mirror of
https://github.com/kvazar-network/kevacoin.git
synced 2025-01-15 09:30:16 +00:00
6b6aaa1698
This commit removes the dependency of serialize.h on PROTOCOL_VERSION, and makes this parameter required instead of implicit. This is much saner, as it makes the places where changing a version number can have an influence obvious.
101 lines
3.3 KiB
C++
101 lines
3.3 KiB
C++
// Copyright (c) 2009-2012 The Bitcoin Developers
|
|
// Distributed under the MIT/X11 software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
#ifndef __CRYPTER_H__
|
|
#define __CRYPTER_H__
|
|
|
|
#include "allocators.h" /* for SecureString */
|
|
#include "key.h"
|
|
#include "serialize.h"
|
|
|
|
const unsigned int WALLET_CRYPTO_KEY_SIZE = 32;
|
|
const unsigned int WALLET_CRYPTO_SALT_SIZE = 8;
|
|
|
|
/*
|
|
Private key encryption is done based on a CMasterKey,
|
|
which holds a salt and random encryption key.
|
|
|
|
CMasterKeys are encrypted using AES-256-CBC using a key
|
|
derived using derivation method nDerivationMethod
|
|
(0 == EVP_sha512()) and derivation iterations nDeriveIterations.
|
|
vchOtherDerivationParameters is provided for alternative algorithms
|
|
which may require more parameters (such as scrypt).
|
|
|
|
Wallet Private Keys are then encrypted using AES-256-CBC
|
|
with the double-sha256 of the public key as the IV, and the
|
|
master key's key as the encryption key (see keystore.[ch]).
|
|
*/
|
|
|
|
/** Master key for wallet encryption */
|
|
class CMasterKey
|
|
{
|
|
public:
|
|
std::vector<unsigned char> vchCryptedKey;
|
|
std::vector<unsigned char> vchSalt;
|
|
// 0 = EVP_sha512()
|
|
// 1 = scrypt()
|
|
unsigned int nDerivationMethod;
|
|
unsigned int nDeriveIterations;
|
|
// Use this for more parameters to key derivation,
|
|
// such as the various parameters to scrypt
|
|
std::vector<unsigned char> vchOtherDerivationParameters;
|
|
|
|
IMPLEMENT_SERIALIZE
|
|
(
|
|
READWRITE(vchCryptedKey);
|
|
READWRITE(vchSalt);
|
|
READWRITE(nDerivationMethod);
|
|
READWRITE(nDeriveIterations);
|
|
READWRITE(vchOtherDerivationParameters);
|
|
)
|
|
CMasterKey()
|
|
{
|
|
// 25000 rounds is just under 0.1 seconds on a 1.86 GHz Pentium M
|
|
// ie slightly lower than the lowest hardware we need bother supporting
|
|
nDeriveIterations = 25000;
|
|
nDerivationMethod = 0;
|
|
vchOtherDerivationParameters = std::vector<unsigned char>(0);
|
|
}
|
|
};
|
|
|
|
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CKeyingMaterial;
|
|
|
|
/** Encryption/decryption context with key information */
|
|
class CCrypter
|
|
{
|
|
private:
|
|
unsigned char chKey[WALLET_CRYPTO_KEY_SIZE];
|
|
unsigned char chIV[WALLET_CRYPTO_KEY_SIZE];
|
|
bool fKeySet;
|
|
|
|
public:
|
|
bool SetKeyFromPassphrase(const SecureString &strKeyData, const std::vector<unsigned char>& chSalt, const unsigned int nRounds, const unsigned int nDerivationMethod);
|
|
bool Encrypt(const CKeyingMaterial& vchPlaintext, std::vector<unsigned char> &vchCiphertext);
|
|
bool Decrypt(const std::vector<unsigned char>& vchCiphertext, CKeyingMaterial& vchPlaintext);
|
|
bool SetKey(const CKeyingMaterial& chNewKey, const std::vector<unsigned char>& chNewIV);
|
|
|
|
void CleanKey()
|
|
{
|
|
memset(&chKey, 0, sizeof chKey);
|
|
memset(&chIV, 0, sizeof chIV);
|
|
munlock(&chKey, sizeof chKey);
|
|
munlock(&chIV, sizeof chIV);
|
|
fKeySet = false;
|
|
}
|
|
|
|
CCrypter()
|
|
{
|
|
fKeySet = false;
|
|
}
|
|
|
|
~CCrypter()
|
|
{
|
|
CleanKey();
|
|
}
|
|
};
|
|
|
|
bool EncryptSecret(CKeyingMaterial& vMasterKey, const CSecret &vchPlaintext, const uint256& nIV, std::vector<unsigned char> &vchCiphertext);
|
|
bool DecryptSecret(const CKeyingMaterial& vMasterKey, const std::vector<unsigned char> &vchCiphertext, const uint256& nIV, CSecret &vchPlaintext);
|
|
|
|
#endif
|