-----BEGIN PGP SIGNATURE----- iQEzBAABCgAdFiEEnerg3HBjJJ+wVHRoHkrtYphs0l0FAlugRdQACgkQHkrtYphs 0l0AuAf/TIQkEZte6q0/E3Sp+2ejoSuNCS+jsDpN7eSYEazHL4e9GIe2TmpnNG9u 5Lb5BT0Tv5zDc5ivf3Quuq0dQqRmQAyl0EiM7kSjYF3MOBFAXt4Yi4W1VRrfT9Fb Nabx8F8NzjnlgxuF0kLXUMfxKCN92d2fl2m4APXgyKA+OFoC2XQ/GBnqUdwMlCic XeDZf/xc2vZOHP0HNIn2asqdnsJBBPscjsGMcdsrEq62FZ9lmnm8FVycKbkhqaP0 lFxVp4JbJKWKRAIks56HPjPo3TU5VEnvHyOqmwCU3rxoDGDbHWRzByApqmcyM68F IA5HwltL4+hM9pNouIt/U6UantsFKA== =nB5i -----END PGP SIGNATURE----- gpgsig -----BEGIN PGP SIGNATURE----- iQEzBAABCgAdFiEEWcrw6W8j9TdHlF/U/jNIh3gJOGwFAluhonwACgkQ/jNIh3gJ OGy+9Af9FT5MeQ4ucRBtXh/VjaNU78EZUywMzvJSzAyvYgqwO0WpvUXBN+9GyMM/ k+yBvbj9PkJGSHavuGyx+2otsh3eXrd9TN2UyZiVdu8h1HBMFcsd1TxtrX+M5R7R HCeFA3yPF91WAw2O4fhhHUsHE2fsLR+HXyMcJa86vpJsjQdd388VGKUm7tRVwKGa TBFBKd5cvpLrzHFU6L7lSj7WNAIO80Bfn032P0mHB90+juP6Qpeknb7+l+TQBU9d mcCzpKR2oUvUtpWCTfTtC/F+NnJMA0O18wkn+UWoPXLnqCD48Dj/wYo1V6efHkRo HiTXg772nySxI4z7vl5zdwum75BmEg== =A6lU -----END PGP SIGNATURE----- Merge tag 'v0.16.3' into HEAD Bitcoin Core 0.16.3 final
Functional tests
Writing Functional Tests
Example test
The example_test.py is a heavily commented example of a test case that uses both the RPC and P2P interfaces. If you are writing your first test, copy that file and modify to fit your needs.
Coverage
Running test_runner.py
with the --coverage
argument tracks which RPCs are
called by the tests and prints a report of uncovered RPCs in the summary. This
can be used (along with the --extended
argument) to find out which RPCs we
don't have test cases for.
Style guidelines
- Where possible, try to adhere to PEP-8 guidelines
- Use a python linter like flake8 before submitting PRs to catch common style nits (eg trailing whitespace, unused imports, etc)
- Avoid wildcard imports where possible
- Use a module-level docstring to describe what the test is testing, and how it is testing it.
- When subclassing the BitcoinTestFramwork, place overrides for the
set_test_params()
,add_options()
andsetup_xxxx()
methods at the top of the subclass, then locally-defined helper methods, then therun_test()
method.
Naming guidelines
- Name the test
<area>_test.py
, where area can be one of the following:feature
for tests for full features that aren't wallet/mining/mempool, egfeature_rbf.py
interface
for tests for other interfaces (REST, ZMQ, etc), eginterface_rest.py
mempool
for tests for mempool behaviour, egmempool_reorg.py
mining
for tests for mining features, egmining_prioritisetransaction.py
p2p
for tests that explicitly test the p2p interface, egp2p_disconnect_ban.py
rpc
for tests for individual RPC methods or features, egrpc_listtransactions.py
wallet
for tests for wallet features, egwallet_keypool.py
- use an underscore to separate words
- exception: for tests for specific RPCs or command line options which don't include underscores, name the test after the exact RPC or argument name, eg
rpc_decodescript.py
, notrpc_decode_script.py
- exception: for tests for specific RPCs or command line options which don't include underscores, name the test after the exact RPC or argument name, eg
- Don't use the redundant word
test
in the name, eginterface_zmq.py
, notinterface_zmq_test.py
General test-writing advice
- Set
self.num_nodes
to the minimum number of nodes necessary for the test. Having additional unrequired nodes adds to the execution time of the test as well as memory/CPU/disk requirements (which is important when running tests in parallel or on Travis). - Avoid stop-starting the nodes multiple times during the test if possible. A stop-start takes several seconds, so doing it several times blows up the runtime of the test.
- Set the
self.setup_clean_chain
variable inset_test_params()
to control whether or not to use the cached data directories. The cached data directories contain a 200-block pre-mined blockchain and wallets for four nodes. Each node has 25 mature blocks (25x50=1250 BTC) in its wallet. - When calling RPCs with lots of arguments, consider using named keyword arguments instead of positional arguments to make the intent of the call clear to readers.
RPC and P2P definitions
Test writers may find it helpful to refer to the definitions for the RPC and P2P messages. These can be found in the following source files:
/src/rpc/*
for RPCs/src/wallet/rpc*
for wallet RPCsProcessMessage()
in/src/net_processing.cpp
for parsing P2P messages
Using the P2P interface
-
mininode.py
contains all the definitions for objects that pass over the network (CBlock
,CTransaction
, etc, along with the network-level wrappers for them,msg_block
,msg_tx
, etc). -
P2P tests have two threads. One thread handles all network communication with the litecoind(s) being tested (using python's asyncore package); the other implements the test logic.
-
P2PConnection
is the class used to connect to a litecoind.P2PInterface
contains the higher level logic for processing P2P payloads and connecting to the Litecoin Core node application logic. For custom behaviour, subclass the P2PInterface object and override the callback methods. -
Call
network_thread_start()
after allP2PInterface
objects are created to start the networking thread. (Continue with the test logic in your existing thread.) -
Can be used to write tests where specific P2P protocol behavior is tested. Examples tests are
p2p_unrequested_blocks.py
,p2p_compactblocks.py
.
Comptool
-
Comptool is a Testing framework for writing tests that compare the block/tx acceptance behavior of a litecoind against 1 or more other litecoind instances. It should not be used to write static tests with known outcomes, since that type of test is easier to write and maintain using the standard BitcoinTestFramework.
-
Set the
num_nodes
variable (defined inComparisonTestFramework
) to start up 1 or more nodes. If using 1 node, then--testbinary
can be used as a command line option to change the litecoind binary used by the test. If using 2 or more nodes, then--refbinary
can be optionally used to change the litecoind that will be used on nodes 2 and up. -
Implement a (generator) function called
get_tests()
which yieldsTestInstance
s. EachTestInstance
consists of:- A list of
[object, outcome, hash]
entriesobject
is aCBlock
,CTransaction
, orCBlockHeader
.CBlock
's andCTransaction
's are tested for acceptance.CBlockHeader
s can be used so that the test runner can deliver complete headers-chains when requested from the litecoind, to allow writing tests where blocks can be delivered out of order but still processed by headers-first litecoind's.outcome
isTrue
,False
, orNone
. IfTrue
orFalse
, the tip is compared with the expected tip -- either the block passed in, or the hash specified as the optional 3rd entry. IfNone
is specified, then the test will compare all the litecoind's being tested to see if they all agree on what the best tip is.hash
is the block hash of the tip to compare against. Optional to specify; if left out then the hash of the block passed in will be used as the expected tip. This allows for specifying an expected tip while testing the handling of either invalid blocks or blocks delivered out of order, which complete a longer chain.
sync_every_block
:True/False
. IfFalse
, then all blocks are inv'ed together, and the test runner waits until the node receives the last one, and tests only the last block for tip acceptance using the outcome and specified tip. IfTrue
, then each block is tested in sequence and synced (this is slower when processing many blocks).sync_every_transaction
:True/False
. Analogous tosync_every_block
, except if the outcome on the last tx is "None", then the contents of the entire mempool are compared across all litecoind connections. IfTrue
orFalse
, then only the last tx's acceptance is tested against the given outcome.
- A list of
-
For examples of tests written in this framework, see
p2p_invalid_block.py
andfeature_block.py
.
test-framework modules
test_framework/authproxy.py
Taken from the python-bitcoinrpc repository.
test_framework/test_framework.py
Base class for functional tests.
test_framework/util.py
Generally useful functions.
test_framework/mininode.py
Basic code to support P2P connectivity to a litecoind.
test_framework/comptool.py
Framework for comparison-tool style, P2P tests.
test_framework/script.py
Utilities for manipulating transaction scripts (originally from python-bitcoinlib)
test_framework/blockstore.py
Implements disk-backed block and tx storage.
test_framework/key.py
Wrapper around OpenSSL EC_Key (originally from python-bitcoinlib)
test_framework/bignum.py
Helpers for script.py
test_framework/blocktools.py
Helper functions for creating blocks and transactions.