least n elements, adding leading zeros if needed * * @param {number[]} x * @param {number} n * @returns {number[]} */ export function expand(x: number[], n: number): number[] { var ans = int2bigInt(0, (x.length > n ? x.length : n) * bpe, 0) copy_(ans, x) return ans } /** * return a k-bit true random prime using Maurer's algorithm. * * @export * @param {number} k * @returns {number[]} */ /* export function randTruePrime(k: number): number[] { var ans = int2bigInt(0, k, 0) randTruePrime_(ans, k) return trim(ans, 1) } */ /** * return a k-bit random probable prime with probability of error < 2^-80 * * @export * @param {number} k * @returns {number[]} */ /* export function randProbPrime(k: number): number[] { if (k >= 600) return randProbPrimeRounds(k, 2) //numbers from HAC table 4.3 if (k >= 550) return randProbPrimeRounds(k, 4) if (k >= 500) return randProbPrimeRounds(k, 5) if (k >= 400) return randProbPrimeRounds(k, 6) if (k >= 350) return randProbPrimeRounds(k, 7) if (k >= 300) return randProbPrimeRounds(k, 9) if (k >= 250) return randProbPrimeRounds(k, 12) //numbers from HAC table 4.4 if (k >= 200) return randProbPrimeRounds(k, 15) if (k >= 150) return randProbPrimeRounds(k, 18) if (k >= 100) return randProbPrimeRounds(k, 27) return randProbPrimeRounds(k, 40) //number from HAC remark 4.26 (only an estimate) } */ /** * return a k-bit probable random prime using n rounds of Miller Rabin * (after trial division with small primes) * * @export * @param {number} k * @param {number} n * @returns {number[]} */ /* export function randProbPrimeRounds(k: number, n: number): number[] { var ans, i, divisible, B B = 30000 //B is largest prime to use in trial division ans = int2bigInt(0, k, 0) //optimization: try larger and smaller B to find the best limit. if (primes.length === 0) primes = findPrimes(30000) //check for divisibility by primes <=30000 if (rpprb.length !== ans.length) rpprb = dup(ans) for (;;) { //keep trying random values for ans until one appears to be prime //optimization: pick a random number times L=2*3*5*...*p, plus a // random element of the list of all numbers in [0,L) not divisible by any prime up to p. // This can reduce the amount of random number generation. randBigInt_(ans, k, 0) //ans = a random odd number to check ans[0] |= 1 divisible = 0 //check ans for divisibility by small primes up to B for (i = 0; i < primes.length && primes[i] <= B; i++) if (modInt(ans, primes[i]) === 0 && !equalsInt(ans, primes[i])) { divisible = 1 break } //optimization: change millerRabin so the base can be bigger than the number being checked, then eliminate the while here. //do n rounds of Miller Rabin, with random bases less than ans for (i = 0; i < n && !divisible; i++) { randBigInt_(rpprb, k, 0) while ( !greater(ans, rpprb) //pick a random rpprb that's < ans ) randBigInt_(rpprb, k, 0) if (!millerRabin(ans, rpprb)) divisible = 1 } if (!divisible) return ans } } */ /** * return a new bigInt equal to (x mod n) for bigInts x and n. * * @param {number[]} x * @param {number[]} n * @returns {number[]} */ export function mod(x: number[], n: number[]): number[] { var ans = dup(x) mod_(ans, n) return trim(ans, 1) } /** * return (x+n) where x is a bigInt and n is an integer. * * @export * @param {number[]} x * @param {number} n * @returns {number[]} */ /* export function addInt(x: number[], n: number): number[] { var ans = expand(x, x.length + 1) addInt_(ans, n) return trim(ans, 1) } */ /** * return x*y for bigInts x and y. This is faster when y y.length ? x.length + 1 : y.length + 1) sub_(ans, y) return trim(ans, 1) } /** * return (x+y) for bigInts x and y * * @export * @param {number[]} x * @param {number[]} y * @returns {number[]} */ export function add(x: number[], y: number[]): number[] { var ans = expand(x, x.length > y.length ? x.length + 1 : y.length + 1) add_(ans, y) return trim(ans, 1) } /** * return (x**(-1) mod n) for bigInts x and n. * * If no inverse exists, it returns null * * @param {number[]} x * @param {number[]} n * @returns {(number[] | null)} */ /* export function inverseMod(x: number[], n: number[]): number[] | null { var ans = expand(x, n.length) var s = inverseMod_(ans, n) return s ? trim(ans, 1) : null } */ /** * return (x*y mod n) for bigInts x,y,n. * * For greater speed, let y= 2 if (s_i2.length != ans.length) { s_i2 = dup(ans) s_R = dup(ans) s_n1 = dup(ans) s_r2 = dup(ans) s_d = dup(ans) s_x1 = dup(ans) //TODO Seems like a bug in eslint, reports as unused s_x2 = dup(ans) s_b = dup(ans) s_n = dup(ans) s_i = dup(ans) s_rm = dup(ans) s_q = dup(ans) s_a = dup(ans) s_aa = dup(ans) } if (k <= recLimit) { //generate small random primes by trial division up to its square root pm = (1 << ((k + 2) >> 1)) - 1 //pm is binary number with all ones, just over sqrt(2^k) copyInt_(ans, 0) for (dd = 1; dd; ) { dd = 0 ans[0] = 1 | (1 << (k - 1)) | Math.floor(Math.random() * (1 << k)) //random, k-bit, odd integer, with msb 1 for (j = 1; j < primes.length && (primes[j] & pm) == primes[j]; j++) { //trial division by all primes 3...sqrt(2^k) if (0 == ans[0] % primes[j]) { dd = 1 break } } } carry_(ans) return } B = c * k * k //try small primes up to B (or all the primes[] array if the largest is less than B). if (k > 2 * m) //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits for (r = 1; k - k * r <= m; ) r = pows[Math.floor(Math.random() * 512)] //r=Math.pow(2,Math.random()-1); else r = 0.5 //simulation suggests the more complex algorithm using r=.333 is only slightly faster. recSize = Math.floor(r * k) + 1 randTruePrime_(s_q, recSize) copyInt_(s_i2, 0) s_i2[Math.floor((k - 2) / bpe)] |= 1 << ((k - 2) % bpe) //s_i2=2^(k-2) divide_(s_i2, s_q, s_i, s_rm) //s_i=floor((2^(k-1))/(2q)) z = bitSize(s_i) for (;;) { for (;;) { //generate z-bit numbers until one falls in the range [0,s_i-1] randBigInt_(s_R, z, 0) if (greater(s_i, s_R)) break } //now s_R is in the range [0,s_i-1] addInt_(s_R, 1) //now s_R is in the range [1,s_i] add_(s_R, s_i) //now s_R is in the range [s_i+1,2*s_i] copy_(s_n, s_q) mult_(s_n, s_R) multInt_(s_n, 2) addInt_(s_n, 1) //s_n=2*s_R*s_q+1 copy_(s_r2, s_R) multInt_(s_r2, 2) //s_r2=2*s_R //check s_n for divisibility by small primes up to B for (divisible = 0, j = 0; j < primes.length && primes[j] < B; j++) if (modInt(s_n, primes[j]) == 0 && !equalsInt(s_n, primes[j])) { divisible = 1 break } if (!divisible) if (!millerRabinInt(s_n, 2)) //if it passes small primes check, then try a single Miller-Rabin base 2 //this line represents 75% of the total runtime for randTruePrime_ divisible = 1 if (!divisible) { //if it passes that test, continue checking s_n addInt_(s_n, -3) for (j = s_n.length - 1; s_n[j] == 0 && j > 0; j--); //strip leading zeros for (zz = 0, w = s_n[j]; w; w >>= 1, zz++); zz += bpe * j //zz=number of bits in s_n, ignoring leading zeros for (;;) { //generate z-bit numbers until one falls in the range [0,s_n-1] randBigInt_(s_a, zz, 0) if (greater(s_n, s_a)) break } //now s_a is in the range [0,s_n-1] addInt_(s_n, 3) //now s_a is in the range [0,s_n-4] addInt_(s_a, 2) //now s_a is in the range [2,s_n-2] copy_(s_b, s_a) copy_(s_n1, s_n) addInt_(s_n1, -1) powMod_(s_b, s_n1, s_n) //s_b=s_a^(s_n-1) modulo s_n addInt_(s_b, -1) if (isZero(s_b)) { copy_(s_b, s_a) powMod_(s_b, s_r2, s_n) addInt_(s_b, -1) copy_(s_aa, s_n) copy_(s_d, s_b) GCD_(s_d, s_n) //if s_b and s_n are relatively prime, then s_n is a prime if (equalsInt(s_d, 1)) { copy_(ans, s_aa) return //if we've made it this far, then s_n is absolutely guaranteed to be prime } } } } } */ /** * Return an n-bit random BigInt (n>=1). If s=1, then the most significant of those n bits is set to 1. * * @export * @param {number} n * @param {number} s * @returns {number[]} */ /* export function randBigInt(n: number, s: number): number[] { var a, b a = Math.floor((n - 1) / bpe) + 2 //# array elements to hold the BigInt with a leading 0 element b = int2bigInt(0, 0, a) randBigInt_(b, n, s) return b } */ /** * Set b to an n-bit random BigInt. If s=1, then the most significant of those n bits is set to 1. * * Array b must be big enough to hold the result. Must have n>=1 * * @export * @param {number[]} b * @param {number} n * @param {number} s * @return {void} */ /* export function randBigInt_(b: number[], n: number, s: number): void { var i, a for (i = 0; i < b.length; i++) b[i] = 0 a = Math.floor((n - 1) / bpe) + 1 //# array elements to hold the BigInt for (i = 0; i < a; i++) { b[i] = Math.floor(Math.random() * (1 << (bpe - 1))) } b[a - 1] &= (2 << ((n - 1) % bpe)) - 1 if (s == 1) b[a - 1] |= 1 << ((n - 1) % bpe) } */ /** * Return the greatest common divisor of bigInts x and y (each with same number of elements). * * @export * @param {number[]} x * @param {number[]} y * @returns {number[]} */ export function GCD(x: number[], y: number[]): number[] { var xc, yc xc = dup(x) yc = dup(y) GCD_(xc, yc) return xc } /** * set x to the greatest common divisor of bigInts x and y (each with same number of elements). * * y is destroyed. * * @export * @param {number[]} x * @param {number[]} y */ export function GCD_(x: number[], y: number[]): void { var i: number, xp: number, yp: number, A: number, B, C: number, D: number, q, sing var qp if (T.length !== x.length) T = dup(x) sing = 1 while (sing) { //while y has nonzero elements other than y[0] sing = 0 for ( i = 1; i < y.length; i++ //check if y has nonzero elements other than 0 ) if (y[i]) { sing = 1 break } if (!sing) break //quit when y all zero elements except possibly y[0] for (i = x.length; !x[i] && i >= 0; i--); //find most significant element of x xp = x[i] yp = y[i] A = 1 B = 0 C = 0 D = 1 while (yp + C && yp + D) { q = Math.floor((xp + A) / (yp + C)) qp = Math.floor((xp + B) / (yp + D)) if (q != qp) break t = A - q * C A = C C = t // do (A,B,xp, C,D,yp) = (C,D,yp, A,B,xp) - q*(0,0,0, C,D,yp) t = B - q * D B = D D = t t = xp - q * yp xp = yp yp = t } if (B) { copy_(T, x) linComb_(x, y, A, B) //x=A*x+B*y linComb_(y, T, D, C) //y=D*y+C*T } else { mod_(x, y) copy_(T, x) copy_(x, y) copy_(y, T) } } if (y[0] === 0) return t = modInt(x, y[0]) copyInt_(x, y[0]) y[0] = t while (y[0]) { x[0] %= y[0] t = x[0] x[0] = y[0] y[0] = t } } /** * do x=x**(-1) mod n, for bigInts x and n. * * If no inverse exists, it sets x to zero and returns 0, else it returns 1. * The x array must be at least as large as the n array. * * @export * @param {number[]} x * @param {number[]} n * @returns {(0 | 1)} */ /* export function inverseMod_(x: number[], n: number[]): Bool { var k = 1 + 2 * Math.max(x.length, n.length) if (!(x[0] & 1) && !(n[0] & 1)) { //if both inputs are even, then inverse doesn't exist copyInt_(x, 0) return 0 } if (eg_u.length != k) { eg_u = new Array(k) eg_v = new Array(k) eg_A = new Array(k) eg_B = new Array(k) eg_C = new Array(k) eg_D = new Array(k) } copy_(eg_u, x) copy_(eg_v, n) copyInt_(eg_A, 1) copyInt_(eg_B, 0) copyInt_(eg_C, 0) copyInt_(eg_D, 1) for (;;) { while (!(eg_u[0] & 1)) { //while eg_u is even halve_(eg_u) if (!(eg_A[0] & 1) && !(eg_B[0] & 1)) { //if eg_A==eg_B==0 mod 2 halve_(eg_A) halve_(eg_B) } else { add_(eg_A, n) halve_(eg_A) sub_(eg_B, x) halve_(eg_B) } } while (!(eg_v[0] & 1)) { //while eg_v is even halve_(eg_v) if (!(eg_C[0] & 1) && !(eg_D[0] & 1)) { //if eg_C==eg_D==0 mod 2 halve_(eg_C) halve_(eg_D) } else { add_(eg_C, n) halve_(eg_C) sub_(eg_D, x) halve_(eg_D) } } if (!greater(eg_v, eg_u)) { //eg_v <= eg_u sub_(eg_u, eg_v) sub_(eg_A, eg_C) sub_(eg_B, eg_D) } else { //eg_v > eg_u sub_(eg_v, eg_u) sub_(eg_C, eg_A) sub_(eg_D, eg_B) } if (equalsInt(eg_u, 0)) { while ( negative(eg_C) //make sure answer is nonnegative ) add_(eg_C, n) copy_(x, eg_C) if (!equalsInt(eg_v, 1)) { //if GCD_(x,n)!=1, then there is no inverse copyInt_(x, 0) return 0 } return 1 } } } */ /** * return x**(-1) mod n, for integers x and n. * * Return 0 if there is no inverse * * @param {number} x * @param {number} n * @returns {number} */ export function inverseModInt(x: number, n: number): number { var a = 1, b = 0, t for (;;) { if (x === 1) return a if (x === 0) return 0 b -= a * Math.floor(n / x) //$off n %= x if (n === 1) return b //to avoid negatives, change this b to n-b, and each -= to += if (n === 0) return 0 a -= b * Math.floor(x / n) //$off x %= n } /*:: declare var never: empty return never */ } //this deprecated function is for backward compatibility only. /* function inverseModInt_(x: number, n: number) { return inverseModInt(x, n) } */ /** * Given positive bigInts x and y, change the bigints v, a, and b to positive bigInts such that: * * v = GCD_(x,y) = a*x-b*y * * The bigInts v, a, b, must have exactly as many elements as the larger of x and y. * * @export * @param {number[]} x * @param {number[]} y * @param {number[]} v * @param {number[]} a * @param {number[]} b * @return {void} */ export function eGCD_( x: number[], y: number[], v: number[], a: number[], b: number[], ): void { var g = 0 var k = Math.max(x.length, y.length) if (eg_u.length != k) { eg_u = new Array(k) eg_A = new Array(k) eg_B = new Array(k) eg_C = new Array(k) eg_D = new Array(k) } while (!(x[0] & 1) && !(y[0] & 1)) { //while x and y both even halve_(x) halve_(y) g++ } copy_(eg_u, x) copy_(v, y) copyInt_(eg_A, 1) copyInt_(eg_B, 0) copyInt_(eg_C, 0) copyInt_(eg_D, 1) for (;;) { while (!(eg_u[0] & 1)) { //while u is even halve_(eg_u) if (!(eg_A[0] & 1) && !(eg_B[0] & 1)) { //if A==B==0 mod 2 halve_(eg_A) halve_(eg_B) } else { add_(eg_A, y) halve_(eg_A) sub_(eg_B, x) halve_(eg_B) } } while (!(v[0] & 1)) { //while v is even halve_(v) if (!(eg_C[0] & 1) && !(eg_D[0] & 1)) { //if C==D==0 mod 2 halve_(eg_C) halve_(eg_D) } else { add_(eg_C, y) halve_(eg_C) sub_(eg_D, x) halve_(eg_D) } } if (!greater(v, eg_u)) { //v<=u sub_(eg_u, v) sub_(eg_A, eg_C) sub_(eg_B, eg_D) } else { //v>u sub_(v, eg_u) sub_(eg_C, eg_A) sub_(eg_D, eg_B) } if (equalsInt(eg_u, 0)) { while (negative(eg_C)) { //make sure a (C) is nonnegative add_(eg_C, y) sub_(eg_D, x) } multInt_(eg_D, -1) ///make sure b (D) is nonnegative copy_(a, eg_C) copy_(b, eg_D) leftShift_(v, g) return } } } /** * is bigInt x negative? * * @param {number[]} x * @returns {(1 | 0)} */ export function negative(x: number[]) { //TODO Flow Bool type inference return (x[x.length - 1] >> (bpe - 1)) & 1 } /** * is (x << (shift*bpe)) > y? * * x and y are nonnegative bigInts * shift is a nonnegative integer * * @param {number[]} x * @param {number[]} y * @param {number} shift * @returns {(1 | 0)} */ export function greaterShift(x: number[], y: number[], shift: number): Bool { var i, kx = x.length, ky = y.length k = kx + shift < ky ? kx + shift : ky for (i = ky - 1 - shift; i < kx && i >= 0; i++) if (x[i] > 0) return 1 //if there are nonzeros in x to the left of the first column of y, then x is bigger for (i = kx - 1 + shift; i < ky; i++) if (y[i] > 0) return 0 //if there are nonzeros in y to the left of the first column of x, then x is not bigger for (i = k - 1; i >= shift; i--) if (x[i - shift] > y[i]) return 1 else if (x[i - shift] < y[i]) return 0 return 0 } /** * is x > y? * * x and y both nonnegative * * @export * @param {number[]} x * @param {number[]} y * @returns {(1 | 0)} */ export function greater(x: number[], y: number[]): Bool { var i var k = x.length < y.length ? x.length : y.length for (i = x.length; i < y.length; i++) if (y[i]) return 0 //y has more digits for (i = y.length; i < x.length; i++) if (x[i]) return 1 //x has more digits for (i = k - 1; i >= 0; i--) if (x[i] > y[i]) return 1 else if (x[i] < y[i]) return 0 return 0 } /** * divide x by y giving quotient q and remainder r. * * q = floor(x/y) * r = x mod y * * All 4 are bigints. * * * x must have at least one leading zero element. * * y must be nonzero. * * q and r must be arrays that are exactly the same length as x. (Or q can have more). * * Must have x.length >= y.length >= 2. * * @export * @param {number[]} x * @param {number[]} y * @param {number[]} q * @param {number[]} r * @return {void} */ export function divide_( x: number[], y: number[], q: number[], r: number[], ): void { var kx, ky var i, j, y1, y2, c, a, b copy_(r, x) for (ky = y.length; y[ky - 1] === 0; ky--); //ky is number of elements in y, not including leading zeros //normalize: ensure the most significant element of y has its highest bit set b = y[ky - 1] for (a = 0; b; a++) b >>= 1 a = bpe - a //a is how many bits to shift so that the high order bit of y is leftmost in its array element leftShift_(y, a) //multiply both by 1< ky; kx--); //kx is number of elements in normalized x, not including leading zeros copyInt_(q, 0) // q=0 while (!greaterShift(y, r, kx - ky)) { // while (leftShift_(y,kx-ky) <= r) { subShift_(r, y, kx - ky) // r=r-leftShift_(y,kx-ky) q[kx - ky]++ // q[kx-ky]++; } // } for (i = kx - 1; i >= ky; i--) { if (r[i] == y[ky - 1]) q[i - ky] = mask else q[i - ky] = Math.floor((r[i] * radix + r[i - 1]) / y[ky - 1]) //The following for(;;) loop is equivalent to the commented while loop, //except that the uncommented version avoids overflow. //The commented loop comes from HAC, which assumes r[-1]==y[-1]==0 // while (q[i-ky]*(y[ky-1]*radix+y[ky-2]) > r[i]*radix*radix+r[i-1]*radix+r[i-2]) // q[i-ky]--; for (;;) { y2 = (ky > 1 ? y[ky - 2] : 0) * q[i - ky] c = y2 >> bpe y2 = y2 & mask y1 = c + q[i - ky] * y[ky - 1] c = y1 >> bpe y1 = y1 & mask if ( c == r[i] ? y1 == r[i - 1] ? y2 > (i > 1 ? r[i - 2] : 0) : y1 > r[i - 1] : c > r[i] ) q[i - ky]-- else break } linCombShift_(r, y, -q[i - ky], i - ky) //r=r-q[i-ky]*leftShift_(y,i-ky) if (negative(r)) { addShift_(r, y, i - ky) //r=r+leftShift_(y,i-ky) q[i - ky]-- } } rightShift_(y, a) //undo the normalization step rightShift_(r, a) //undo the normalization step } /** * do carries and borrows so each element of the bigInt x fits in bpe bits. * * @param {number[]} x */ export function carry_(x: number[]): void { var i, k, c, b k = x.length c = 0 for (i = 0; i < k; i++) { c += x[i] b = 0 if (c < 0) { b = -(c >> bpe) c += b * radix } x[i] = c & mask c = (c >> bpe) - b } } /** * return x mod n for bigInt x and integer n. * * @export * @param {number[]} x * @param {number} n * @returns {number} */ export function modInt(x: number[], n: number): number { var i, c = 0 for (i = x.length - 1; i >= 0; i--) c = (c * radix + x[i]) % n return c } /** * convert the integer t into a bigInt with at least the given number of bits. * the returned array stores the bigInt in bpe-bit chunks, little endian (buff[0] is least significant word) * Pad the array with leading zeros so that it has at least minSize elements. * * There will always be at least one leading 0 element. * * @export * @param {number} t * @param {number} bits * @param {number} minSize * @returns {number[]} */ export function int2bigInt(t: number, bits: number, minSize: number): number[] { var i, k k = Math.ceil(bits / bpe) + 1 k = minSize > k ? minSize : k var buff = new Array(k) copyInt_(buff, t) return buff } /** * return the bigInt given a string representation in a given base. * Pad the array with leading zeros so that it has at least minSize elements. * If base=-1, then it reads in a space-separated list of array elements in decimal. * * The array will always have at least one leading zero, unless base=-1. * * @export * @param {string} s * @param {number} base * @param {number} [minSize] * @returns {number[]} */ export function str2bigInt( s: string, base: number, minSize?: number, ): number[] { var d, i, x, y, kk var k = s.length if (base === -1) { //comma-separated list of array elements in decimal x = new Array(0) for (;;) { y = new Array(x.length + 1) for (i = 0; i < x.length; i++) y[i + 1] = x[i] y[0] = parseInt(s, 10) //TODO PERF Should we replace that with ~~ (not not)? https://jsperf.com/number-vs-parseint-vs-plus/7 x = y d = s.indexOf(',', 0) if (d < 1) break //$off s = s.substring(d + 1) if (s.length == 0) break } //$off if (x.length < minSize) { //$off y = new Array(minSize) copy_(y, x) return y } return x } x = int2bigInt(0, base * k, 0) for (i = 0; i < k; i++) { d = digitsStr.indexOf(s.substring(i, i + 1), 0) if (base <= 36 && d >= 36) //convert lowercase to uppercase if base<=36 d -= 26 if (d >= base || d < 0) { //stop at first illegal character break } multInt_(x, base) addInt_(x, d) } for (k = x.length; k > 0 && !x[k - 1]; k--); //strip off leading zeros //$off k = minSize > k + 1 ? minSize : k + 1 //$off y = new Array(k) //$off kk = k < x.length ? k : x.length //$off for (i = 0; i < kk; i++) y[i] = x[i] //$off for (; i < k; i++) y[i] = 0 return y } //return the bigInt given a string representation in a given base. //Pad the array with leading zeros so that it has at least minSize elements. //If base=-1, then it reads in a space-separated list of array elements in decimal. //The array will always have at least one leading zero, unless base=-1. // function str2bigInt(s,b,minSize) { // var d, i, j, base, str, x, y, kk; // if (typeof b === 'string') { // base = b.length; // str = b; // } else { // base = b; // str = digitsStr; // } // var k=s.length; // if (base==-1) { //comma-separated list of array elements in decimal // x=new Array(0); // for (;;) { // y=new Array(x.length+1); // for (i=0;i=36) { //convert lowercase to uppercase if base<=36 // d-=26; // } // if (d>=base || d<0) { //ignore illegal characters // continue; // } // multInt_(x,base); // addInt_(x,d); // } // for (k=x.length;k>0 && !x[k-1];k--); //strip off leading zeros // k=minSize>k+1 ? minSize : k+1; // y=new Array(k); // kk=k y.length) { for (; i < x.length; i++) if (x[i]) return 0 } else { for (; i < y.length; i++) if (y[i]) return 0 } return 1 } /** * is the bigInt x equal to zero? * * @export * @param {number[]} x * @returns {(1 | 0)} */ export function isZero(x: number[]): Bool { var i for (i = 0; i < x.length; i++) if (x[i]) return 0 return 1 } /** * Convert a bigInt into a string in a given base, from base 2 up to base 95. * * Base -1 prints the contents of the array representing the number. * * @export * @param {number[]} x * @param {number} base * @returns {string} */ export function bigInt2str(x: number[], base: number): string { var i, t, s = '' if (s6.length !== x.length) s6 = dup(x) else copy_(s6, x) if (base === -1) { //return the list of array contents for (i = x.length - 1; i > 0; i--) s += x[i] + ',' s += x[0] } else { //return it in the given base while (!isZero(s6)) { t = divInt_(s6, base) //t=s6 % base; s6=floor(s6/base); s = digitsStr.substring(t, t + 1) + s } } if (s.length === 0) s = '0' return s } /** * Convert a bigInt into bytes * @param x bigInt * @param littleEndian byte order by default */ export function bigInt2bytes(x: number[], littleEndian = true) { if(s6.length !== x.length) s6 = dup(x); else copy_(s6, x); const out: number[] = []; //console.log('bigInt2bytes'); while(!isZero(s6)) { t = divInt_(s6, 256); //t=s6 % base; s6=floor(s6/base); out.push(t); //console.log('bigInt2bytes', t); } if(littleEndian) { out.reverse(); } //console.log('bigInt2bytes', out); return out; } /** * Compare two bigInts and return -1 if x is less, 0 if equals, 1 if greater * @param x bigInt * @param y bigInt */ export function cmp(x: number[], y: number[]) { return greater(x, y) ? 1 : (equals(x, y) ? 0 : -1); } /* Object.assign(self, { cmp, str2bigInt, int2bigInt, bigInt2str, one, divide_, divInt_, dup, negative }); */ /** * Returns a duplicate of bigInt x * * @export * @param {number[]} x * @returns {number[]} */ export function dup(x: number[]): number[] { var i buff = Array(x.length) copy_(buff, x) return buff } /** * do x=y on bigInts x and y. * * x must be an array at least as big as y (not counting the leading zeros in y). * * @export * @param {number[]} x * @param {number[]} y * @returns {void} */ export function copy_(x: number[], y: number[]): void { var i var k = x.length < y.length ? x.length : y.length for (i = 0; i < k; i++) x[i] = y[i] for (i = k; i < x.length; i++) x[i] = 0 } /** * do x=y on bigInt x and integer y. * * @export * @param {number[]} x * @param {number} n * @returns {void} */ export function copyInt_(x: number[], n: number): void { var i, c var len = x.length //TODO .length in for loop have perfomance costs. Bench this for (c = n, i = 0; i < len; i++) { x[i] = c & mask c >>= bpe } } /** * do x=x+n where x is a bigInt and n is an integer. * * x must be large enough to hold the result. * * @export * @param {number[]} x * @param {number} n * @returns {void} */ export function addInt_(x: number[], n: number): void { var i, k, c, b x[0] += n k = x.length c = 0 for (i = 0; i < k; i++) { c += x[i] b = 0 if (c < 0) { b = -(c >> bpe) c += b * radix } x[i] = c & mask c = (c >> bpe) - b if (!c) return //stop carrying as soon as the carry is zero } } /** * right shift bigInt x by n bits. * * 0 <= n < bpe. * * @export * @param {number[]} x * @param {number} n */ export function rightShift_(x: number[], n: number): void { var i var k = Math.floor(n / bpe) if (k) { for ( i = 0; i < x.length - k; i++ //right shift x by k elements ) x[i] = x[i + k] for (; i < x.length; i++) x[i] = 0 //$off n %= bpe } for (i = 0; i < x.length - 1; i++) { x[i] = mask & ((x[i + 1] << (bpe - n)) | (x[i] >> n)) } x[i] >>= n } /** * do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement * * @param {number[]} x * @returns {void} */ export function halve_(x: number[]): void { var i for (i = 0; i < x.length - 1; i++) { x[i] = mask & ((x[i + 1] << (bpe - 1)) | (x[i] >> 1)) } x[i] = (x[i] >> 1) | (x[i] & (radix >> 1)) //most significant bit stays the same } /** * left shift bigInt x by n bits * * @export * @param {number[]} x * @param {number} n * @returns {void} */ export function leftShift_(x: number[], n: number): void { var i var k = Math.floor(n / bpe) if (k) { for ( i = x.length; i >= k; i-- //left shift x by k elements ) x[i] = x[i - k] for (; i >= 0; i--) x[i] = 0 //$off n %= bpe } if (!n) return for (i = x.length - 1; i > 0; i--) { x[i] = mask & ((x[i] << n) | (x[i - 1] >> (bpe - n))) } x[i] = mask & (x[i] << n) } /** * do x=x*n where x is a bigInt and n is an integer. * * x must be large enough to hold the result. * * @param {number[]} x * @param {number} n * @returns {void} */ export function multInt_(x: number[], n: number): void { var i, k, c, b if (!n) return k = x.length c = 0 for (i = 0; i < k; i++) { c += x[i] * n b = 0 if (c < 0) { b = -(c >> bpe) c += b * radix } x[i] = c & mask c = (c >> bpe) - b } } /** * do x=floor(x/n) for bigInt x and integer n, and return the remainder * * @param {number[]} x * @param {number} n * @returns {number} remainder */ export function divInt_(x: number[], n: number): number { var i, r = 0, s for (i = x.length - 1; i >= 0; i--) { s = r * radix + x[i] x[i] = Math.floor(s / n) r = s % n } return r } /** * do the linear combination x=a*x+b*y for bigInts x and y, and integers a and b. * * x must be large enough to hold the answer. * * @param {number[]} x * @param {number[]} y * @param {number} a * @param {number} b * @returns {void} */ export function linComb_(x: number[], y: number[], a: number, b: number): void { var i, c, k, kk k = x.length < y.length ? x.length : y.length kk = x.length for (c = 0, i = 0; i < k; i++) { c += a * x[i] + b * y[i] x[i] = c & mask c >>= bpe } for (i = k; i < kk; i++) { c += a * x[i] x[i] = c & mask c >>= bpe } } /** * do the linear combination x=a*x+b*(y<<(ys*bpe)) for bigInts x and y, and integers a, b and ys. * * x must be large enough to hold the answer. * * @param {number[]} x * @param {number[]} y * @param {number} b * @param {number} ys * @returns {void} */ export function linCombShift_( x: number[], y: number[], b: number, ys: number, ): void { var i, c, k, kk k = x.length < ys + y.length ? x.length : ys + y.length kk = x.length for (c = 0, i = ys; i < k; i++) { c += x[i] + b * y[i - ys] x[i] = c & mask c >>= bpe } for (i = k; c && i < kk; i++) { c += x[i] x[i] = c & mask c >>= bpe } } /** * do x=x+(y<<(ys*bpe)) for bigInts x and y, and integer ys. * * x must be large enough to hold the answer. * * @export * @param {number[]} x * @param {number[]} y * @param {number} ys * @return {void} */ export function addShift_(x: number[], y: number[], ys: number): void { var i, c, k, kk k = x.length < ys + y.length ? x.length : ys + y.length kk = x.length for (c = 0, i = ys; i < k; i++) { c += x[i] + y[i - ys] x[i] = c & mask c >>= bpe } for (i = k; c && i < kk; i++) { c += x[i] x[i] = c & mask c >>= bpe } } /** * do x=x-(y<<(ys*bpe)) for bigInts x and y, and integer ys * * x must be large enough to hold the answer * * @param {number[]} x * @param {number[]} y * @param {number} ys * @return {void} */ export function subShift_(x: number[], y: number[], ys: number): void { var i, c, k, kk k = x.length < ys + y.length ? x.length : ys + y.length kk = x.length for (c = 0, i = ys; i < k; i++) { c += x[i] - y[i - ys] x[i] = c & mask c >>= bpe } for (i = k; c && i < kk; i++) { c += x[i] x[i] = c & mask c >>= bpe } } /** * do x=x-y for bigInts x and y * * x must be large enough to hold the answer * * negative answers will be 2s complement * * @export * @param {number[]} x * @param {number[]} y * @return {void} */ export function sub_(x: number[], y: number[]): void { var i, c, k, kk k = x.length < y.length ? x.length : y.length for (c = 0, i = 0; i < k; i++) { c += x[i] - y[i] x[i] = c & mask c >>= bpe } for (i = k; c && i < x.length; i++) { c += x[i] x[i] = c & mask c >>= bpe } } /** * do x=x+y for bigInts x and y * * x must be large enough to hold the answer * * @export * @param {number[]} x * @param {number[]} y * @return {void} */ export function add_(x: number[], y: number[]): void { var i, c, k, kk k = x.length < y.length ? x.length : y.length for (c = 0, i = 0; i < k; i++) { c += x[i] + y[i] x[i] = c & mask c >>= bpe } for (i = k; c && i < x.length; i++) { c += x[i] x[i] = c & mask c >>= bpe } } /** * do x=x*y for bigInts x and y. * * This is faster when y 0 && !x[kx - 1]; kx--); //ignore leading zeros in x k = kx > n.length ? 2 * kx : 2 * n.length //k=# elements in the product, which is twice the elements in the larger of x and n if (s0.length != k) s0 = new Array(k) copyInt_(s0, 0) for (i = 0; i < kx; i++) { c = s0[2 * i] + x[i] * x[i] s0[2 * i] = c & mask c >>= bpe for (j = i + 1; j < kx; j++) { c = s0[i + j] + 2 * x[i] * x[j] + c s0[i + j] = c & mask c >>= bpe } s0[i + kx] = c } mod_(s0, n) copy_(x, s0) } /** * return x with exactly k leading zero elements * * @export * @param {number[]} x * @param {number} k * @returns {number[]} */ export function trim(x: number[], k: number): number[] { var i, y for (i = x.length; i > 0 && !x[i - 1]; i--); y = new Array(i + k) copy_(y, x) return y } /** * do `x=x**y mod n`, where x,y,n are bigInts and `**` is exponentiation. `0**0=1`. * * this is faster when n is odd. * * x usually needs to have as many elements as n. * * @param {number[]} x * @param {number[]} y * @param {number[]} n * @return {void} */ export function powMod_(x: number[], y: number[], n: number[]): void { var k1, k2, kn, np if (s7.length != n.length) s7 = dup(n) //for even modulus, use a simple square-and-multiply algorithm, //rather than using the more complex Montgomery algorithm. if ((n[0] & 1) == 0) { copy_(s7, x) copyInt_(x, 1) while (!equalsInt(y, 0)) { if (y[0] & 1) multMod_(x, s7, n) divInt_(y, 2) squareMod_(s7, n) } return } //calculate np from n for the Montgomery multiplications copyInt_(s7, 0) for (kn = n.length; kn > 0 && !n[kn - 1]; kn--); np = radix - inverseModInt(modInt(n, radix), radix) s7[kn] = 1 multMod_(x, s7, n) // x = x * 2**(kn*bp) mod n if (s3.length != x.length) s3 = dup(x) else copy_(s3, x) //$off // @ts-ignore for (k1 = y.length - 1; (k1 > 0) & !y[k1]; k1--); //k1=first nonzero element of y if (y[k1] == 0) { //anything to the 0th power is 1 copyInt_(x, 1) return } for (k2 = 1 << (bpe - 1); k2 && !(y[k1] & k2); k2 >>= 1); //k2=position of first 1 bit in y[k1] for (;;) { if (!(k2 >>= 1)) { //look at next bit of y k1-- if (k1 < 0) { mont_(x, one, n, np) return } k2 = 1 << (bpe - 1) } mont_(x, x, n, np) if (k2 & y[k1]) //if next bit is a 1 mont_(x, s3, n, np) } } /** * do x=x*y*Ri mod n for bigInts x,y,n, * where Ri = 2**(-kn*bpe) mod n, and kn is the * number of elements in the n array, not * counting leading zeros. * * x array must have at least as many elemnts as the n array * It's OK if x and y are the same variable. * * must have: * * x,y < n * * n is odd * * np = -(n^(-1)) mod radix * * @export * @param {number[]} x * @param {number[]} y * @param {number[]} n * @param {number} np * @return {void} */ export function mont_(x: number[], y: number[], n: number[], np: number): void { var i, j, c, ui, t, ks var kn = n.length var ky = y.length if (sa.length != kn) sa = new Array(kn) copyInt_(sa, 0) for (; kn > 0 && n[kn - 1] == 0; kn--); //ignore leading zeros of n for (; ky > 0 && y[ky - 1] == 0; ky--); //ignore leading zeros of y ks = sa.length - 1 //sa will never have more than this many nonzero elements. //the following loop consumes 95% of the runtime for randTruePrime_() and powMod_() for large numbers for (i = 0; i < kn; i++) { t = sa[0] + x[i] * y[0] ui = ((t & mask) * np) & mask //the inner "& mask" was needed on Safari (but not MSIE) at one time c = (t + ui * n[0]) >> bpe t = x[i] //do sa=(sa+x[i]*y+ui*n)/b where b=2**bpe. Loop is unrolled 5-fold for speed j = 1 for (; j < ky - 4; ) { c += sa[j] + ui * n[j] + t * y[j] sa[j - 1] = c & mask c >>= bpe j++ c += sa[j] + ui * n[j] + t * y[j] sa[j - 1] = c & mask c >>= bpe j++ c += sa[j] + ui * n[j] + t * y[j] sa[j - 1] = c & mask c >>= bpe j++ c += sa[j] + ui * n[j] + t * y[j] sa[j - 1] = c & mask c >>= bpe j++ c += sa[j] + ui * n[j] + t * y[j] sa[j - 1] = c & mask c >>= bpe j++ } for (; j < ky; ) { c += sa[j] + ui * n[j] + t * y[j] sa[j - 1] = c & mask c >>= bpe j++ } for (; j < kn - 4; ) { c += sa[j] + ui * n[j] sa[j - 1] = c & mask c >>= bpe j++ c += sa[j] + ui * n[j] sa[j - 1] = c & mask c >>= bpe j++ c += sa[j] + ui * n[j] sa[j - 1] = c & mask c >>= bpe j++ c += sa[j] + ui * n[j] sa[j - 1] = c & mask c >>= bpe j++ c += sa[j] + ui * n[j] sa[j - 1] = c & mask c >>= bpe j++ } for (; j < kn; ) { c += sa[j] + ui * n[j] sa[j - 1] = c & mask c >>= bpe j++ } for (; j < ks; ) { c += sa[j] sa[j - 1] = c & mask c >>= bpe j++ } sa[j - 1] = c & mask } if (!greater(n, sa)) sub_(sa, n) copy_(x, sa) }