mirror of
https://github.com/kvazar-network/kevacoin.git
synced 2025-01-10 07:08:07 +00:00
431 lines
12 KiB
C++
431 lines
12 KiB
C++
// Copyright (c) 2009-2014 The Bitcoin developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include "key.h"
|
|
|
|
#include "crypto/sha2.h"
|
|
#include "random.h"
|
|
|
|
#ifdef USE_SECP256K1
|
|
#include <secp256k1.h>
|
|
#else
|
|
#include "ecwrapper.h"
|
|
#endif
|
|
|
|
//! anonymous namespace with local implementation code (OpenSSL interaction)
|
|
namespace {
|
|
|
|
#ifdef USE_SECP256K1
|
|
#include <secp256k1.h>
|
|
class CSecp256k1Init {
|
|
public:
|
|
CSecp256k1Init() {
|
|
secp256k1_start();
|
|
}
|
|
~CSecp256k1Init() {
|
|
secp256k1_stop();
|
|
}
|
|
};
|
|
static CSecp256k1Init instance_of_csecp256k1;
|
|
|
|
#endif
|
|
|
|
int CompareBigEndian(const unsigned char *c1, size_t c1len, const unsigned char *c2, size_t c2len) {
|
|
while (c1len > c2len) {
|
|
if (*c1)
|
|
return 1;
|
|
c1++;
|
|
c1len--;
|
|
}
|
|
while (c2len > c1len) {
|
|
if (*c2)
|
|
return -1;
|
|
c2++;
|
|
c2len--;
|
|
}
|
|
while (c1len > 0) {
|
|
if (*c1 > *c2)
|
|
return 1;
|
|
if (*c2 > *c1)
|
|
return -1;
|
|
c1++;
|
|
c2++;
|
|
c1len--;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** Order of secp256k1's generator minus 1. */
|
|
const unsigned char vchMaxModOrder[32] = {
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
|
|
0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
|
|
0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x40
|
|
};
|
|
|
|
/** Half of the order of secp256k1's generator minus 1. */
|
|
const unsigned char vchMaxModHalfOrder[32] = {
|
|
0x7F,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
0x5D,0x57,0x6E,0x73,0x57,0xA4,0x50,0x1D,
|
|
0xDF,0xE9,0x2F,0x46,0x68,0x1B,0x20,0xA0
|
|
};
|
|
|
|
const unsigned char vchZero[1] = {0};
|
|
|
|
} // anon namespace
|
|
|
|
bool CKey::Check(const unsigned char *vch) {
|
|
return CompareBigEndian(vch, 32, vchZero, 0) > 0 &&
|
|
CompareBigEndian(vch, 32, vchMaxModOrder, 32) <= 0;
|
|
}
|
|
|
|
bool CKey::CheckSignatureElement(const unsigned char *vch, int len, bool half) {
|
|
return CompareBigEndian(vch, len, vchZero, 0) > 0 &&
|
|
CompareBigEndian(vch, len, half ? vchMaxModHalfOrder : vchMaxModOrder, 32) <= 0;
|
|
}
|
|
|
|
void CKey::MakeNewKey(bool fCompressedIn) {
|
|
do {
|
|
GetRandBytes(vch, sizeof(vch));
|
|
} while (!Check(vch));
|
|
fValid = true;
|
|
fCompressed = fCompressedIn;
|
|
}
|
|
|
|
bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) {
|
|
#ifdef USE_SECP256K1
|
|
if (!secp256k1_ecdsa_privkey_import((unsigned char*)begin(), &privkey[0], privkey.size()))
|
|
return false;
|
|
#else
|
|
CECKey key;
|
|
if (!key.SetPrivKey(&privkey[0], privkey.size()))
|
|
return false;
|
|
key.GetSecretBytes(vch);
|
|
#endif
|
|
fCompressed = fCompressedIn;
|
|
fValid = true;
|
|
return true;
|
|
}
|
|
|
|
CPrivKey CKey::GetPrivKey() const {
|
|
assert(fValid);
|
|
CPrivKey privkey;
|
|
int privkeylen, ret;
|
|
#ifdef USE_SECP256K1
|
|
privkey.resize(279);
|
|
privkeylen = 279;
|
|
ret = secp256k1_ecdsa_privkey_export(begin(), (unsigned char*)&privkey[0], &privkeylen, fCompressed);
|
|
assert(ret);
|
|
privkey.resize(privkeylen);
|
|
#else
|
|
CECKey key;
|
|
key.SetSecretBytes(vch);
|
|
privkeylen = key.GetPrivKeySize(fCompressed);
|
|
assert(privkeylen);
|
|
privkey.resize(privkeylen);
|
|
ret = key.GetPrivKey(&privkey[0], fCompressed);
|
|
assert(ret == (int)privkey.size());
|
|
#endif
|
|
return privkey;
|
|
}
|
|
|
|
CPubKey CKey::GetPubKey() const {
|
|
assert(fValid);
|
|
CPubKey result;
|
|
#ifdef USE_SECP256K1
|
|
int clen = 65;
|
|
int ret = secp256k1_ecdsa_pubkey_create((unsigned char*)result.begin(), &clen, begin(), fCompressed);
|
|
assert((int)result.size() == clen);
|
|
assert(ret);
|
|
#else
|
|
std::vector<unsigned char> pubkey;
|
|
CECKey key;
|
|
key.SetSecretBytes(vch);
|
|
key.GetPubKey(pubkey, fCompressed);
|
|
result.Set(pubkey.begin(), pubkey.end());
|
|
#endif
|
|
assert(result.IsValid());
|
|
return result;
|
|
}
|
|
|
|
bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, bool lowS) const {
|
|
if (!fValid)
|
|
return false;
|
|
#ifdef USE_SECP256K1
|
|
vchSig.resize(72);
|
|
int nSigLen = 72;
|
|
CKey nonce;
|
|
do {
|
|
nonce.MakeNewKey(true);
|
|
if (secp256k1_ecdsa_sign((const unsigned char*)&hash, 32, (unsigned char*)&vchSig[0], &nSigLen, begin(), nonce.begin()))
|
|
break;
|
|
} while(true);
|
|
vchSig.resize(nSigLen);
|
|
return true;
|
|
#else
|
|
CECKey key;
|
|
key.SetSecretBytes(vch);
|
|
return key.Sign(hash, vchSig, lowS);
|
|
#endif
|
|
}
|
|
|
|
bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
|
|
if (!fValid)
|
|
return false;
|
|
vchSig.resize(65);
|
|
int rec = -1;
|
|
#ifdef USE_SECP256K1
|
|
CKey nonce;
|
|
do {
|
|
nonce.MakeNewKey(true);
|
|
if (secp256k1_ecdsa_sign_compact((const unsigned char*)&hash, 32, &vchSig[1], begin(), nonce.begin(), &rec))
|
|
break;
|
|
} while(true);
|
|
#else
|
|
CECKey key;
|
|
key.SetSecretBytes(vch);
|
|
if (!key.SignCompact(hash, &vchSig[1], rec))
|
|
return false;
|
|
#endif
|
|
assert(rec != -1);
|
|
vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
|
|
return true;
|
|
}
|
|
|
|
bool CKey::Load(CPrivKey &privkey, CPubKey &vchPubKey, bool fSkipCheck=false) {
|
|
#ifdef USE_SECP256K1
|
|
if (!secp256k1_ecdsa_privkey_import((unsigned char*)begin(), &privkey[0], privkey.size()))
|
|
return false;
|
|
#else
|
|
CECKey key;
|
|
if (!key.SetPrivKey(&privkey[0], privkey.size(), fSkipCheck))
|
|
return false;
|
|
key.GetSecretBytes(vch);
|
|
#endif
|
|
fCompressed = vchPubKey.IsCompressed();
|
|
fValid = true;
|
|
|
|
if (fSkipCheck)
|
|
return true;
|
|
|
|
if (GetPubKey() != vchPubKey)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CPubKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) const {
|
|
if (!IsValid())
|
|
return false;
|
|
#ifdef USE_SECP256K1
|
|
if (secp256k1_ecdsa_verify((const unsigned char*)&hash, 32, &vchSig[0], vchSig.size(), begin(), size()) != 1)
|
|
return false;
|
|
#else
|
|
CECKey key;
|
|
if (!key.SetPubKey(begin(), size()))
|
|
return false;
|
|
if (!key.Verify(hash, vchSig))
|
|
return false;
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
bool CPubKey::RecoverCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) {
|
|
if (vchSig.size() != 65)
|
|
return false;
|
|
int recid = (vchSig[0] - 27) & 3;
|
|
bool fComp = ((vchSig[0] - 27) & 4) != 0;
|
|
#ifdef USE_SECP256K1
|
|
int pubkeylen = 65;
|
|
if (!secp256k1_ecdsa_recover_compact((const unsigned char*)&hash, 32, &vchSig[1], (unsigned char*)begin(), &pubkeylen, fComp, recid))
|
|
return false;
|
|
assert((int)size() == pubkeylen);
|
|
#else
|
|
CECKey key;
|
|
if (!key.Recover(hash, &vchSig[1], recid))
|
|
return false;
|
|
std::vector<unsigned char> pubkey;
|
|
key.GetPubKey(pubkey, fComp);
|
|
Set(pubkey.begin(), pubkey.end());
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
bool CPubKey::IsFullyValid() const {
|
|
if (!IsValid())
|
|
return false;
|
|
#ifdef USE_SECP256K1
|
|
if (!secp256k1_ecdsa_pubkey_verify(begin(), size()))
|
|
return false;
|
|
#else
|
|
CECKey key;
|
|
if (!key.SetPubKey(begin(), size()))
|
|
return false;
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
bool CPubKey::Decompress() {
|
|
if (!IsValid())
|
|
return false;
|
|
#ifdef USE_SECP256K1
|
|
int clen = size();
|
|
int ret = secp256k1_ecdsa_pubkey_decompress((unsigned char*)begin(), &clen);
|
|
assert(ret);
|
|
assert(clen == (int)size());
|
|
#else
|
|
CECKey key;
|
|
if (!key.SetPubKey(begin(), size()))
|
|
return false;
|
|
std::vector<unsigned char> pubkey;
|
|
key.GetPubKey(pubkey, false);
|
|
Set(pubkey.begin(), pubkey.end());
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
void static BIP32Hash(const unsigned char chainCode[32], unsigned int nChild, unsigned char header, const unsigned char data[32], unsigned char output[64]) {
|
|
unsigned char num[4];
|
|
num[0] = (nChild >> 24) & 0xFF;
|
|
num[1] = (nChild >> 16) & 0xFF;
|
|
num[2] = (nChild >> 8) & 0xFF;
|
|
num[3] = (nChild >> 0) & 0xFF;
|
|
CHMAC_SHA512(chainCode, 32).Write(&header, 1)
|
|
.Write(data, 32)
|
|
.Write(num, 4)
|
|
.Finalize(output);
|
|
}
|
|
|
|
bool CKey::Derive(CKey& keyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const {
|
|
assert(IsValid());
|
|
assert(IsCompressed());
|
|
unsigned char out[64];
|
|
LockObject(out);
|
|
if ((nChild >> 31) == 0) {
|
|
CPubKey pubkey = GetPubKey();
|
|
assert(pubkey.begin() + 33 == pubkey.end());
|
|
BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, out);
|
|
} else {
|
|
assert(begin() + 32 == end());
|
|
BIP32Hash(cc, nChild, 0, begin(), out);
|
|
}
|
|
memcpy(ccChild, out+32, 32);
|
|
#ifdef USE_SECP256K1
|
|
memcpy((unsigned char*)keyChild.begin(), begin(), 32);
|
|
bool ret = secp256k1_ecdsa_privkey_tweak_add((unsigned char*)keyChild.begin(), out);
|
|
#else
|
|
bool ret = CECKey::TweakSecret((unsigned char*)keyChild.begin(), begin(), out);
|
|
#endif
|
|
UnlockObject(out);
|
|
keyChild.fCompressed = true;
|
|
keyChild.fValid = ret;
|
|
return ret;
|
|
}
|
|
|
|
bool CPubKey::Derive(CPubKey& pubkeyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const {
|
|
assert(IsValid());
|
|
assert((nChild >> 31) == 0);
|
|
assert(begin() + 33 == end());
|
|
unsigned char out[64];
|
|
BIP32Hash(cc, nChild, *begin(), begin()+1, out);
|
|
memcpy(ccChild, out+32, 32);
|
|
#ifdef USE_SECP256K1
|
|
pubkeyChild = *this;
|
|
bool ret = secp256k1_ecdsa_pubkey_tweak_add((unsigned char*)pubkeyChild.begin(), pubkeyChild.size(), out);
|
|
#else
|
|
CECKey key;
|
|
bool ret = key.SetPubKey(begin(), size());
|
|
ret &= key.TweakPublic(out);
|
|
std::vector<unsigned char> pubkey;
|
|
key.GetPubKey(pubkey, true);
|
|
pubkeyChild.Set(pubkey.begin(), pubkey.end());
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
bool CExtKey::Derive(CExtKey &out, unsigned int nChild) const {
|
|
out.nDepth = nDepth + 1;
|
|
CKeyID id = key.GetPubKey().GetID();
|
|
memcpy(&out.vchFingerprint[0], &id, 4);
|
|
out.nChild = nChild;
|
|
return key.Derive(out.key, out.vchChainCode, nChild, vchChainCode);
|
|
}
|
|
|
|
void CExtKey::SetMaster(const unsigned char *seed, unsigned int nSeedLen) {
|
|
static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'};
|
|
unsigned char out[64];
|
|
LockObject(out);
|
|
CHMAC_SHA512(hashkey, sizeof(hashkey)).Write(seed, nSeedLen).Finalize(out);
|
|
key.Set(&out[0], &out[32], true);
|
|
memcpy(vchChainCode, &out[32], 32);
|
|
UnlockObject(out);
|
|
nDepth = 0;
|
|
nChild = 0;
|
|
memset(vchFingerprint, 0, sizeof(vchFingerprint));
|
|
}
|
|
|
|
CExtPubKey CExtKey::Neuter() const {
|
|
CExtPubKey ret;
|
|
ret.nDepth = nDepth;
|
|
memcpy(&ret.vchFingerprint[0], &vchFingerprint[0], 4);
|
|
ret.nChild = nChild;
|
|
ret.pubkey = key.GetPubKey();
|
|
memcpy(&ret.vchChainCode[0], &vchChainCode[0], 32);
|
|
return ret;
|
|
}
|
|
|
|
void CExtKey::Encode(unsigned char code[74]) const {
|
|
code[0] = nDepth;
|
|
memcpy(code+1, vchFingerprint, 4);
|
|
code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF;
|
|
code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF;
|
|
memcpy(code+9, vchChainCode, 32);
|
|
code[41] = 0;
|
|
assert(key.size() == 32);
|
|
memcpy(code+42, key.begin(), 32);
|
|
}
|
|
|
|
void CExtKey::Decode(const unsigned char code[74]) {
|
|
nDepth = code[0];
|
|
memcpy(vchFingerprint, code+1, 4);
|
|
nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8];
|
|
memcpy(vchChainCode, code+9, 32);
|
|
key.Set(code+42, code+74, true);
|
|
}
|
|
|
|
void CExtPubKey::Encode(unsigned char code[74]) const {
|
|
code[0] = nDepth;
|
|
memcpy(code+1, vchFingerprint, 4);
|
|
code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF;
|
|
code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF;
|
|
memcpy(code+9, vchChainCode, 32);
|
|
assert(pubkey.size() == 33);
|
|
memcpy(code+41, pubkey.begin(), 33);
|
|
}
|
|
|
|
void CExtPubKey::Decode(const unsigned char code[74]) {
|
|
nDepth = code[0];
|
|
memcpy(vchFingerprint, code+1, 4);
|
|
nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8];
|
|
memcpy(vchChainCode, code+9, 32);
|
|
pubkey.Set(code+41, code+74);
|
|
}
|
|
|
|
bool CExtPubKey::Derive(CExtPubKey &out, unsigned int nChild) const {
|
|
out.nDepth = nDepth + 1;
|
|
CKeyID id = pubkey.GetID();
|
|
memcpy(&out.vchFingerprint[0], &id, 4);
|
|
out.nChild = nChild;
|
|
return pubkey.Derive(out.pubkey, out.vchChainCode, nChild, vchChainCode);
|
|
}
|
|
|
|
bool ECC_InitSanityCheck() {
|
|
#ifdef USE_SECP256K1
|
|
return true;
|
|
#else
|
|
return CECKey::SanityCheck();
|
|
#endif
|
|
}
|