kevacoin/src/wallet/wallet.cpp
Alex Morcos f0bf33da83 Change default fee estimation mode.
Fee estimates will default to be non-conservative if the transaction in question is opt-in-RBF.
2017-07-06 22:20:23 -04:00

4172 lines
147 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "wallet/wallet.h"
#include "base58.h"
#include "checkpoints.h"
#include "chain.h"
#include "wallet/coincontrol.h"
#include "consensus/consensus.h"
#include "consensus/validation.h"
#include "fs.h"
#include "key.h"
#include "keystore.h"
#include "validation.h"
#include "net.h"
#include "policy/fees.h"
#include "policy/policy.h"
#include "policy/rbf.h"
#include "primitives/block.h"
#include "primitives/transaction.h"
#include "script/script.h"
#include "script/sign.h"
#include "scheduler.h"
#include "timedata.h"
#include "txmempool.h"
#include "util.h"
#include "ui_interface.h"
#include "utilmoneystr.h"
#include <assert.h>
#include <boost/algorithm/string/replace.hpp>
#include <boost/thread.hpp>
std::vector<CWalletRef> vpwallets;
/** Transaction fee set by the user */
CFeeRate payTxFee(DEFAULT_TRANSACTION_FEE);
unsigned int nTxConfirmTarget = DEFAULT_TX_CONFIRM_TARGET;
bool bSpendZeroConfChange = DEFAULT_SPEND_ZEROCONF_CHANGE;
bool fWalletRbf = DEFAULT_WALLET_RBF;
const char * DEFAULT_WALLET_DAT = "wallet.dat";
const uint32_t BIP32_HARDENED_KEY_LIMIT = 0x80000000;
/**
* Fees smaller than this (in satoshi) are considered zero fee (for transaction creation)
* Override with -mintxfee
*/
CFeeRate CWallet::minTxFee = CFeeRate(DEFAULT_TRANSACTION_MINFEE);
/**
* If fee estimation does not have enough data to provide estimates, use this fee instead.
* Has no effect if not using fee estimation
* Override with -fallbackfee
*/
CFeeRate CWallet::fallbackFee = CFeeRate(DEFAULT_FALLBACK_FEE);
const uint256 CMerkleTx::ABANDON_HASH(uint256S("0000000000000000000000000000000000000000000000000000000000000001"));
/** @defgroup mapWallet
*
* @{
*/
struct CompareValueOnly
{
bool operator()(const CInputCoin& t1,
const CInputCoin& t2) const
{
return t1.txout.nValue < t2.txout.nValue;
}
};
std::string COutput::ToString() const
{
return strprintf("COutput(%s, %d, %d) [%s]", tx->GetHash().ToString(), i, nDepth, FormatMoney(tx->tx->vout[i].nValue));
}
const CWalletTx* CWallet::GetWalletTx(const uint256& hash) const
{
LOCK(cs_wallet);
std::map<uint256, CWalletTx>::const_iterator it = mapWallet.find(hash);
if (it == mapWallet.end())
return NULL;
return &(it->second);
}
CPubKey CWallet::GenerateNewKey(bool internal)
{
AssertLockHeld(cs_wallet); // mapKeyMetadata
bool fCompressed = CanSupportFeature(FEATURE_COMPRPUBKEY); // default to compressed public keys if we want 0.6.0 wallets
CKey secret;
// Create new metadata
int64_t nCreationTime = GetTime();
CKeyMetadata metadata(nCreationTime);
// use HD key derivation if HD was enabled during wallet creation
if (IsHDEnabled()) {
DeriveNewChildKey(metadata, secret, (CanSupportFeature(FEATURE_HD_SPLIT) ? internal : false));
} else {
secret.MakeNewKey(fCompressed);
}
// Compressed public keys were introduced in version 0.6.0
if (fCompressed)
SetMinVersion(FEATURE_COMPRPUBKEY);
CPubKey pubkey = secret.GetPubKey();
assert(secret.VerifyPubKey(pubkey));
mapKeyMetadata[pubkey.GetID()] = metadata;
UpdateTimeFirstKey(nCreationTime);
if (!AddKeyPubKey(secret, pubkey))
throw std::runtime_error(std::string(__func__) + ": AddKey failed");
return pubkey;
}
void CWallet::DeriveNewChildKey(CKeyMetadata& metadata, CKey& secret, bool internal)
{
// for now we use a fixed keypath scheme of m/0'/0'/k
CKey key; //master key seed (256bit)
CExtKey masterKey; //hd master key
CExtKey accountKey; //key at m/0'
CExtKey chainChildKey; //key at m/0'/0' (external) or m/0'/1' (internal)
CExtKey childKey; //key at m/0'/0'/<n>'
// try to get the master key
if (!GetKey(hdChain.masterKeyID, key))
throw std::runtime_error(std::string(__func__) + ": Master key not found");
masterKey.SetMaster(key.begin(), key.size());
// derive m/0'
// use hardened derivation (child keys >= 0x80000000 are hardened after bip32)
masterKey.Derive(accountKey, BIP32_HARDENED_KEY_LIMIT);
// derive m/0'/0' (external chain) OR m/0'/1' (internal chain)
assert(internal ? CanSupportFeature(FEATURE_HD_SPLIT) : true);
accountKey.Derive(chainChildKey, BIP32_HARDENED_KEY_LIMIT+(internal ? 1 : 0));
// derive child key at next index, skip keys already known to the wallet
do {
// always derive hardened keys
// childIndex | BIP32_HARDENED_KEY_LIMIT = derive childIndex in hardened child-index-range
// example: 1 | BIP32_HARDENED_KEY_LIMIT == 0x80000001 == 2147483649
if (internal) {
chainChildKey.Derive(childKey, hdChain.nInternalChainCounter | BIP32_HARDENED_KEY_LIMIT);
metadata.hdKeypath = "m/0'/1'/" + std::to_string(hdChain.nInternalChainCounter) + "'";
hdChain.nInternalChainCounter++;
}
else {
chainChildKey.Derive(childKey, hdChain.nExternalChainCounter | BIP32_HARDENED_KEY_LIMIT);
metadata.hdKeypath = "m/0'/0'/" + std::to_string(hdChain.nExternalChainCounter) + "'";
hdChain.nExternalChainCounter++;
}
} while (HaveKey(childKey.key.GetPubKey().GetID()));
secret = childKey.key;
metadata.hdMasterKeyID = hdChain.masterKeyID;
// update the chain model in the database
if (!CWalletDB(*dbw).WriteHDChain(hdChain))
throw std::runtime_error(std::string(__func__) + ": Writing HD chain model failed");
}
bool CWallet::AddKeyPubKey(const CKey& secret, const CPubKey &pubkey)
{
AssertLockHeld(cs_wallet); // mapKeyMetadata
if (!CCryptoKeyStore::AddKeyPubKey(secret, pubkey))
return false;
// check if we need to remove from watch-only
CScript script;
script = GetScriptForDestination(pubkey.GetID());
if (HaveWatchOnly(script))
RemoveWatchOnly(script);
script = GetScriptForRawPubKey(pubkey);
if (HaveWatchOnly(script))
RemoveWatchOnly(script);
if (!IsCrypted()) {
return CWalletDB(*dbw).WriteKey(pubkey,
secret.GetPrivKey(),
mapKeyMetadata[pubkey.GetID()]);
}
return true;
}
bool CWallet::AddCryptedKey(const CPubKey &vchPubKey,
const std::vector<unsigned char> &vchCryptedSecret)
{
if (!CCryptoKeyStore::AddCryptedKey(vchPubKey, vchCryptedSecret))
return false;
{
LOCK(cs_wallet);
if (pwalletdbEncryption)
return pwalletdbEncryption->WriteCryptedKey(vchPubKey,
vchCryptedSecret,
mapKeyMetadata[vchPubKey.GetID()]);
else
return CWalletDB(*dbw).WriteCryptedKey(vchPubKey,
vchCryptedSecret,
mapKeyMetadata[vchPubKey.GetID()]);
}
}
bool CWallet::LoadKeyMetadata(const CTxDestination& keyID, const CKeyMetadata &meta)
{
AssertLockHeld(cs_wallet); // mapKeyMetadata
UpdateTimeFirstKey(meta.nCreateTime);
mapKeyMetadata[keyID] = meta;
return true;
}
bool CWallet::LoadCryptedKey(const CPubKey &vchPubKey, const std::vector<unsigned char> &vchCryptedSecret)
{
return CCryptoKeyStore::AddCryptedKey(vchPubKey, vchCryptedSecret);
}
/**
* Update wallet first key creation time. This should be called whenever keys
* are added to the wallet, with the oldest key creation time.
*/
void CWallet::UpdateTimeFirstKey(int64_t nCreateTime)
{
AssertLockHeld(cs_wallet);
if (nCreateTime <= 1) {
// Cannot determine birthday information, so set the wallet birthday to
// the beginning of time.
nTimeFirstKey = 1;
} else if (!nTimeFirstKey || nCreateTime < nTimeFirstKey) {
nTimeFirstKey = nCreateTime;
}
}
bool CWallet::AddCScript(const CScript& redeemScript)
{
if (!CCryptoKeyStore::AddCScript(redeemScript))
return false;
return CWalletDB(*dbw).WriteCScript(Hash160(redeemScript), redeemScript);
}
bool CWallet::LoadCScript(const CScript& redeemScript)
{
/* A sanity check was added in pull #3843 to avoid adding redeemScripts
* that never can be redeemed. However, old wallets may still contain
* these. Do not add them to the wallet and warn. */
if (redeemScript.size() > MAX_SCRIPT_ELEMENT_SIZE)
{
std::string strAddr = CBitcoinAddress(CScriptID(redeemScript)).ToString();
LogPrintf("%s: Warning: This wallet contains a redeemScript of size %i which exceeds maximum size %i thus can never be redeemed. Do not use address %s.\n",
__func__, redeemScript.size(), MAX_SCRIPT_ELEMENT_SIZE, strAddr);
return true;
}
return CCryptoKeyStore::AddCScript(redeemScript);
}
bool CWallet::AddWatchOnly(const CScript& dest)
{
if (!CCryptoKeyStore::AddWatchOnly(dest))
return false;
const CKeyMetadata& meta = mapKeyMetadata[CScriptID(dest)];
UpdateTimeFirstKey(meta.nCreateTime);
NotifyWatchonlyChanged(true);
return CWalletDB(*dbw).WriteWatchOnly(dest, meta);
}
bool CWallet::AddWatchOnly(const CScript& dest, int64_t nCreateTime)
{
mapKeyMetadata[CScriptID(dest)].nCreateTime = nCreateTime;
return AddWatchOnly(dest);
}
bool CWallet::RemoveWatchOnly(const CScript &dest)
{
AssertLockHeld(cs_wallet);
if (!CCryptoKeyStore::RemoveWatchOnly(dest))
return false;
if (!HaveWatchOnly())
NotifyWatchonlyChanged(false);
if (!CWalletDB(*dbw).EraseWatchOnly(dest))
return false;
return true;
}
bool CWallet::LoadWatchOnly(const CScript &dest)
{
return CCryptoKeyStore::AddWatchOnly(dest);
}
bool CWallet::Unlock(const SecureString& strWalletPassphrase)
{
CCrypter crypter;
CKeyingMaterial _vMasterKey;
{
LOCK(cs_wallet);
for (const MasterKeyMap::value_type& pMasterKey : mapMasterKeys)
{
if(!crypter.SetKeyFromPassphrase(strWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod))
return false;
if (!crypter.Decrypt(pMasterKey.second.vchCryptedKey, _vMasterKey))
continue; // try another master key
if (CCryptoKeyStore::Unlock(_vMasterKey))
return true;
}
}
return false;
}
bool CWallet::ChangeWalletPassphrase(const SecureString& strOldWalletPassphrase, const SecureString& strNewWalletPassphrase)
{
bool fWasLocked = IsLocked();
{
LOCK(cs_wallet);
Lock();
CCrypter crypter;
CKeyingMaterial _vMasterKey;
for (MasterKeyMap::value_type& pMasterKey : mapMasterKeys)
{
if(!crypter.SetKeyFromPassphrase(strOldWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod))
return false;
if (!crypter.Decrypt(pMasterKey.second.vchCryptedKey, _vMasterKey))
return false;
if (CCryptoKeyStore::Unlock(_vMasterKey))
{
int64_t nStartTime = GetTimeMillis();
crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod);
pMasterKey.second.nDeriveIterations = pMasterKey.second.nDeriveIterations * (100 / ((double)(GetTimeMillis() - nStartTime)));
nStartTime = GetTimeMillis();
crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod);
pMasterKey.second.nDeriveIterations = (pMasterKey.second.nDeriveIterations + pMasterKey.second.nDeriveIterations * 100 / ((double)(GetTimeMillis() - nStartTime))) / 2;
if (pMasterKey.second.nDeriveIterations < 25000)
pMasterKey.second.nDeriveIterations = 25000;
LogPrintf("Wallet passphrase changed to an nDeriveIterations of %i\n", pMasterKey.second.nDeriveIterations);
if (!crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod))
return false;
if (!crypter.Encrypt(_vMasterKey, pMasterKey.second.vchCryptedKey))
return false;
CWalletDB(*dbw).WriteMasterKey(pMasterKey.first, pMasterKey.second);
if (fWasLocked)
Lock();
return true;
}
}
}
return false;
}
void CWallet::SetBestChain(const CBlockLocator& loc)
{
CWalletDB walletdb(*dbw);
walletdb.WriteBestBlock(loc);
}
bool CWallet::SetMinVersion(enum WalletFeature nVersion, CWalletDB* pwalletdbIn, bool fExplicit)
{
LOCK(cs_wallet); // nWalletVersion
if (nWalletVersion >= nVersion)
return true;
// when doing an explicit upgrade, if we pass the max version permitted, upgrade all the way
if (fExplicit && nVersion > nWalletMaxVersion)
nVersion = FEATURE_LATEST;
nWalletVersion = nVersion;
if (nVersion > nWalletMaxVersion)
nWalletMaxVersion = nVersion;
{
CWalletDB* pwalletdb = pwalletdbIn ? pwalletdbIn : new CWalletDB(*dbw);
if (nWalletVersion > 40000)
pwalletdb->WriteMinVersion(nWalletVersion);
if (!pwalletdbIn)
delete pwalletdb;
}
return true;
}
bool CWallet::SetMaxVersion(int nVersion)
{
LOCK(cs_wallet); // nWalletVersion, nWalletMaxVersion
// cannot downgrade below current version
if (nWalletVersion > nVersion)
return false;
nWalletMaxVersion = nVersion;
return true;
}
std::set<uint256> CWallet::GetConflicts(const uint256& txid) const
{
std::set<uint256> result;
AssertLockHeld(cs_wallet);
std::map<uint256, CWalletTx>::const_iterator it = mapWallet.find(txid);
if (it == mapWallet.end())
return result;
const CWalletTx& wtx = it->second;
std::pair<TxSpends::const_iterator, TxSpends::const_iterator> range;
for (const CTxIn& txin : wtx.tx->vin)
{
if (mapTxSpends.count(txin.prevout) <= 1)
continue; // No conflict if zero or one spends
range = mapTxSpends.equal_range(txin.prevout);
for (TxSpends::const_iterator _it = range.first; _it != range.second; ++_it)
result.insert(_it->second);
}
return result;
}
bool CWallet::HasWalletSpend(const uint256& txid) const
{
AssertLockHeld(cs_wallet);
auto iter = mapTxSpends.lower_bound(COutPoint(txid, 0));
return (iter != mapTxSpends.end() && iter->first.hash == txid);
}
void CWallet::Flush(bool shutdown)
{
dbw->Flush(shutdown);
}
bool CWallet::Verify()
{
if (GetBoolArg("-disablewallet", DEFAULT_DISABLE_WALLET))
return true;
uiInterface.InitMessage(_("Verifying wallet(s)..."));
for (const std::string& walletFile : gArgs.GetArgs("-wallet")) {
if (boost::filesystem::path(walletFile).filename() != walletFile) {
return InitError(_("-wallet parameter must only specify a filename (not a path)"));
} else if (SanitizeString(walletFile, SAFE_CHARS_FILENAME) != walletFile) {
return InitError(_("Invalid characters in -wallet filename"));
}
std::string strError;
if (!CWalletDB::VerifyEnvironment(walletFile, GetDataDir().string(), strError)) {
return InitError(strError);
}
if (GetBoolArg("-salvagewallet", false)) {
// Recover readable keypairs:
CWallet dummyWallet;
std::string backup_filename;
if (!CWalletDB::Recover(walletFile, (void *)&dummyWallet, CWalletDB::RecoverKeysOnlyFilter, backup_filename)) {
return false;
}
}
std::string strWarning;
bool dbV = CWalletDB::VerifyDatabaseFile(walletFile, GetDataDir().string(), strWarning, strError);
if (!strWarning.empty()) {
InitWarning(strWarning);
}
if (!dbV) {
InitError(strError);
return false;
}
}
return true;
}
void CWallet::SyncMetaData(std::pair<TxSpends::iterator, TxSpends::iterator> range)
{
// We want all the wallet transactions in range to have the same metadata as
// the oldest (smallest nOrderPos).
// So: find smallest nOrderPos:
int nMinOrderPos = std::numeric_limits<int>::max();
const CWalletTx* copyFrom = NULL;
for (TxSpends::iterator it = range.first; it != range.second; ++it)
{
const uint256& hash = it->second;
int n = mapWallet[hash].nOrderPos;
if (n < nMinOrderPos)
{
nMinOrderPos = n;
copyFrom = &mapWallet[hash];
}
}
// Now copy data from copyFrom to rest:
for (TxSpends::iterator it = range.first; it != range.second; ++it)
{
const uint256& hash = it->second;
CWalletTx* copyTo = &mapWallet[hash];
if (copyFrom == copyTo) continue;
if (!copyFrom->IsEquivalentTo(*copyTo)) continue;
copyTo->mapValue = copyFrom->mapValue;
copyTo->vOrderForm = copyFrom->vOrderForm;
// fTimeReceivedIsTxTime not copied on purpose
// nTimeReceived not copied on purpose
copyTo->nTimeSmart = copyFrom->nTimeSmart;
copyTo->fFromMe = copyFrom->fFromMe;
copyTo->strFromAccount = copyFrom->strFromAccount;
// nOrderPos not copied on purpose
// cached members not copied on purpose
}
}
/**
* Outpoint is spent if any non-conflicted transaction
* spends it:
*/
bool CWallet::IsSpent(const uint256& hash, unsigned int n) const
{
const COutPoint outpoint(hash, n);
std::pair<TxSpends::const_iterator, TxSpends::const_iterator> range;
range = mapTxSpends.equal_range(outpoint);
for (TxSpends::const_iterator it = range.first; it != range.second; ++it)
{
const uint256& wtxid = it->second;
std::map<uint256, CWalletTx>::const_iterator mit = mapWallet.find(wtxid);
if (mit != mapWallet.end()) {
int depth = mit->second.GetDepthInMainChain();
if (depth > 0 || (depth == 0 && !mit->second.isAbandoned()))
return true; // Spent
}
}
return false;
}
void CWallet::AddToSpends(const COutPoint& outpoint, const uint256& wtxid)
{
mapTxSpends.insert(std::make_pair(outpoint, wtxid));
std::pair<TxSpends::iterator, TxSpends::iterator> range;
range = mapTxSpends.equal_range(outpoint);
SyncMetaData(range);
}
void CWallet::AddToSpends(const uint256& wtxid)
{
assert(mapWallet.count(wtxid));
CWalletTx& thisTx = mapWallet[wtxid];
if (thisTx.IsCoinBase()) // Coinbases don't spend anything!
return;
for (const CTxIn& txin : thisTx.tx->vin)
AddToSpends(txin.prevout, wtxid);
}
bool CWallet::EncryptWallet(const SecureString& strWalletPassphrase)
{
if (IsCrypted())
return false;
CKeyingMaterial _vMasterKey;
_vMasterKey.resize(WALLET_CRYPTO_KEY_SIZE);
GetStrongRandBytes(&_vMasterKey[0], WALLET_CRYPTO_KEY_SIZE);
CMasterKey kMasterKey;
kMasterKey.vchSalt.resize(WALLET_CRYPTO_SALT_SIZE);
GetStrongRandBytes(&kMasterKey.vchSalt[0], WALLET_CRYPTO_SALT_SIZE);
CCrypter crypter;
int64_t nStartTime = GetTimeMillis();
crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, 25000, kMasterKey.nDerivationMethod);
kMasterKey.nDeriveIterations = 2500000 / ((double)(GetTimeMillis() - nStartTime));
nStartTime = GetTimeMillis();
crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, kMasterKey.nDeriveIterations, kMasterKey.nDerivationMethod);
kMasterKey.nDeriveIterations = (kMasterKey.nDeriveIterations + kMasterKey.nDeriveIterations * 100 / ((double)(GetTimeMillis() - nStartTime))) / 2;
if (kMasterKey.nDeriveIterations < 25000)
kMasterKey.nDeriveIterations = 25000;
LogPrintf("Encrypting Wallet with an nDeriveIterations of %i\n", kMasterKey.nDeriveIterations);
if (!crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, kMasterKey.nDeriveIterations, kMasterKey.nDerivationMethod))
return false;
if (!crypter.Encrypt(_vMasterKey, kMasterKey.vchCryptedKey))
return false;
{
LOCK(cs_wallet);
mapMasterKeys[++nMasterKeyMaxID] = kMasterKey;
assert(!pwalletdbEncryption);
pwalletdbEncryption = new CWalletDB(*dbw);
if (!pwalletdbEncryption->TxnBegin()) {
delete pwalletdbEncryption;
pwalletdbEncryption = NULL;
return false;
}
pwalletdbEncryption->WriteMasterKey(nMasterKeyMaxID, kMasterKey);
if (!EncryptKeys(_vMasterKey))
{
pwalletdbEncryption->TxnAbort();
delete pwalletdbEncryption;
// We now probably have half of our keys encrypted in memory, and half not...
// die and let the user reload the unencrypted wallet.
assert(false);
}
// Encryption was introduced in version 0.4.0
SetMinVersion(FEATURE_WALLETCRYPT, pwalletdbEncryption, true);
if (!pwalletdbEncryption->TxnCommit()) {
delete pwalletdbEncryption;
// We now have keys encrypted in memory, but not on disk...
// die to avoid confusion and let the user reload the unencrypted wallet.
assert(false);
}
delete pwalletdbEncryption;
pwalletdbEncryption = NULL;
Lock();
Unlock(strWalletPassphrase);
// if we are using HD, replace the HD master key (seed) with a new one
if (IsHDEnabled()) {
if (!SetHDMasterKey(GenerateNewHDMasterKey())) {
return false;
}
}
NewKeyPool();
Lock();
// Need to completely rewrite the wallet file; if we don't, bdb might keep
// bits of the unencrypted private key in slack space in the database file.
dbw->Rewrite();
}
NotifyStatusChanged(this);
return true;
}
DBErrors CWallet::ReorderTransactions()
{
LOCK(cs_wallet);
CWalletDB walletdb(*dbw);
// Old wallets didn't have any defined order for transactions
// Probably a bad idea to change the output of this
// First: get all CWalletTx and CAccountingEntry into a sorted-by-time multimap.
typedef std::pair<CWalletTx*, CAccountingEntry*> TxPair;
typedef std::multimap<int64_t, TxPair > TxItems;
TxItems txByTime;
for (std::map<uint256, CWalletTx>::iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
CWalletTx* wtx = &((*it).second);
txByTime.insert(std::make_pair(wtx->nTimeReceived, TxPair(wtx, (CAccountingEntry*)0)));
}
std::list<CAccountingEntry> acentries;
walletdb.ListAccountCreditDebit("", acentries);
for (CAccountingEntry& entry : acentries)
{
txByTime.insert(std::make_pair(entry.nTime, TxPair((CWalletTx*)0, &entry)));
}
nOrderPosNext = 0;
std::vector<int64_t> nOrderPosOffsets;
for (TxItems::iterator it = txByTime.begin(); it != txByTime.end(); ++it)
{
CWalletTx *const pwtx = (*it).second.first;
CAccountingEntry *const pacentry = (*it).second.second;
int64_t& nOrderPos = (pwtx != 0) ? pwtx->nOrderPos : pacentry->nOrderPos;
if (nOrderPos == -1)
{
nOrderPos = nOrderPosNext++;
nOrderPosOffsets.push_back(nOrderPos);
if (pwtx)
{
if (!walletdb.WriteTx(*pwtx))
return DB_LOAD_FAIL;
}
else
if (!walletdb.WriteAccountingEntry(pacentry->nEntryNo, *pacentry))
return DB_LOAD_FAIL;
}
else
{
int64_t nOrderPosOff = 0;
for (const int64_t& nOffsetStart : nOrderPosOffsets)
{
if (nOrderPos >= nOffsetStart)
++nOrderPosOff;
}
nOrderPos += nOrderPosOff;
nOrderPosNext = std::max(nOrderPosNext, nOrderPos + 1);
if (!nOrderPosOff)
continue;
// Since we're changing the order, write it back
if (pwtx)
{
if (!walletdb.WriteTx(*pwtx))
return DB_LOAD_FAIL;
}
else
if (!walletdb.WriteAccountingEntry(pacentry->nEntryNo, *pacentry))
return DB_LOAD_FAIL;
}
}
walletdb.WriteOrderPosNext(nOrderPosNext);
return DB_LOAD_OK;
}
int64_t CWallet::IncOrderPosNext(CWalletDB *pwalletdb)
{
AssertLockHeld(cs_wallet); // nOrderPosNext
int64_t nRet = nOrderPosNext++;
if (pwalletdb) {
pwalletdb->WriteOrderPosNext(nOrderPosNext);
} else {
CWalletDB(*dbw).WriteOrderPosNext(nOrderPosNext);
}
return nRet;
}
bool CWallet::AccountMove(std::string strFrom, std::string strTo, CAmount nAmount, std::string strComment)
{
CWalletDB walletdb(*dbw);
if (!walletdb.TxnBegin())
return false;
int64_t nNow = GetAdjustedTime();
// Debit
CAccountingEntry debit;
debit.nOrderPos = IncOrderPosNext(&walletdb);
debit.strAccount = strFrom;
debit.nCreditDebit = -nAmount;
debit.nTime = nNow;
debit.strOtherAccount = strTo;
debit.strComment = strComment;
AddAccountingEntry(debit, &walletdb);
// Credit
CAccountingEntry credit;
credit.nOrderPos = IncOrderPosNext(&walletdb);
credit.strAccount = strTo;
credit.nCreditDebit = nAmount;
credit.nTime = nNow;
credit.strOtherAccount = strFrom;
credit.strComment = strComment;
AddAccountingEntry(credit, &walletdb);
if (!walletdb.TxnCommit())
return false;
return true;
}
bool CWallet::GetAccountPubkey(CPubKey &pubKey, std::string strAccount, bool bForceNew)
{
CWalletDB walletdb(*dbw);
CAccount account;
walletdb.ReadAccount(strAccount, account);
if (!bForceNew) {
if (!account.vchPubKey.IsValid())
bForceNew = true;
else {
// Check if the current key has been used
CScript scriptPubKey = GetScriptForDestination(account.vchPubKey.GetID());
for (std::map<uint256, CWalletTx>::iterator it = mapWallet.begin();
it != mapWallet.end() && account.vchPubKey.IsValid();
++it)
for (const CTxOut& txout : (*it).second.tx->vout)
if (txout.scriptPubKey == scriptPubKey) {
bForceNew = true;
break;
}
}
}
// Generate a new key
if (bForceNew) {
if (!GetKeyFromPool(account.vchPubKey, false))
return false;
SetAddressBook(account.vchPubKey.GetID(), strAccount, "receive");
walletdb.WriteAccount(strAccount, account);
}
pubKey = account.vchPubKey;
return true;
}
void CWallet::MarkDirty()
{
{
LOCK(cs_wallet);
for (std::pair<const uint256, CWalletTx>& item : mapWallet)
item.second.MarkDirty();
}
}
bool CWallet::MarkReplaced(const uint256& originalHash, const uint256& newHash)
{
LOCK(cs_wallet);
auto mi = mapWallet.find(originalHash);
// There is a bug if MarkReplaced is not called on an existing wallet transaction.
assert(mi != mapWallet.end());
CWalletTx& wtx = (*mi).second;
// Ensure for now that we're not overwriting data
assert(wtx.mapValue.count("replaced_by_txid") == 0);
wtx.mapValue["replaced_by_txid"] = newHash.ToString();
CWalletDB walletdb(*dbw, "r+");
bool success = true;
if (!walletdb.WriteTx(wtx)) {
LogPrintf("%s: Updating walletdb tx %s failed", __func__, wtx.GetHash().ToString());
success = false;
}
NotifyTransactionChanged(this, originalHash, CT_UPDATED);
return success;
}
bool CWallet::AddToWallet(const CWalletTx& wtxIn, bool fFlushOnClose)
{
LOCK(cs_wallet);
CWalletDB walletdb(*dbw, "r+", fFlushOnClose);
uint256 hash = wtxIn.GetHash();
// Inserts only if not already there, returns tx inserted or tx found
std::pair<std::map<uint256, CWalletTx>::iterator, bool> ret = mapWallet.insert(std::make_pair(hash, wtxIn));
CWalletTx& wtx = (*ret.first).second;
wtx.BindWallet(this);
bool fInsertedNew = ret.second;
if (fInsertedNew)
{
wtx.nTimeReceived = GetAdjustedTime();
wtx.nOrderPos = IncOrderPosNext(&walletdb);
wtxOrdered.insert(std::make_pair(wtx.nOrderPos, TxPair(&wtx, (CAccountingEntry*)0)));
wtx.nTimeSmart = ComputeTimeSmart(wtx);
AddToSpends(hash);
}
bool fUpdated = false;
if (!fInsertedNew)
{
// Merge
if (!wtxIn.hashUnset() && wtxIn.hashBlock != wtx.hashBlock)
{
wtx.hashBlock = wtxIn.hashBlock;
fUpdated = true;
}
// If no longer abandoned, update
if (wtxIn.hashBlock.IsNull() && wtx.isAbandoned())
{
wtx.hashBlock = wtxIn.hashBlock;
fUpdated = true;
}
if (wtxIn.nIndex != -1 && (wtxIn.nIndex != wtx.nIndex))
{
wtx.nIndex = wtxIn.nIndex;
fUpdated = true;
}
if (wtxIn.fFromMe && wtxIn.fFromMe != wtx.fFromMe)
{
wtx.fFromMe = wtxIn.fFromMe;
fUpdated = true;
}
}
//// debug print
LogPrintf("AddToWallet %s %s%s\n", wtxIn.GetHash().ToString(), (fInsertedNew ? "new" : ""), (fUpdated ? "update" : ""));
// Write to disk
if (fInsertedNew || fUpdated)
if (!walletdb.WriteTx(wtx))
return false;
// Break debit/credit balance caches:
wtx.MarkDirty();
// Notify UI of new or updated transaction
NotifyTransactionChanged(this, hash, fInsertedNew ? CT_NEW : CT_UPDATED);
// notify an external script when a wallet transaction comes in or is updated
std::string strCmd = GetArg("-walletnotify", "");
if ( !strCmd.empty())
{
boost::replace_all(strCmd, "%s", wtxIn.GetHash().GetHex());
boost::thread t(runCommand, strCmd); // thread runs free
}
return true;
}
bool CWallet::LoadToWallet(const CWalletTx& wtxIn)
{
uint256 hash = wtxIn.GetHash();
mapWallet[hash] = wtxIn;
CWalletTx& wtx = mapWallet[hash];
wtx.BindWallet(this);
wtxOrdered.insert(std::make_pair(wtx.nOrderPos, TxPair(&wtx, (CAccountingEntry*)0)));
AddToSpends(hash);
for (const CTxIn& txin : wtx.tx->vin) {
if (mapWallet.count(txin.prevout.hash)) {
CWalletTx& prevtx = mapWallet[txin.prevout.hash];
if (prevtx.nIndex == -1 && !prevtx.hashUnset()) {
MarkConflicted(prevtx.hashBlock, wtx.GetHash());
}
}
}
return true;
}
/**
* Add a transaction to the wallet, or update it. pIndex and posInBlock should
* be set when the transaction was known to be included in a block. When
* pIndex == NULL, then wallet state is not updated in AddToWallet, but
* notifications happen and cached balances are marked dirty.
*
* If fUpdate is true, existing transactions will be updated.
* TODO: One exception to this is that the abandoned state is cleared under the
* assumption that any further notification of a transaction that was considered
* abandoned is an indication that it is not safe to be considered abandoned.
* Abandoned state should probably be more carefully tracked via different
* posInBlock signals or by checking mempool presence when necessary.
*/
bool CWallet::AddToWalletIfInvolvingMe(const CTransactionRef& ptx, const CBlockIndex* pIndex, int posInBlock, bool fUpdate)
{
const CTransaction& tx = *ptx;
{
AssertLockHeld(cs_wallet);
if (pIndex != NULL) {
for (const CTxIn& txin : tx.vin) {
std::pair<TxSpends::const_iterator, TxSpends::const_iterator> range = mapTxSpends.equal_range(txin.prevout);
while (range.first != range.second) {
if (range.first->second != tx.GetHash()) {
LogPrintf("Transaction %s (in block %s) conflicts with wallet transaction %s (both spend %s:%i)\n", tx.GetHash().ToString(), pIndex->GetBlockHash().ToString(), range.first->second.ToString(), range.first->first.hash.ToString(), range.first->first.n);
MarkConflicted(pIndex->GetBlockHash(), range.first->second);
}
range.first++;
}
}
}
bool fExisted = mapWallet.count(tx.GetHash()) != 0;
if (fExisted && !fUpdate) return false;
if (fExisted || IsMine(tx) || IsFromMe(tx))
{
CWalletTx wtx(this, ptx);
// Get merkle branch if transaction was found in a block
if (pIndex != NULL)
wtx.SetMerkleBranch(pIndex, posInBlock);
return AddToWallet(wtx, false);
}
}
return false;
}
bool CWallet::TransactionCanBeAbandoned(const uint256& hashTx) const
{
LOCK2(cs_main, cs_wallet);
const CWalletTx* wtx = GetWalletTx(hashTx);
return wtx && !wtx->isAbandoned() && wtx->GetDepthInMainChain() <= 0 && !wtx->InMempool();
}
bool CWallet::AbandonTransaction(const uint256& hashTx)
{
LOCK2(cs_main, cs_wallet);
CWalletDB walletdb(*dbw, "r+");
std::set<uint256> todo;
std::set<uint256> done;
// Can't mark abandoned if confirmed or in mempool
assert(mapWallet.count(hashTx));
CWalletTx& origtx = mapWallet[hashTx];
if (origtx.GetDepthInMainChain() > 0 || origtx.InMempool()) {
return false;
}
todo.insert(hashTx);
while (!todo.empty()) {
uint256 now = *todo.begin();
todo.erase(now);
done.insert(now);
assert(mapWallet.count(now));
CWalletTx& wtx = mapWallet[now];
int currentconfirm = wtx.GetDepthInMainChain();
// If the orig tx was not in block, none of its spends can be
assert(currentconfirm <= 0);
// if (currentconfirm < 0) {Tx and spends are already conflicted, no need to abandon}
if (currentconfirm == 0 && !wtx.isAbandoned()) {
// If the orig tx was not in block/mempool, none of its spends can be in mempool
assert(!wtx.InMempool());
wtx.nIndex = -1;
wtx.setAbandoned();
wtx.MarkDirty();
walletdb.WriteTx(wtx);
NotifyTransactionChanged(this, wtx.GetHash(), CT_UPDATED);
// Iterate over all its outputs, and mark transactions in the wallet that spend them abandoned too
TxSpends::const_iterator iter = mapTxSpends.lower_bound(COutPoint(hashTx, 0));
while (iter != mapTxSpends.end() && iter->first.hash == now) {
if (!done.count(iter->second)) {
todo.insert(iter->second);
}
iter++;
}
// If a transaction changes 'conflicted' state, that changes the balance
// available of the outputs it spends. So force those to be recomputed
for (const CTxIn& txin : wtx.tx->vin)
{
if (mapWallet.count(txin.prevout.hash))
mapWallet[txin.prevout.hash].MarkDirty();
}
}
}
return true;
}
void CWallet::MarkConflicted(const uint256& hashBlock, const uint256& hashTx)
{
LOCK2(cs_main, cs_wallet);
int conflictconfirms = 0;
if (mapBlockIndex.count(hashBlock)) {
CBlockIndex* pindex = mapBlockIndex[hashBlock];
if (chainActive.Contains(pindex)) {
conflictconfirms = -(chainActive.Height() - pindex->nHeight + 1);
}
}
// If number of conflict confirms cannot be determined, this means
// that the block is still unknown or not yet part of the main chain,
// for example when loading the wallet during a reindex. Do nothing in that
// case.
if (conflictconfirms >= 0)
return;
// Do not flush the wallet here for performance reasons
CWalletDB walletdb(*dbw, "r+", false);
std::set<uint256> todo;
std::set<uint256> done;
todo.insert(hashTx);
while (!todo.empty()) {
uint256 now = *todo.begin();
todo.erase(now);
done.insert(now);
assert(mapWallet.count(now));
CWalletTx& wtx = mapWallet[now];
int currentconfirm = wtx.GetDepthInMainChain();
if (conflictconfirms < currentconfirm) {
// Block is 'more conflicted' than current confirm; update.
// Mark transaction as conflicted with this block.
wtx.nIndex = -1;
wtx.hashBlock = hashBlock;
wtx.MarkDirty();
walletdb.WriteTx(wtx);
// Iterate over all its outputs, and mark transactions in the wallet that spend them conflicted too
TxSpends::const_iterator iter = mapTxSpends.lower_bound(COutPoint(now, 0));
while (iter != mapTxSpends.end() && iter->first.hash == now) {
if (!done.count(iter->second)) {
todo.insert(iter->second);
}
iter++;
}
// If a transaction changes 'conflicted' state, that changes the balance
// available of the outputs it spends. So force those to be recomputed
for (const CTxIn& txin : wtx.tx->vin)
{
if (mapWallet.count(txin.prevout.hash))
mapWallet[txin.prevout.hash].MarkDirty();
}
}
}
}
void CWallet::SyncTransaction(const CTransactionRef& ptx, const CBlockIndex *pindex, int posInBlock) {
const CTransaction& tx = *ptx;
if (!AddToWalletIfInvolvingMe(ptx, pindex, posInBlock, true))
return; // Not one of ours
// If a transaction changes 'conflicted' state, that changes the balance
// available of the outputs it spends. So force those to be
// recomputed, also:
for (const CTxIn& txin : tx.vin)
{
if (mapWallet.count(txin.prevout.hash))
mapWallet[txin.prevout.hash].MarkDirty();
}
}
void CWallet::TransactionAddedToMempool(const CTransactionRef& ptx) {
LOCK2(cs_main, cs_wallet);
SyncTransaction(ptx);
}
void CWallet::BlockConnected(const std::shared_ptr<const CBlock>& pblock, const CBlockIndex *pindex, const std::vector<CTransactionRef>& vtxConflicted) {
LOCK2(cs_main, cs_wallet);
// TODO: Temporarily ensure that mempool removals are notified before
// connected transactions. This shouldn't matter, but the abandoned
// state of transactions in our wallet is currently cleared when we
// receive another notification and there is a race condition where
// notification of a connected conflict might cause an outside process
// to abandon a transaction and then have it inadvertently cleared by
// the notification that the conflicted transaction was evicted.
for (const CTransactionRef& ptx : vtxConflicted) {
SyncTransaction(ptx);
}
for (size_t i = 0; i < pblock->vtx.size(); i++) {
SyncTransaction(pblock->vtx[i], pindex, i);
}
}
void CWallet::BlockDisconnected(const std::shared_ptr<const CBlock>& pblock) {
LOCK2(cs_main, cs_wallet);
for (const CTransactionRef& ptx : pblock->vtx) {
SyncTransaction(ptx);
}
}
isminetype CWallet::IsMine(const CTxIn &txin) const
{
{
LOCK(cs_wallet);
std::map<uint256, CWalletTx>::const_iterator mi = mapWallet.find(txin.prevout.hash);
if (mi != mapWallet.end())
{
const CWalletTx& prev = (*mi).second;
if (txin.prevout.n < prev.tx->vout.size())
return IsMine(prev.tx->vout[txin.prevout.n]);
}
}
return ISMINE_NO;
}
// Note that this function doesn't distinguish between a 0-valued input,
// and a not-"is mine" (according to the filter) input.
CAmount CWallet::GetDebit(const CTxIn &txin, const isminefilter& filter) const
{
{
LOCK(cs_wallet);
std::map<uint256, CWalletTx>::const_iterator mi = mapWallet.find(txin.prevout.hash);
if (mi != mapWallet.end())
{
const CWalletTx& prev = (*mi).second;
if (txin.prevout.n < prev.tx->vout.size())
if (IsMine(prev.tx->vout[txin.prevout.n]) & filter)
return prev.tx->vout[txin.prevout.n].nValue;
}
}
return 0;
}
isminetype CWallet::IsMine(const CTxOut& txout) const
{
return ::IsMine(*this, txout.scriptPubKey);
}
CAmount CWallet::GetCredit(const CTxOut& txout, const isminefilter& filter) const
{
if (!MoneyRange(txout.nValue))
throw std::runtime_error(std::string(__func__) + ": value out of range");
return ((IsMine(txout) & filter) ? txout.nValue : 0);
}
bool CWallet::IsChange(const CTxOut& txout) const
{
// TODO: fix handling of 'change' outputs. The assumption is that any
// payment to a script that is ours, but is not in the address book
// is change. That assumption is likely to break when we implement multisignature
// wallets that return change back into a multi-signature-protected address;
// a better way of identifying which outputs are 'the send' and which are
// 'the change' will need to be implemented (maybe extend CWalletTx to remember
// which output, if any, was change).
if (::IsMine(*this, txout.scriptPubKey))
{
CTxDestination address;
if (!ExtractDestination(txout.scriptPubKey, address))
return true;
LOCK(cs_wallet);
if (!mapAddressBook.count(address))
return true;
}
return false;
}
CAmount CWallet::GetChange(const CTxOut& txout) const
{
if (!MoneyRange(txout.nValue))
throw std::runtime_error(std::string(__func__) + ": value out of range");
return (IsChange(txout) ? txout.nValue : 0);
}
bool CWallet::IsMine(const CTransaction& tx) const
{
for (const CTxOut& txout : tx.vout)
if (IsMine(txout))
return true;
return false;
}
bool CWallet::IsFromMe(const CTransaction& tx) const
{
return (GetDebit(tx, ISMINE_ALL) > 0);
}
CAmount CWallet::GetDebit(const CTransaction& tx, const isminefilter& filter) const
{
CAmount nDebit = 0;
for (const CTxIn& txin : tx.vin)
{
nDebit += GetDebit(txin, filter);
if (!MoneyRange(nDebit))
throw std::runtime_error(std::string(__func__) + ": value out of range");
}
return nDebit;
}
bool CWallet::IsAllFromMe(const CTransaction& tx, const isminefilter& filter) const
{
LOCK(cs_wallet);
for (const CTxIn& txin : tx.vin)
{
auto mi = mapWallet.find(txin.prevout.hash);
if (mi == mapWallet.end())
return false; // any unknown inputs can't be from us
const CWalletTx& prev = (*mi).second;
if (txin.prevout.n >= prev.tx->vout.size())
return false; // invalid input!
if (!(IsMine(prev.tx->vout[txin.prevout.n]) & filter))
return false;
}
return true;
}
CAmount CWallet::GetCredit(const CTransaction& tx, const isminefilter& filter) const
{
CAmount nCredit = 0;
for (const CTxOut& txout : tx.vout)
{
nCredit += GetCredit(txout, filter);
if (!MoneyRange(nCredit))
throw std::runtime_error(std::string(__func__) + ": value out of range");
}
return nCredit;
}
CAmount CWallet::GetChange(const CTransaction& tx) const
{
CAmount nChange = 0;
for (const CTxOut& txout : tx.vout)
{
nChange += GetChange(txout);
if (!MoneyRange(nChange))
throw std::runtime_error(std::string(__func__) + ": value out of range");
}
return nChange;
}
CPubKey CWallet::GenerateNewHDMasterKey()
{
CKey key;
key.MakeNewKey(true);
int64_t nCreationTime = GetTime();
CKeyMetadata metadata(nCreationTime);
// calculate the pubkey
CPubKey pubkey = key.GetPubKey();
assert(key.VerifyPubKey(pubkey));
// set the hd keypath to "m" -> Master, refers the masterkeyid to itself
metadata.hdKeypath = "m";
metadata.hdMasterKeyID = pubkey.GetID();
{
LOCK(cs_wallet);
// mem store the metadata
mapKeyMetadata[pubkey.GetID()] = metadata;
// write the key&metadata to the database
if (!AddKeyPubKey(key, pubkey))
throw std::runtime_error(std::string(__func__) + ": AddKeyPubKey failed");
}
return pubkey;
}
bool CWallet::SetHDMasterKey(const CPubKey& pubkey)
{
LOCK(cs_wallet);
// store the keyid (hash160) together with
// the child index counter in the database
// as a hdchain object
CHDChain newHdChain;
newHdChain.nVersion = CanSupportFeature(FEATURE_HD_SPLIT) ? CHDChain::VERSION_HD_CHAIN_SPLIT : CHDChain::VERSION_HD_BASE;
newHdChain.masterKeyID = pubkey.GetID();
SetHDChain(newHdChain, false);
return true;
}
bool CWallet::SetHDChain(const CHDChain& chain, bool memonly)
{
LOCK(cs_wallet);
if (!memonly && !CWalletDB(*dbw).WriteHDChain(chain))
throw std::runtime_error(std::string(__func__) + ": writing chain failed");
hdChain = chain;
return true;
}
bool CWallet::IsHDEnabled() const
{
return !hdChain.masterKeyID.IsNull();
}
int64_t CWalletTx::GetTxTime() const
{
int64_t n = nTimeSmart;
return n ? n : nTimeReceived;
}
int CWalletTx::GetRequestCount() const
{
// Returns -1 if it wasn't being tracked
int nRequests = -1;
{
LOCK(pwallet->cs_wallet);
if (IsCoinBase())
{
// Generated block
if (!hashUnset())
{
std::map<uint256, int>::const_iterator mi = pwallet->mapRequestCount.find(hashBlock);
if (mi != pwallet->mapRequestCount.end())
nRequests = (*mi).second;
}
}
else
{
// Did anyone request this transaction?
std::map<uint256, int>::const_iterator mi = pwallet->mapRequestCount.find(GetHash());
if (mi != pwallet->mapRequestCount.end())
{
nRequests = (*mi).second;
// How about the block it's in?
if (nRequests == 0 && !hashUnset())
{
std::map<uint256, int>::const_iterator _mi = pwallet->mapRequestCount.find(hashBlock);
if (_mi != pwallet->mapRequestCount.end())
nRequests = (*_mi).second;
else
nRequests = 1; // If it's in someone else's block it must have got out
}
}
}
}
return nRequests;
}
void CWalletTx::GetAmounts(std::list<COutputEntry>& listReceived,
std::list<COutputEntry>& listSent, CAmount& nFee, std::string& strSentAccount, const isminefilter& filter) const
{
nFee = 0;
listReceived.clear();
listSent.clear();
strSentAccount = strFromAccount;
// Compute fee:
CAmount nDebit = GetDebit(filter);
if (nDebit > 0) // debit>0 means we signed/sent this transaction
{
CAmount nValueOut = tx->GetValueOut();
nFee = nDebit - nValueOut;
}
// Sent/received.
for (unsigned int i = 0; i < tx->vout.size(); ++i)
{
const CTxOut& txout = tx->vout[i];
isminetype fIsMine = pwallet->IsMine(txout);
// Only need to handle txouts if AT LEAST one of these is true:
// 1) they debit from us (sent)
// 2) the output is to us (received)
if (nDebit > 0)
{
// Don't report 'change' txouts
if (pwallet->IsChange(txout))
continue;
}
else if (!(fIsMine & filter))
continue;
// In either case, we need to get the destination address
CTxDestination address;
if (!ExtractDestination(txout.scriptPubKey, address) && !txout.scriptPubKey.IsUnspendable())
{
LogPrintf("CWalletTx::GetAmounts: Unknown transaction type found, txid %s\n",
this->GetHash().ToString());
address = CNoDestination();
}
COutputEntry output = {address, txout.nValue, (int)i};
// If we are debited by the transaction, add the output as a "sent" entry
if (nDebit > 0)
listSent.push_back(output);
// If we are receiving the output, add it as a "received" entry
if (fIsMine & filter)
listReceived.push_back(output);
}
}
/**
* Scan active chain for relevant transactions after importing keys. This should
* be called whenever new keys are added to the wallet, with the oldest key
* creation time.
*
* @return Earliest timestamp that could be successfully scanned from. Timestamp
* returned will be higher than startTime if relevant blocks could not be read.
*/
int64_t CWallet::RescanFromTime(int64_t startTime, bool update)
{
AssertLockHeld(cs_main);
AssertLockHeld(cs_wallet);
// Find starting block. May be null if nCreateTime is greater than the
// highest blockchain timestamp, in which case there is nothing that needs
// to be scanned.
CBlockIndex* const startBlock = chainActive.FindEarliestAtLeast(startTime - TIMESTAMP_WINDOW);
LogPrintf("%s: Rescanning last %i blocks\n", __func__, startBlock ? chainActive.Height() - startBlock->nHeight + 1 : 0);
if (startBlock) {
const CBlockIndex* const failedBlock = ScanForWalletTransactions(startBlock, update);
if (failedBlock) {
return failedBlock->GetBlockTimeMax() + TIMESTAMP_WINDOW + 1;
}
}
return startTime;
}
/**
* Scan the block chain (starting in pindexStart) for transactions
* from or to us. If fUpdate is true, found transactions that already
* exist in the wallet will be updated.
*
* Returns null if scan was successful. Otherwise, if a complete rescan was not
* possible (due to pruning or corruption), returns pointer to the most recent
* block that could not be scanned.
*/
CBlockIndex* CWallet::ScanForWalletTransactions(CBlockIndex* pindexStart, bool fUpdate)
{
int64_t nNow = GetTime();
const CChainParams& chainParams = Params();
CBlockIndex* pindex = pindexStart;
CBlockIndex* ret = nullptr;
{
LOCK2(cs_main, cs_wallet);
fAbortRescan = false;
fScanningWallet = true;
ShowProgress(_("Rescanning..."), 0); // show rescan progress in GUI as dialog or on splashscreen, if -rescan on startup
double dProgressStart = GuessVerificationProgress(chainParams.TxData(), pindex);
double dProgressTip = GuessVerificationProgress(chainParams.TxData(), chainActive.Tip());
while (pindex && !fAbortRescan)
{
if (pindex->nHeight % 100 == 0 && dProgressTip - dProgressStart > 0.0)
ShowProgress(_("Rescanning..."), std::max(1, std::min(99, (int)((GuessVerificationProgress(chainParams.TxData(), pindex) - dProgressStart) / (dProgressTip - dProgressStart) * 100))));
if (GetTime() >= nNow + 60) {
nNow = GetTime();
LogPrintf("Still rescanning. At block %d. Progress=%f\n", pindex->nHeight, GuessVerificationProgress(chainParams.TxData(), pindex));
}
CBlock block;
if (ReadBlockFromDisk(block, pindex, Params().GetConsensus())) {
for (size_t posInBlock = 0; posInBlock < block.vtx.size(); ++posInBlock) {
AddToWalletIfInvolvingMe(block.vtx[posInBlock], pindex, posInBlock, fUpdate);
}
} else {
ret = pindex;
}
pindex = chainActive.Next(pindex);
}
if (pindex && fAbortRescan) {
LogPrintf("Rescan aborted at block %d. Progress=%f\n", pindex->nHeight, GuessVerificationProgress(chainParams.TxData(), pindex));
}
ShowProgress(_("Rescanning..."), 100); // hide progress dialog in GUI
fScanningWallet = false;
}
return ret;
}
void CWallet::ReacceptWalletTransactions()
{
// If transactions aren't being broadcasted, don't let them into local mempool either
if (!fBroadcastTransactions)
return;
LOCK2(cs_main, cs_wallet);
std::map<int64_t, CWalletTx*> mapSorted;
// Sort pending wallet transactions based on their initial wallet insertion order
for (std::pair<const uint256, CWalletTx>& item : mapWallet)
{
const uint256& wtxid = item.first;
CWalletTx& wtx = item.second;
assert(wtx.GetHash() == wtxid);
int nDepth = wtx.GetDepthInMainChain();
if (!wtx.IsCoinBase() && (nDepth == 0 && !wtx.isAbandoned())) {
mapSorted.insert(std::make_pair(wtx.nOrderPos, &wtx));
}
}
// Try to add wallet transactions to memory pool
for (std::pair<const int64_t, CWalletTx*>& item : mapSorted)
{
CWalletTx& wtx = *(item.second);
LOCK(mempool.cs);
CValidationState state;
wtx.AcceptToMemoryPool(maxTxFee, state);
}
}
bool CWalletTx::RelayWalletTransaction(CConnman* connman)
{
assert(pwallet->GetBroadcastTransactions());
if (!IsCoinBase() && !isAbandoned() && GetDepthInMainChain() == 0)
{
CValidationState state;
/* GetDepthInMainChain already catches known conflicts. */
if (InMempool() || AcceptToMemoryPool(maxTxFee, state)) {
LogPrintf("Relaying wtx %s\n", GetHash().ToString());
if (connman) {
CInv inv(MSG_TX, GetHash());
connman->ForEachNode([&inv](CNode* pnode)
{
pnode->PushInventory(inv);
});
return true;
}
}
}
return false;
}
std::set<uint256> CWalletTx::GetConflicts() const
{
std::set<uint256> result;
if (pwallet != NULL)
{
uint256 myHash = GetHash();
result = pwallet->GetConflicts(myHash);
result.erase(myHash);
}
return result;
}
CAmount CWalletTx::GetDebit(const isminefilter& filter) const
{
if (tx->vin.empty())
return 0;
CAmount debit = 0;
if(filter & ISMINE_SPENDABLE)
{
if (fDebitCached)
debit += nDebitCached;
else
{
nDebitCached = pwallet->GetDebit(*this, ISMINE_SPENDABLE);
fDebitCached = true;
debit += nDebitCached;
}
}
if(filter & ISMINE_WATCH_ONLY)
{
if(fWatchDebitCached)
debit += nWatchDebitCached;
else
{
nWatchDebitCached = pwallet->GetDebit(*this, ISMINE_WATCH_ONLY);
fWatchDebitCached = true;
debit += nWatchDebitCached;
}
}
return debit;
}
CAmount CWalletTx::GetCredit(const isminefilter& filter) const
{
// Must wait until coinbase is safely deep enough in the chain before valuing it
if (IsCoinBase() && GetBlocksToMaturity() > 0)
return 0;
CAmount credit = 0;
if (filter & ISMINE_SPENDABLE)
{
// GetBalance can assume transactions in mapWallet won't change
if (fCreditCached)
credit += nCreditCached;
else
{
nCreditCached = pwallet->GetCredit(*this, ISMINE_SPENDABLE);
fCreditCached = true;
credit += nCreditCached;
}
}
if (filter & ISMINE_WATCH_ONLY)
{
if (fWatchCreditCached)
credit += nWatchCreditCached;
else
{
nWatchCreditCached = pwallet->GetCredit(*this, ISMINE_WATCH_ONLY);
fWatchCreditCached = true;
credit += nWatchCreditCached;
}
}
return credit;
}
CAmount CWalletTx::GetImmatureCredit(bool fUseCache) const
{
if (IsCoinBase() && GetBlocksToMaturity() > 0 && IsInMainChain())
{
if (fUseCache && fImmatureCreditCached)
return nImmatureCreditCached;
nImmatureCreditCached = pwallet->GetCredit(*this, ISMINE_SPENDABLE);
fImmatureCreditCached = true;
return nImmatureCreditCached;
}
return 0;
}
CAmount CWalletTx::GetAvailableCredit(bool fUseCache) const
{
if (pwallet == 0)
return 0;
// Must wait until coinbase is safely deep enough in the chain before valuing it
if (IsCoinBase() && GetBlocksToMaturity() > 0)
return 0;
if (fUseCache && fAvailableCreditCached)
return nAvailableCreditCached;
CAmount nCredit = 0;
uint256 hashTx = GetHash();
for (unsigned int i = 0; i < tx->vout.size(); i++)
{
if (!pwallet->IsSpent(hashTx, i))
{
const CTxOut &txout = tx->vout[i];
nCredit += pwallet->GetCredit(txout, ISMINE_SPENDABLE);
if (!MoneyRange(nCredit))
throw std::runtime_error("CWalletTx::GetAvailableCredit() : value out of range");
}
}
nAvailableCreditCached = nCredit;
fAvailableCreditCached = true;
return nCredit;
}
CAmount CWalletTx::GetImmatureWatchOnlyCredit(const bool& fUseCache) const
{
if (IsCoinBase() && GetBlocksToMaturity() > 0 && IsInMainChain())
{
if (fUseCache && fImmatureWatchCreditCached)
return nImmatureWatchCreditCached;
nImmatureWatchCreditCached = pwallet->GetCredit(*this, ISMINE_WATCH_ONLY);
fImmatureWatchCreditCached = true;
return nImmatureWatchCreditCached;
}
return 0;
}
CAmount CWalletTx::GetAvailableWatchOnlyCredit(const bool& fUseCache) const
{
if (pwallet == 0)
return 0;
// Must wait until coinbase is safely deep enough in the chain before valuing it
if (IsCoinBase() && GetBlocksToMaturity() > 0)
return 0;
if (fUseCache && fAvailableWatchCreditCached)
return nAvailableWatchCreditCached;
CAmount nCredit = 0;
for (unsigned int i = 0; i < tx->vout.size(); i++)
{
if (!pwallet->IsSpent(GetHash(), i))
{
const CTxOut &txout = tx->vout[i];
nCredit += pwallet->GetCredit(txout, ISMINE_WATCH_ONLY);
if (!MoneyRange(nCredit))
throw std::runtime_error("CWalletTx::GetAvailableCredit() : value out of range");
}
}
nAvailableWatchCreditCached = nCredit;
fAvailableWatchCreditCached = true;
return nCredit;
}
CAmount CWalletTx::GetChange() const
{
if (fChangeCached)
return nChangeCached;
nChangeCached = pwallet->GetChange(*this);
fChangeCached = true;
return nChangeCached;
}
bool CWalletTx::InMempool() const
{
LOCK(mempool.cs);
return mempool.exists(GetHash());
}
bool CWalletTx::IsTrusted() const
{
// Quick answer in most cases
if (!CheckFinalTx(*this))
return false;
int nDepth = GetDepthInMainChain();
if (nDepth >= 1)
return true;
if (nDepth < 0)
return false;
if (!bSpendZeroConfChange || !IsFromMe(ISMINE_ALL)) // using wtx's cached debit
return false;
// Don't trust unconfirmed transactions from us unless they are in the mempool.
if (!InMempool())
return false;
// Trusted if all inputs are from us and are in the mempool:
for (const CTxIn& txin : tx->vin)
{
// Transactions not sent by us: not trusted
const CWalletTx* parent = pwallet->GetWalletTx(txin.prevout.hash);
if (parent == NULL)
return false;
const CTxOut& parentOut = parent->tx->vout[txin.prevout.n];
if (pwallet->IsMine(parentOut) != ISMINE_SPENDABLE)
return false;
}
return true;
}
bool CWalletTx::IsEquivalentTo(const CWalletTx& _tx) const
{
CMutableTransaction tx1 = *this->tx;
CMutableTransaction tx2 = *_tx.tx;
for (auto& txin : tx1.vin) txin.scriptSig = CScript();
for (auto& txin : tx2.vin) txin.scriptSig = CScript();
return CTransaction(tx1) == CTransaction(tx2);
}
std::vector<uint256> CWallet::ResendWalletTransactionsBefore(int64_t nTime, CConnman* connman)
{
std::vector<uint256> result;
LOCK(cs_wallet);
// Sort them in chronological order
std::multimap<unsigned int, CWalletTx*> mapSorted;
for (std::pair<const uint256, CWalletTx>& item : mapWallet)
{
CWalletTx& wtx = item.second;
// Don't rebroadcast if newer than nTime:
if (wtx.nTimeReceived > nTime)
continue;
mapSorted.insert(std::make_pair(wtx.nTimeReceived, &wtx));
}
for (std::pair<const unsigned int, CWalletTx*>& item : mapSorted)
{
CWalletTx& wtx = *item.second;
if (wtx.RelayWalletTransaction(connman))
result.push_back(wtx.GetHash());
}
return result;
}
void CWallet::ResendWalletTransactions(int64_t nBestBlockTime, CConnman* connman)
{
// Do this infrequently and randomly to avoid giving away
// that these are our transactions.
if (GetTime() < nNextResend || !fBroadcastTransactions)
return;
bool fFirst = (nNextResend == 0);
nNextResend = GetTime() + GetRand(30 * 60);
if (fFirst)
return;
// Only do it if there's been a new block since last time
if (nBestBlockTime < nLastResend)
return;
nLastResend = GetTime();
// Rebroadcast unconfirmed txes older than 5 minutes before the last
// block was found:
std::vector<uint256> relayed = ResendWalletTransactionsBefore(nBestBlockTime-5*60, connman);
if (!relayed.empty())
LogPrintf("%s: rebroadcast %u unconfirmed transactions\n", __func__, relayed.size());
}
/** @} */ // end of mapWallet
/** @defgroup Actions
*
* @{
*/
CAmount CWallet::GetBalance() const
{
CAmount nTotal = 0;
{
LOCK2(cs_main, cs_wallet);
for (std::map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
const CWalletTx* pcoin = &(*it).second;
if (pcoin->IsTrusted())
nTotal += pcoin->GetAvailableCredit();
}
}
return nTotal;
}
CAmount CWallet::GetUnconfirmedBalance() const
{
CAmount nTotal = 0;
{
LOCK2(cs_main, cs_wallet);
for (std::map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
const CWalletTx* pcoin = &(*it).second;
if (!pcoin->IsTrusted() && pcoin->GetDepthInMainChain() == 0 && pcoin->InMempool())
nTotal += pcoin->GetAvailableCredit();
}
}
return nTotal;
}
CAmount CWallet::GetImmatureBalance() const
{
CAmount nTotal = 0;
{
LOCK2(cs_main, cs_wallet);
for (std::map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
const CWalletTx* pcoin = &(*it).second;
nTotal += pcoin->GetImmatureCredit();
}
}
return nTotal;
}
CAmount CWallet::GetWatchOnlyBalance() const
{
CAmount nTotal = 0;
{
LOCK2(cs_main, cs_wallet);
for (std::map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
const CWalletTx* pcoin = &(*it).second;
if (pcoin->IsTrusted())
nTotal += pcoin->GetAvailableWatchOnlyCredit();
}
}
return nTotal;
}
CAmount CWallet::GetUnconfirmedWatchOnlyBalance() const
{
CAmount nTotal = 0;
{
LOCK2(cs_main, cs_wallet);
for (std::map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
const CWalletTx* pcoin = &(*it).second;
if (!pcoin->IsTrusted() && pcoin->GetDepthInMainChain() == 0 && pcoin->InMempool())
nTotal += pcoin->GetAvailableWatchOnlyCredit();
}
}
return nTotal;
}
CAmount CWallet::GetImmatureWatchOnlyBalance() const
{
CAmount nTotal = 0;
{
LOCK2(cs_main, cs_wallet);
for (std::map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
const CWalletTx* pcoin = &(*it).second;
nTotal += pcoin->GetImmatureWatchOnlyCredit();
}
}
return nTotal;
}
// Calculate total balance in a different way from GetBalance. The biggest
// difference is that GetBalance sums up all unspent TxOuts paying to the
// wallet, while this sums up both spent and unspent TxOuts paying to the
// wallet, and then subtracts the values of TxIns spending from the wallet. This
// also has fewer restrictions on which unconfirmed transactions are considered
// trusted.
CAmount CWallet::GetLegacyBalance(const isminefilter& filter, int minDepth, const std::string* account) const
{
LOCK2(cs_main, cs_wallet);
CAmount balance = 0;
for (const auto& entry : mapWallet) {
const CWalletTx& wtx = entry.second;
const int depth = wtx.GetDepthInMainChain();
if (depth < 0 || !CheckFinalTx(*wtx.tx) || wtx.GetBlocksToMaturity() > 0) {
continue;
}
// Loop through tx outputs and add incoming payments. For outgoing txs,
// treat change outputs specially, as part of the amount debited.
CAmount debit = wtx.GetDebit(filter);
const bool outgoing = debit > 0;
for (const CTxOut& out : wtx.tx->vout) {
if (outgoing && IsChange(out)) {
debit -= out.nValue;
} else if (IsMine(out) & filter && depth >= minDepth && (!account || *account == GetAccountName(out.scriptPubKey))) {
balance += out.nValue;
}
}
// For outgoing txs, subtract amount debited.
if (outgoing && (!account || *account == wtx.strFromAccount)) {
balance -= debit;
}
}
if (account) {
balance += CWalletDB(*dbw).GetAccountCreditDebit(*account);
}
return balance;
}
CAmount CWallet::GetAvailableBalance(const CCoinControl* coinControl) const
{
LOCK2(cs_main, cs_wallet);
CAmount balance = 0;
std::vector<COutput> vCoins;
AvailableCoins(vCoins, true, coinControl);
for (const COutput& out : vCoins) {
if (out.fSpendable) {
balance += out.tx->tx->vout[out.i].nValue;
}
}
return balance;
}
void CWallet::AvailableCoins(std::vector<COutput> &vCoins, bool fOnlySafe, const CCoinControl *coinControl, const CAmount &nMinimumAmount, const CAmount &nMaximumAmount, const CAmount &nMinimumSumAmount, const uint64_t &nMaximumCount, const int &nMinDepth, const int &nMaxDepth) const
{
vCoins.clear();
{
LOCK2(cs_main, cs_wallet);
CAmount nTotal = 0;
for (std::map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
const uint256& wtxid = it->first;
const CWalletTx* pcoin = &(*it).second;
if (!CheckFinalTx(*pcoin))
continue;
if (pcoin->IsCoinBase() && pcoin->GetBlocksToMaturity() > 0)
continue;
int nDepth = pcoin->GetDepthInMainChain();
if (nDepth < 0)
continue;
// We should not consider coins which aren't at least in our mempool
// It's possible for these to be conflicted via ancestors which we may never be able to detect
if (nDepth == 0 && !pcoin->InMempool())
continue;
bool safeTx = pcoin->IsTrusted();
// We should not consider coins from transactions that are replacing
// other transactions.
//
// Example: There is a transaction A which is replaced by bumpfee
// transaction B. In this case, we want to prevent creation of
// a transaction B' which spends an output of B.
//
// Reason: If transaction A were initially confirmed, transactions B
// and B' would no longer be valid, so the user would have to create
// a new transaction C to replace B'. However, in the case of a
// one-block reorg, transactions B' and C might BOTH be accepted,
// when the user only wanted one of them. Specifically, there could
// be a 1-block reorg away from the chain where transactions A and C
// were accepted to another chain where B, B', and C were all
// accepted.
if (nDepth == 0 && pcoin->mapValue.count("replaces_txid")) {
safeTx = false;
}
// Similarly, we should not consider coins from transactions that
// have been replaced. In the example above, we would want to prevent
// creation of a transaction A' spending an output of A, because if
// transaction B were initially confirmed, conflicting with A and
// A', we wouldn't want to the user to create a transaction D
// intending to replace A', but potentially resulting in a scenario
// where A, A', and D could all be accepted (instead of just B and
// D, or just A and A' like the user would want).
if (nDepth == 0 && pcoin->mapValue.count("replaced_by_txid")) {
safeTx = false;
}
if (fOnlySafe && !safeTx) {
continue;
}
if (nDepth < nMinDepth || nDepth > nMaxDepth)
continue;
for (unsigned int i = 0; i < pcoin->tx->vout.size(); i++) {
if (pcoin->tx->vout[i].nValue < nMinimumAmount || pcoin->tx->vout[i].nValue > nMaximumAmount)
continue;
if (coinControl && coinControl->HasSelected() && !coinControl->fAllowOtherInputs && !coinControl->IsSelected(COutPoint((*it).first, i)))
continue;
if (IsLockedCoin((*it).first, i))
continue;
if (IsSpent(wtxid, i))
continue;
isminetype mine = IsMine(pcoin->tx->vout[i]);
if (mine == ISMINE_NO) {
continue;
}
bool fSpendableIn = ((mine & ISMINE_SPENDABLE) != ISMINE_NO) || (coinControl && coinControl->fAllowWatchOnly && (mine & ISMINE_WATCH_SOLVABLE) != ISMINE_NO);
bool fSolvableIn = (mine & (ISMINE_SPENDABLE | ISMINE_WATCH_SOLVABLE)) != ISMINE_NO;
vCoins.push_back(COutput(pcoin, i, nDepth, fSpendableIn, fSolvableIn, safeTx));
// Checks the sum amount of all UTXO's.
if (nMinimumSumAmount != MAX_MONEY) {
nTotal += pcoin->tx->vout[i].nValue;
if (nTotal >= nMinimumSumAmount) {
return;
}
}
// Checks the maximum number of UTXO's.
if (nMaximumCount > 0 && vCoins.size() >= nMaximumCount) {
return;
}
}
}
}
}
std::map<CTxDestination, std::vector<COutput>> CWallet::ListCoins() const
{
// TODO: Add AssertLockHeld(cs_wallet) here.
//
// Because the return value from this function contains pointers to
// CWalletTx objects, callers to this function really should acquire the
// cs_wallet lock before calling it. However, the current caller doesn't
// acquire this lock yet. There was an attempt to add the missing lock in
// https://github.com/bitcoin/bitcoin/pull/10340, but that change has been
// postponed until after https://github.com/bitcoin/bitcoin/pull/10244 to
// avoid adding some extra complexity to the Qt code.
std::map<CTxDestination, std::vector<COutput>> result;
std::vector<COutput> availableCoins;
AvailableCoins(availableCoins);
LOCK2(cs_main, cs_wallet);
for (auto& coin : availableCoins) {
CTxDestination address;
if (coin.fSpendable &&
ExtractDestination(FindNonChangeParentOutput(*coin.tx->tx, coin.i).scriptPubKey, address)) {
result[address].emplace_back(std::move(coin));
}
}
std::vector<COutPoint> lockedCoins;
ListLockedCoins(lockedCoins);
for (const auto& output : lockedCoins) {
auto it = mapWallet.find(output.hash);
if (it != mapWallet.end()) {
int depth = it->second.GetDepthInMainChain();
if (depth >= 0 && output.n < it->second.tx->vout.size() &&
IsMine(it->second.tx->vout[output.n]) == ISMINE_SPENDABLE) {
CTxDestination address;
if (ExtractDestination(FindNonChangeParentOutput(*it->second.tx, output.n).scriptPubKey, address)) {
result[address].emplace_back(
&it->second, output.n, depth, true /* spendable */, true /* solvable */, false /* safe */);
}
}
}
}
return result;
}
const CTxOut& CWallet::FindNonChangeParentOutput(const CTransaction& tx, int output) const
{
const CTransaction* ptx = &tx;
int n = output;
while (IsChange(ptx->vout[n]) && ptx->vin.size() > 0) {
const COutPoint& prevout = ptx->vin[0].prevout;
auto it = mapWallet.find(prevout.hash);
if (it == mapWallet.end() || it->second.tx->vout.size() <= prevout.n ||
!IsMine(it->second.tx->vout[prevout.n])) {
break;
}
ptx = it->second.tx.get();
n = prevout.n;
}
return ptx->vout[n];
}
static void ApproximateBestSubset(const std::vector<CInputCoin>& vValue, const CAmount& nTotalLower, const CAmount& nTargetValue,
std::vector<char>& vfBest, CAmount& nBest, int iterations = 1000)
{
std::vector<char> vfIncluded;
vfBest.assign(vValue.size(), true);
nBest = nTotalLower;
FastRandomContext insecure_rand;
for (int nRep = 0; nRep < iterations && nBest != nTargetValue; nRep++)
{
vfIncluded.assign(vValue.size(), false);
CAmount nTotal = 0;
bool fReachedTarget = false;
for (int nPass = 0; nPass < 2 && !fReachedTarget; nPass++)
{
for (unsigned int i = 0; i < vValue.size(); i++)
{
//The solver here uses a randomized algorithm,
//the randomness serves no real security purpose but is just
//needed to prevent degenerate behavior and it is important
//that the rng is fast. We do not use a constant random sequence,
//because there may be some privacy improvement by making
//the selection random.
if (nPass == 0 ? insecure_rand.randbool() : !vfIncluded[i])
{
nTotal += vValue[i].txout.nValue;
vfIncluded[i] = true;
if (nTotal >= nTargetValue)
{
fReachedTarget = true;
if (nTotal < nBest)
{
nBest = nTotal;
vfBest = vfIncluded;
}
nTotal -= vValue[i].txout.nValue;
vfIncluded[i] = false;
}
}
}
}
}
}
bool CWallet::SelectCoinsMinConf(const CAmount& nTargetValue, const int nConfMine, const int nConfTheirs, const uint64_t nMaxAncestors, std::vector<COutput> vCoins,
std::set<CInputCoin>& setCoinsRet, CAmount& nValueRet) const
{
setCoinsRet.clear();
nValueRet = 0;
// List of values less than target
boost::optional<CInputCoin> coinLowestLarger;
std::vector<CInputCoin> vValue;
CAmount nTotalLower = 0;
random_shuffle(vCoins.begin(), vCoins.end(), GetRandInt);
for (const COutput &output : vCoins)
{
if (!output.fSpendable)
continue;
const CWalletTx *pcoin = output.tx;
if (output.nDepth < (pcoin->IsFromMe(ISMINE_ALL) ? nConfMine : nConfTheirs))
continue;
if (!mempool.TransactionWithinChainLimit(pcoin->GetHash(), nMaxAncestors))
continue;
int i = output.i;
CInputCoin coin = CInputCoin(pcoin, i);
if (coin.txout.nValue == nTargetValue)
{
setCoinsRet.insert(coin);
nValueRet += coin.txout.nValue;
return true;
}
else if (coin.txout.nValue < nTargetValue + MIN_CHANGE)
{
vValue.push_back(coin);
nTotalLower += coin.txout.nValue;
}
else if (!coinLowestLarger || coin.txout.nValue < coinLowestLarger->txout.nValue)
{
coinLowestLarger = coin;
}
}
if (nTotalLower == nTargetValue)
{
for (const auto& input : vValue)
{
setCoinsRet.insert(input);
nValueRet += input.txout.nValue;
}
return true;
}
if (nTotalLower < nTargetValue)
{
if (!coinLowestLarger)
return false;
setCoinsRet.insert(coinLowestLarger.get());
nValueRet += coinLowestLarger->txout.nValue;
return true;
}
// Solve subset sum by stochastic approximation
std::sort(vValue.begin(), vValue.end(), CompareValueOnly());
std::reverse(vValue.begin(), vValue.end());
std::vector<char> vfBest;
CAmount nBest;
ApproximateBestSubset(vValue, nTotalLower, nTargetValue, vfBest, nBest);
if (nBest != nTargetValue && nTotalLower >= nTargetValue + MIN_CHANGE)
ApproximateBestSubset(vValue, nTotalLower, nTargetValue + MIN_CHANGE, vfBest, nBest);
// If we have a bigger coin and (either the stochastic approximation didn't find a good solution,
// or the next bigger coin is closer), return the bigger coin
if (coinLowestLarger &&
((nBest != nTargetValue && nBest < nTargetValue + MIN_CHANGE) || coinLowestLarger->txout.nValue <= nBest))
{
setCoinsRet.insert(coinLowestLarger.get());
nValueRet += coinLowestLarger->txout.nValue;
}
else {
for (unsigned int i = 0; i < vValue.size(); i++)
if (vfBest[i])
{
setCoinsRet.insert(vValue[i]);
nValueRet += vValue[i].txout.nValue;
}
if (LogAcceptCategory(BCLog::SELECTCOINS)) {
LogPrint(BCLog::SELECTCOINS, "SelectCoins() best subset: ");
for (unsigned int i = 0; i < vValue.size(); i++) {
if (vfBest[i]) {
LogPrint(BCLog::SELECTCOINS, "%s ", FormatMoney(vValue[i].txout.nValue));
}
}
LogPrint(BCLog::SELECTCOINS, "total %s\n", FormatMoney(nBest));
}
}
return true;
}
bool CWallet::SelectCoins(const std::vector<COutput>& vAvailableCoins, const CAmount& nTargetValue, std::set<CInputCoin>& setCoinsRet, CAmount& nValueRet, const CCoinControl* coinControl) const
{
std::vector<COutput> vCoins(vAvailableCoins);
// coin control -> return all selected outputs (we want all selected to go into the transaction for sure)
if (coinControl && coinControl->HasSelected() && !coinControl->fAllowOtherInputs)
{
for (const COutput& out : vCoins)
{
if (!out.fSpendable)
continue;
nValueRet += out.tx->tx->vout[out.i].nValue;
setCoinsRet.insert(CInputCoin(out.tx, out.i));
}
return (nValueRet >= nTargetValue);
}
// calculate value from preset inputs and store them
std::set<CInputCoin> setPresetCoins;
CAmount nValueFromPresetInputs = 0;
std::vector<COutPoint> vPresetInputs;
if (coinControl)
coinControl->ListSelected(vPresetInputs);
for (const COutPoint& outpoint : vPresetInputs)
{
std::map<uint256, CWalletTx>::const_iterator it = mapWallet.find(outpoint.hash);
if (it != mapWallet.end())
{
const CWalletTx* pcoin = &it->second;
// Clearly invalid input, fail
if (pcoin->tx->vout.size() <= outpoint.n)
return false;
nValueFromPresetInputs += pcoin->tx->vout[outpoint.n].nValue;
setPresetCoins.insert(CInputCoin(pcoin, outpoint.n));
} else
return false; // TODO: Allow non-wallet inputs
}
// remove preset inputs from vCoins
for (std::vector<COutput>::iterator it = vCoins.begin(); it != vCoins.end() && coinControl && coinControl->HasSelected();)
{
if (setPresetCoins.count(CInputCoin(it->tx, it->i)))
it = vCoins.erase(it);
else
++it;
}
size_t nMaxChainLength = std::min(GetArg("-limitancestorcount", DEFAULT_ANCESTOR_LIMIT), GetArg("-limitdescendantcount", DEFAULT_DESCENDANT_LIMIT));
bool fRejectLongChains = GetBoolArg("-walletrejectlongchains", DEFAULT_WALLET_REJECT_LONG_CHAINS);
bool res = nTargetValue <= nValueFromPresetInputs ||
SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, 1, 6, 0, vCoins, setCoinsRet, nValueRet) ||
SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, 1, 1, 0, vCoins, setCoinsRet, nValueRet) ||
(bSpendZeroConfChange && SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, 0, 1, 2, vCoins, setCoinsRet, nValueRet)) ||
(bSpendZeroConfChange && SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, 0, 1, std::min((size_t)4, nMaxChainLength/3), vCoins, setCoinsRet, nValueRet)) ||
(bSpendZeroConfChange && SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, 0, 1, nMaxChainLength/2, vCoins, setCoinsRet, nValueRet)) ||
(bSpendZeroConfChange && SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, 0, 1, nMaxChainLength, vCoins, setCoinsRet, nValueRet)) ||
(bSpendZeroConfChange && !fRejectLongChains && SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, 0, 1, std::numeric_limits<uint64_t>::max(), vCoins, setCoinsRet, nValueRet));
// because SelectCoinsMinConf clears the setCoinsRet, we now add the possible inputs to the coinset
setCoinsRet.insert(setPresetCoins.begin(), setPresetCoins.end());
// add preset inputs to the total value selected
nValueRet += nValueFromPresetInputs;
return res;
}
bool CWallet::SignTransaction(CMutableTransaction &tx)
{
AssertLockHeld(cs_wallet); // mapWallet
// sign the new tx
CTransaction txNewConst(tx);
int nIn = 0;
for (const auto& input : tx.vin) {
std::map<uint256, CWalletTx>::const_iterator mi = mapWallet.find(input.prevout.hash);
if(mi == mapWallet.end() || input.prevout.n >= mi->second.tx->vout.size()) {
return false;
}
const CScript& scriptPubKey = mi->second.tx->vout[input.prevout.n].scriptPubKey;
const CAmount& amount = mi->second.tx->vout[input.prevout.n].nValue;
SignatureData sigdata;
if (!ProduceSignature(TransactionSignatureCreator(this, &txNewConst, nIn, amount, SIGHASH_ALL), scriptPubKey, sigdata)) {
return false;
}
UpdateTransaction(tx, nIn, sigdata);
nIn++;
}
return true;
}
bool CWallet::FundTransaction(CMutableTransaction& tx, CAmount& nFeeRet, int& nChangePosInOut, std::string& strFailReason, bool lockUnspents, const std::set<int>& setSubtractFeeFromOutputs, CCoinControl coinControl, bool keepReserveKey)
{
std::vector<CRecipient> vecSend;
// Turn the txout set into a CRecipient vector
for (size_t idx = 0; idx < tx.vout.size(); idx++)
{
const CTxOut& txOut = tx.vout[idx];
CRecipient recipient = {txOut.scriptPubKey, txOut.nValue, setSubtractFeeFromOutputs.count(idx) == 1};
vecSend.push_back(recipient);
}
coinControl.fAllowOtherInputs = true;
for (const CTxIn& txin : tx.vin)
coinControl.Select(txin.prevout);
CReserveKey reservekey(this);
CWalletTx wtx;
if (!CreateTransaction(vecSend, wtx, reservekey, nFeeRet, nChangePosInOut, strFailReason, &coinControl, false))
return false;
if (nChangePosInOut != -1)
tx.vout.insert(tx.vout.begin() + nChangePosInOut, wtx.tx->vout[nChangePosInOut]);
// Copy output sizes from new transaction; they may have had the fee subtracted from them
for (unsigned int idx = 0; idx < tx.vout.size(); idx++)
tx.vout[idx].nValue = wtx.tx->vout[idx].nValue;
// Add new txins (keeping original txin scriptSig/order)
for (const CTxIn& txin : wtx.tx->vin)
{
if (!coinControl.IsSelected(txin.prevout))
{
tx.vin.push_back(txin);
if (lockUnspents)
{
LOCK2(cs_main, cs_wallet);
LockCoin(txin.prevout);
}
}
}
// optionally keep the change output key
if (keepReserveKey)
reservekey.KeepKey();
return true;
}
bool CWallet::CreateTransaction(const std::vector<CRecipient>& vecSend, CWalletTx& wtxNew, CReserveKey& reservekey, CAmount& nFeeRet,
int& nChangePosInOut, std::string& strFailReason, const CCoinControl* coinControl, bool sign)
{
CAmount nValue = 0;
int nChangePosRequest = nChangePosInOut;
unsigned int nSubtractFeeFromAmount = 0;
for (const auto& recipient : vecSend)
{
if (nValue < 0 || recipient.nAmount < 0)
{
strFailReason = _("Transaction amounts must not be negative");
return false;
}
nValue += recipient.nAmount;
if (recipient.fSubtractFeeFromAmount)
nSubtractFeeFromAmount++;
}
if (vecSend.empty())
{
strFailReason = _("Transaction must have at least one recipient");
return false;
}
wtxNew.fTimeReceivedIsTxTime = true;
wtxNew.BindWallet(this);
CMutableTransaction txNew;
// Discourage fee sniping.
//
// For a large miner the value of the transactions in the best block and
// the mempool can exceed the cost of deliberately attempting to mine two
// blocks to orphan the current best block. By setting nLockTime such that
// only the next block can include the transaction, we discourage this
// practice as the height restricted and limited blocksize gives miners
// considering fee sniping fewer options for pulling off this attack.
//
// A simple way to think about this is from the wallet's point of view we
// always want the blockchain to move forward. By setting nLockTime this
// way we're basically making the statement that we only want this
// transaction to appear in the next block; we don't want to potentially
// encourage reorgs by allowing transactions to appear at lower heights
// than the next block in forks of the best chain.
//
// Of course, the subsidy is high enough, and transaction volume low
// enough, that fee sniping isn't a problem yet, but by implementing a fix
// now we ensure code won't be written that makes assumptions about
// nLockTime that preclude a fix later.
txNew.nLockTime = chainActive.Height();
// Secondly occasionally randomly pick a nLockTime even further back, so
// that transactions that are delayed after signing for whatever reason,
// e.g. high-latency mix networks and some CoinJoin implementations, have
// better privacy.
if (GetRandInt(10) == 0)
txNew.nLockTime = std::max(0, (int)txNew.nLockTime - GetRandInt(100));
assert(txNew.nLockTime <= (unsigned int)chainActive.Height());
assert(txNew.nLockTime < LOCKTIME_THRESHOLD);
FeeCalculation feeCalc;
unsigned int nBytes;
{
std::set<CInputCoin> setCoins;
LOCK2(cs_main, cs_wallet);
{
std::vector<COutput> vAvailableCoins;
AvailableCoins(vAvailableCoins, true, coinControl);
nFeeRet = 0;
// Start with no fee and loop until there is enough fee
while (true)
{
nChangePosInOut = nChangePosRequest;
txNew.vin.clear();
txNew.vout.clear();
wtxNew.fFromMe = true;
bool fFirst = true;
CAmount nValueToSelect = nValue;
if (nSubtractFeeFromAmount == 0)
nValueToSelect += nFeeRet;
// vouts to the payees
for (const auto& recipient : vecSend)
{
CTxOut txout(recipient.nAmount, recipient.scriptPubKey);
if (recipient.fSubtractFeeFromAmount)
{
txout.nValue -= nFeeRet / nSubtractFeeFromAmount; // Subtract fee equally from each selected recipient
if (fFirst) // first receiver pays the remainder not divisible by output count
{
fFirst = false;
txout.nValue -= nFeeRet % nSubtractFeeFromAmount;
}
}
if (IsDust(txout, ::dustRelayFee))
{
if (recipient.fSubtractFeeFromAmount && nFeeRet > 0)
{
if (txout.nValue < 0)
strFailReason = _("The transaction amount is too small to pay the fee");
else
strFailReason = _("The transaction amount is too small to send after the fee has been deducted");
}
else
strFailReason = _("Transaction amount too small");
return false;
}
txNew.vout.push_back(txout);
}
// Choose coins to use
CAmount nValueIn = 0;
setCoins.clear();
if (!SelectCoins(vAvailableCoins, nValueToSelect, setCoins, nValueIn, coinControl))
{
strFailReason = _("Insufficient funds");
return false;
}
const CAmount nChange = nValueIn - nValueToSelect;
if (nChange > 0)
{
// Fill a vout to ourself
// TODO: pass in scriptChange instead of reservekey so
// change transaction isn't always pay-to-bitcoin-address
CScript scriptChange;
// coin control: send change to custom address
if (coinControl && !boost::get<CNoDestination>(&coinControl->destChange))
scriptChange = GetScriptForDestination(coinControl->destChange);
// no coin control: send change to newly generated address
else
{
// Note: We use a new key here to keep it from being obvious which side is the change.
// The drawback is that by not reusing a previous key, the change may be lost if a
// backup is restored, if the backup doesn't have the new private key for the change.
// If we reused the old key, it would be possible to add code to look for and
// rediscover unknown transactions that were written with keys of ours to recover
// post-backup change.
// Reserve a new key pair from key pool
CPubKey vchPubKey;
bool ret;
ret = reservekey.GetReservedKey(vchPubKey, true);
if (!ret)
{
strFailReason = _("Keypool ran out, please call keypoolrefill first");
return false;
}
scriptChange = GetScriptForDestination(vchPubKey.GetID());
}
CTxOut newTxOut(nChange, scriptChange);
// Never create dust outputs; if we would, just
// add the dust to the fee.
if (IsDust(newTxOut, ::dustRelayFee))
{
nChangePosInOut = -1;
nFeeRet += nChange;
reservekey.ReturnKey();
}
else
{
if (nChangePosInOut == -1)
{
// Insert change txn at random position:
nChangePosInOut = GetRandInt(txNew.vout.size()+1);
}
else if ((unsigned int)nChangePosInOut > txNew.vout.size())
{
strFailReason = _("Change index out of range");
return false;
}
std::vector<CTxOut>::iterator position = txNew.vout.begin()+nChangePosInOut;
txNew.vout.insert(position, newTxOut);
}
} else {
reservekey.ReturnKey();
nChangePosInOut = -1;
}
// Fill vin
//
// Note how the sequence number is set to non-maxint so that
// the nLockTime set above actually works.
//
// BIP125 defines opt-in RBF as any nSequence < maxint-1, so
// we use the highest possible value in that range (maxint-2)
// to avoid conflicting with other possible uses of nSequence,
// and in the spirit of "smallest possible change from prior
// behavior."
bool rbf = coinControl ? coinControl->signalRbf : fWalletRbf;
const uint32_t nSequence = rbf ? MAX_BIP125_RBF_SEQUENCE : (std::numeric_limits<unsigned int>::max() - 1);
for (const auto& coin : setCoins)
txNew.vin.push_back(CTxIn(coin.outpoint,CScript(),
nSequence));
// Fill in dummy signatures for fee calculation.
if (!DummySignTx(txNew, setCoins)) {
strFailReason = _("Signing transaction failed");
return false;
}
nBytes = GetVirtualTransactionSize(txNew);
// Remove scriptSigs to eliminate the fee calculation dummy signatures
for (auto& vin : txNew.vin) {
vin.scriptSig = CScript();
vin.scriptWitness.SetNull();
}
// Allow to override the default confirmation target over the CoinControl instance
int currentConfirmationTarget = nTxConfirmTarget;
if (coinControl && coinControl->nConfirmTarget > 0)
currentConfirmationTarget = coinControl->nConfirmTarget;
// Allow to override the default fee estimate mode over the CoinControl instance
bool conservative_estimate = CalculateEstimateType(coinControl ? coinControl->m_fee_mode : FeeEstimateMode::UNSET, rbf);
CAmount nFeeNeeded = GetMinimumFee(nBytes, currentConfirmationTarget, ::mempool, ::feeEstimator, &feeCalc, false /* ignoreGlobalPayTxFee */, conservative_estimate);
if (coinControl && coinControl->fOverrideFeeRate)
nFeeNeeded = coinControl->nFeeRate.GetFee(nBytes);
// If we made it here and we aren't even able to meet the relay fee on the next pass, give up
// because we must be at the maximum allowed fee.
if (nFeeNeeded < ::minRelayTxFee.GetFee(nBytes))
{
strFailReason = _("Transaction too large for fee policy");
return false;
}
if (nFeeRet >= nFeeNeeded) {
// Reduce fee to only the needed amount if we have change
// output to increase. This prevents potential overpayment
// in fees if the coins selected to meet nFeeNeeded result
// in a transaction that requires less fee than the prior
// iteration.
// TODO: The case where nSubtractFeeFromAmount > 0 remains
// to be addressed because it requires returning the fee to
// the payees and not the change output.
// TODO: The case where there is no change output remains
// to be addressed so we avoid creating too small an output.
if (nFeeRet > nFeeNeeded && nChangePosInOut != -1 && nSubtractFeeFromAmount == 0) {
CAmount extraFeePaid = nFeeRet - nFeeNeeded;
std::vector<CTxOut>::iterator change_position = txNew.vout.begin()+nChangePosInOut;
change_position->nValue += extraFeePaid;
nFeeRet -= extraFeePaid;
}
break; // Done, enough fee included.
}
// Try to reduce change to include necessary fee
if (nChangePosInOut != -1 && nSubtractFeeFromAmount == 0) {
CAmount additionalFeeNeeded = nFeeNeeded - nFeeRet;
std::vector<CTxOut>::iterator change_position = txNew.vout.begin()+nChangePosInOut;
// Only reduce change if remaining amount is still a large enough output.
if (change_position->nValue >= MIN_FINAL_CHANGE + additionalFeeNeeded) {
change_position->nValue -= additionalFeeNeeded;
nFeeRet += additionalFeeNeeded;
break; // Done, able to increase fee from change
}
}
// Include more fee and try again.
nFeeRet = nFeeNeeded;
continue;
}
}
if (sign)
{
CTransaction txNewConst(txNew);
int nIn = 0;
for (const auto& coin : setCoins)
{
const CScript& scriptPubKey = coin.txout.scriptPubKey;
SignatureData sigdata;
if (!ProduceSignature(TransactionSignatureCreator(this, &txNewConst, nIn, coin.txout.nValue, SIGHASH_ALL), scriptPubKey, sigdata))
{
strFailReason = _("Signing transaction failed");
return false;
} else {
UpdateTransaction(txNew, nIn, sigdata);
}
nIn++;
}
}
// Embed the constructed transaction data in wtxNew.
wtxNew.SetTx(MakeTransactionRef(std::move(txNew)));
// Limit size
if (GetTransactionWeight(wtxNew) >= MAX_STANDARD_TX_WEIGHT)
{
strFailReason = _("Transaction too large");
return false;
}
}
if (GetBoolArg("-walletrejectlongchains", DEFAULT_WALLET_REJECT_LONG_CHAINS)) {
// Lastly, ensure this tx will pass the mempool's chain limits
LockPoints lp;
CTxMemPoolEntry entry(wtxNew.tx, 0, 0, 0, false, 0, lp);
CTxMemPool::setEntries setAncestors;
size_t nLimitAncestors = GetArg("-limitancestorcount", DEFAULT_ANCESTOR_LIMIT);
size_t nLimitAncestorSize = GetArg("-limitancestorsize", DEFAULT_ANCESTOR_SIZE_LIMIT)*1000;
size_t nLimitDescendants = GetArg("-limitdescendantcount", DEFAULT_DESCENDANT_LIMIT);
size_t nLimitDescendantSize = GetArg("-limitdescendantsize", DEFAULT_DESCENDANT_SIZE_LIMIT)*1000;
std::string errString;
if (!mempool.CalculateMemPoolAncestors(entry, setAncestors, nLimitAncestors, nLimitAncestorSize, nLimitDescendants, nLimitDescendantSize, errString)) {
strFailReason = _("Transaction has too long of a mempool chain");
return false;
}
}
LogPrintf("Fee Calculation: Fee:%d Bytes:%u Tgt:%d (requested %d) Reason:\"%s\" Decay %.5f: Estimation: (%g - %g) %.2f%% %.1f/(%.1f %d mem %.1f out) Fail: (%g - %g) %.2f%% %.1f/(%.1f %d mem %.1f out)\n",
nFeeRet, nBytes, feeCalc.returnedTarget, feeCalc.desiredTarget, StringForFeeReason(feeCalc.reason), feeCalc.est.decay,
feeCalc.est.pass.start, feeCalc.est.pass.end,
100 * feeCalc.est.pass.withinTarget / (feeCalc.est.pass.totalConfirmed + feeCalc.est.pass.inMempool + feeCalc.est.pass.leftMempool),
feeCalc.est.pass.withinTarget, feeCalc.est.pass.totalConfirmed, feeCalc.est.pass.inMempool, feeCalc.est.pass.leftMempool,
feeCalc.est.fail.start, feeCalc.est.fail.end,
100 * feeCalc.est.fail.withinTarget / (feeCalc.est.fail.totalConfirmed + feeCalc.est.fail.inMempool + feeCalc.est.fail.leftMempool),
feeCalc.est.fail.withinTarget, feeCalc.est.fail.totalConfirmed, feeCalc.est.fail.inMempool, feeCalc.est.fail.leftMempool);
return true;
}
/**
* Call after CreateTransaction unless you want to abort
*/
bool CWallet::CommitTransaction(CWalletTx& wtxNew, CReserveKey& reservekey, CConnman* connman, CValidationState& state)
{
{
LOCK2(cs_main, cs_wallet);
LogPrintf("CommitTransaction:\n%s", wtxNew.tx->ToString());
{
// Take key pair from key pool so it won't be used again
reservekey.KeepKey();
// Add tx to wallet, because if it has change it's also ours,
// otherwise just for transaction history.
AddToWallet(wtxNew);
// Notify that old coins are spent
for (const CTxIn& txin : wtxNew.tx->vin)
{
CWalletTx &coin = mapWallet[txin.prevout.hash];
coin.BindWallet(this);
NotifyTransactionChanged(this, coin.GetHash(), CT_UPDATED);
}
}
// Track how many getdata requests our transaction gets
mapRequestCount[wtxNew.GetHash()] = 0;
if (fBroadcastTransactions)
{
// Broadcast
if (!wtxNew.AcceptToMemoryPool(maxTxFee, state)) {
LogPrintf("CommitTransaction(): Transaction cannot be broadcast immediately, %s\n", state.GetRejectReason());
// TODO: if we expect the failure to be long term or permanent, instead delete wtx from the wallet and return failure.
} else {
wtxNew.RelayWalletTransaction(connman);
}
}
}
return true;
}
void CWallet::ListAccountCreditDebit(const std::string& strAccount, std::list<CAccountingEntry>& entries) {
CWalletDB walletdb(*dbw);
return walletdb.ListAccountCreditDebit(strAccount, entries);
}
bool CWallet::AddAccountingEntry(const CAccountingEntry& acentry)
{
CWalletDB walletdb(*dbw);
return AddAccountingEntry(acentry, &walletdb);
}
bool CWallet::AddAccountingEntry(const CAccountingEntry& acentry, CWalletDB *pwalletdb)
{
if (!pwalletdb->WriteAccountingEntry(++nAccountingEntryNumber, acentry)) {
return false;
}
laccentries.push_back(acentry);
CAccountingEntry & entry = laccentries.back();
wtxOrdered.insert(std::make_pair(entry.nOrderPos, TxPair((CWalletTx*)0, &entry)));
return true;
}
CAmount CWallet::GetRequiredFee(unsigned int nTxBytes)
{
return std::max(minTxFee.GetFee(nTxBytes), ::minRelayTxFee.GetFee(nTxBytes));
}
CAmount CWallet::GetMinimumFee(unsigned int nTxBytes, unsigned int nConfirmTarget, const CTxMemPool& pool, const CBlockPolicyEstimator& estimator, FeeCalculation *feeCalc, bool ignoreGlobalPayTxFee, bool conservative_estimate)
{
// payTxFee is the user-set global for desired feerate
CAmount nFeeNeeded = payTxFee.GetFee(nTxBytes);
// User didn't set: use -txconfirmtarget to estimate...
if (nFeeNeeded == 0 || ignoreGlobalPayTxFee) {
nFeeNeeded = estimator.estimateSmartFee(nConfirmTarget, feeCalc, pool, conservative_estimate).GetFee(nTxBytes);
// ... unless we don't have enough mempool data for estimatefee, then use fallbackFee
if (nFeeNeeded == 0) {
nFeeNeeded = fallbackFee.GetFee(nTxBytes);
if (feeCalc) feeCalc->reason = FeeReason::FALLBACK;
}
} else {
if (feeCalc) feeCalc->reason = FeeReason::PAYTXFEE;
}
// prevent user from paying a fee below minRelayTxFee or minTxFee
CAmount requiredFee = GetRequiredFee(nTxBytes);
if (requiredFee > nFeeNeeded) {
nFeeNeeded = requiredFee;
if (feeCalc) feeCalc->reason = FeeReason::REQUIRED;
}
// But always obey the maximum
if (nFeeNeeded > maxTxFee) {
nFeeNeeded = maxTxFee;
if (feeCalc) feeCalc->reason = FeeReason::MAXTXFEE;
}
return nFeeNeeded;
}
DBErrors CWallet::LoadWallet(bool& fFirstRunRet)
{
fFirstRunRet = false;
DBErrors nLoadWalletRet = CWalletDB(*dbw,"cr+").LoadWallet(this);
if (nLoadWalletRet == DB_NEED_REWRITE)
{
if (dbw->Rewrite("\x04pool"))
{
LOCK(cs_wallet);
setKeyPool.clear();
// Note: can't top-up keypool here, because wallet is locked.
// User will be prompted to unlock wallet the next operation
// that requires a new key.
}
}
if (nLoadWalletRet != DB_LOAD_OK)
return nLoadWalletRet;
fFirstRunRet = !vchDefaultKey.IsValid();
uiInterface.LoadWallet(this);
return DB_LOAD_OK;
}
DBErrors CWallet::ZapSelectTx(std::vector<uint256>& vHashIn, std::vector<uint256>& vHashOut)
{
AssertLockHeld(cs_wallet); // mapWallet
vchDefaultKey = CPubKey();
DBErrors nZapSelectTxRet = CWalletDB(*dbw,"cr+").ZapSelectTx(vHashIn, vHashOut);
for (uint256 hash : vHashOut)
mapWallet.erase(hash);
if (nZapSelectTxRet == DB_NEED_REWRITE)
{
if (dbw->Rewrite("\x04pool"))
{
setKeyPool.clear();
// Note: can't top-up keypool here, because wallet is locked.
// User will be prompted to unlock wallet the next operation
// that requires a new key.
}
}
if (nZapSelectTxRet != DB_LOAD_OK)
return nZapSelectTxRet;
MarkDirty();
return DB_LOAD_OK;
}
DBErrors CWallet::ZapWalletTx(std::vector<CWalletTx>& vWtx)
{
vchDefaultKey = CPubKey();
DBErrors nZapWalletTxRet = CWalletDB(*dbw,"cr+").ZapWalletTx(vWtx);
if (nZapWalletTxRet == DB_NEED_REWRITE)
{
if (dbw->Rewrite("\x04pool"))
{
LOCK(cs_wallet);
setKeyPool.clear();
// Note: can't top-up keypool here, because wallet is locked.
// User will be prompted to unlock wallet the next operation
// that requires a new key.
}
}
if (nZapWalletTxRet != DB_LOAD_OK)
return nZapWalletTxRet;
return DB_LOAD_OK;
}
bool CWallet::SetAddressBook(const CTxDestination& address, const std::string& strName, const std::string& strPurpose)
{
bool fUpdated = false;
{
LOCK(cs_wallet); // mapAddressBook
std::map<CTxDestination, CAddressBookData>::iterator mi = mapAddressBook.find(address);
fUpdated = mi != mapAddressBook.end();
mapAddressBook[address].name = strName;
if (!strPurpose.empty()) /* update purpose only if requested */
mapAddressBook[address].purpose = strPurpose;
}
NotifyAddressBookChanged(this, address, strName, ::IsMine(*this, address) != ISMINE_NO,
strPurpose, (fUpdated ? CT_UPDATED : CT_NEW) );
if (!strPurpose.empty() && !CWalletDB(*dbw).WritePurpose(CBitcoinAddress(address).ToString(), strPurpose))
return false;
return CWalletDB(*dbw).WriteName(CBitcoinAddress(address).ToString(), strName);
}
bool CWallet::DelAddressBook(const CTxDestination& address)
{
{
LOCK(cs_wallet); // mapAddressBook
// Delete destdata tuples associated with address
std::string strAddress = CBitcoinAddress(address).ToString();
for (const std::pair<std::string, std::string> &item : mapAddressBook[address].destdata)
{
CWalletDB(*dbw).EraseDestData(strAddress, item.first);
}
mapAddressBook.erase(address);
}
NotifyAddressBookChanged(this, address, "", ::IsMine(*this, address) != ISMINE_NO, "", CT_DELETED);
CWalletDB(*dbw).ErasePurpose(CBitcoinAddress(address).ToString());
return CWalletDB(*dbw).EraseName(CBitcoinAddress(address).ToString());
}
const std::string& CWallet::GetAccountName(const CScript& scriptPubKey) const
{
CTxDestination address;
if (ExtractDestination(scriptPubKey, address) && !scriptPubKey.IsUnspendable()) {
auto mi = mapAddressBook.find(address);
if (mi != mapAddressBook.end()) {
return mi->second.name;
}
}
// A scriptPubKey that doesn't have an entry in the address book is
// associated with the default account ("").
const static std::string DEFAULT_ACCOUNT_NAME;
return DEFAULT_ACCOUNT_NAME;
}
bool CWallet::SetDefaultKey(const CPubKey &vchPubKey)
{
if (!CWalletDB(*dbw).WriteDefaultKey(vchPubKey))
return false;
vchDefaultKey = vchPubKey;
return true;
}
/**
* Mark old keypool keys as used,
* and generate all new keys
*/
bool CWallet::NewKeyPool()
{
{
LOCK(cs_wallet);
CWalletDB walletdb(*dbw);
for (int64_t nIndex : setKeyPool)
walletdb.ErasePool(nIndex);
setKeyPool.clear();
if (!TopUpKeyPool()) {
return false;
}
LogPrintf("CWallet::NewKeyPool rewrote keypool\n");
}
return true;
}
size_t CWallet::KeypoolCountExternalKeys()
{
AssertLockHeld(cs_wallet); // setKeyPool
// immediately return setKeyPool's size if HD or HD_SPLIT is disabled or not supported
if (!IsHDEnabled() || !CanSupportFeature(FEATURE_HD_SPLIT))
return setKeyPool.size();
CWalletDB walletdb(*dbw);
// count amount of external keys
size_t amountE = 0;
for(const int64_t& id : setKeyPool)
{
CKeyPool tmpKeypool;
if (!walletdb.ReadPool(id, tmpKeypool))
throw std::runtime_error(std::string(__func__) + ": read failed");
amountE += !tmpKeypool.fInternal;
}
return amountE;
}
bool CWallet::TopUpKeyPool(unsigned int kpSize)
{
{
LOCK(cs_wallet);
if (IsLocked())
return false;
// Top up key pool
unsigned int nTargetSize;
if (kpSize > 0)
nTargetSize = kpSize;
else
nTargetSize = std::max(GetArg("-keypool", DEFAULT_KEYPOOL_SIZE), (int64_t) 0);
// count amount of available keys (internal, external)
// make sure the keypool of external and internal keys fits the user selected target (-keypool)
int64_t amountExternal = KeypoolCountExternalKeys();
int64_t amountInternal = setKeyPool.size() - amountExternal;
int64_t missingExternal = std::max(std::max((int64_t) nTargetSize, (int64_t) 1) - amountExternal, (int64_t) 0);
int64_t missingInternal = std::max(std::max((int64_t) nTargetSize, (int64_t) 1) - amountInternal, (int64_t) 0);
if (!IsHDEnabled() || !CanSupportFeature(FEATURE_HD_SPLIT))
{
// don't create extra internal keys
missingInternal = 0;
}
bool internal = false;
CWalletDB walletdb(*dbw);
for (int64_t i = missingInternal + missingExternal; i--;)
{
int64_t nEnd = 1;
if (i < missingInternal)
internal = true;
if (!setKeyPool.empty())
nEnd = *(--setKeyPool.end()) + 1;
if (!walletdb.WritePool(nEnd, CKeyPool(GenerateNewKey(internal), internal)))
throw std::runtime_error(std::string(__func__) + ": writing generated key failed");
setKeyPool.insert(nEnd);
LogPrintf("keypool added key %d, size=%u, internal=%d\n", nEnd, setKeyPool.size(), internal);
}
}
return true;
}
void CWallet::ReserveKeyFromKeyPool(int64_t& nIndex, CKeyPool& keypool, bool internal)
{
nIndex = -1;
keypool.vchPubKey = CPubKey();
{
LOCK(cs_wallet);
if (!IsLocked())
TopUpKeyPool();
// Get the oldest key
if(setKeyPool.empty())
return;
CWalletDB walletdb(*dbw);
// try to find a key that matches the internal/external filter
for(const int64_t& id : setKeyPool)
{
CKeyPool tmpKeypool;
if (!walletdb.ReadPool(id, tmpKeypool))
throw std::runtime_error(std::string(__func__) + ": read failed");
if (!HaveKey(tmpKeypool.vchPubKey.GetID()))
throw std::runtime_error(std::string(__func__) + ": unknown key in key pool");
if (!IsHDEnabled() || !CanSupportFeature(FEATURE_HD_SPLIT) || tmpKeypool.fInternal == internal)
{
nIndex = id;
keypool = tmpKeypool;
setKeyPool.erase(id);
assert(keypool.vchPubKey.IsValid());
LogPrintf("keypool reserve %d\n", nIndex);
return;
}
}
}
}
void CWallet::KeepKey(int64_t nIndex)
{
// Remove from key pool
CWalletDB walletdb(*dbw);
walletdb.ErasePool(nIndex);
LogPrintf("keypool keep %d\n", nIndex);
}
void CWallet::ReturnKey(int64_t nIndex)
{
// Return to key pool
{
LOCK(cs_wallet);
setKeyPool.insert(nIndex);
}
LogPrintf("keypool return %d\n", nIndex);
}
bool CWallet::GetKeyFromPool(CPubKey& result, bool internal)
{
CKeyPool keypool;
{
LOCK(cs_wallet);
int64_t nIndex = 0;
ReserveKeyFromKeyPool(nIndex, keypool, internal);
if (nIndex == -1)
{
if (IsLocked()) return false;
result = GenerateNewKey(internal);
return true;
}
KeepKey(nIndex);
result = keypool.vchPubKey;
}
return true;
}
int64_t CWallet::GetOldestKeyPoolTime()
{
LOCK(cs_wallet);
// if the keypool is empty, return <NOW>
if (setKeyPool.empty())
return GetTime();
CKeyPool keypool;
CWalletDB walletdb(*dbw);
if (IsHDEnabled() && CanSupportFeature(FEATURE_HD_SPLIT))
{
// if HD & HD Chain Split is enabled, response max(oldest-internal-key, oldest-external-key)
int64_t now = GetTime();
int64_t oldest_external = now, oldest_internal = now;
for(const int64_t& id : setKeyPool)
{
if (!walletdb.ReadPool(id, keypool)) {
throw std::runtime_error(std::string(__func__) + ": read failed");
}
if (keypool.fInternal && keypool.nTime < oldest_internal) {
oldest_internal = keypool.nTime;
}
else if (!keypool.fInternal && keypool.nTime < oldest_external) {
oldest_external = keypool.nTime;
}
if (oldest_internal != now && oldest_external != now) {
break;
}
}
return std::max(oldest_internal, oldest_external);
}
// load oldest key from keypool, get time and return
int64_t nIndex = *(setKeyPool.begin());
if (!walletdb.ReadPool(nIndex, keypool))
throw std::runtime_error(std::string(__func__) + ": read oldest key in keypool failed");
assert(keypool.vchPubKey.IsValid());
return keypool.nTime;
}
std::map<CTxDestination, CAmount> CWallet::GetAddressBalances()
{
std::map<CTxDestination, CAmount> balances;
{
LOCK(cs_wallet);
for (const auto& walletEntry : mapWallet)
{
const CWalletTx *pcoin = &walletEntry.second;
if (!pcoin->IsTrusted())
continue;
if (pcoin->IsCoinBase() && pcoin->GetBlocksToMaturity() > 0)
continue;
int nDepth = pcoin->GetDepthInMainChain();
if (nDepth < (pcoin->IsFromMe(ISMINE_ALL) ? 0 : 1))
continue;
for (unsigned int i = 0; i < pcoin->tx->vout.size(); i++)
{
CTxDestination addr;
if (!IsMine(pcoin->tx->vout[i]))
continue;
if(!ExtractDestination(pcoin->tx->vout[i].scriptPubKey, addr))
continue;
CAmount n = IsSpent(walletEntry.first, i) ? 0 : pcoin->tx->vout[i].nValue;
if (!balances.count(addr))
balances[addr] = 0;
balances[addr] += n;
}
}
}
return balances;
}
std::set< std::set<CTxDestination> > CWallet::GetAddressGroupings()
{
AssertLockHeld(cs_wallet); // mapWallet
std::set< std::set<CTxDestination> > groupings;
std::set<CTxDestination> grouping;
for (const auto& walletEntry : mapWallet)
{
const CWalletTx *pcoin = &walletEntry.second;
if (pcoin->tx->vin.size() > 0)
{
bool any_mine = false;
// group all input addresses with each other
for (CTxIn txin : pcoin->tx->vin)
{
CTxDestination address;
if(!IsMine(txin)) /* If this input isn't mine, ignore it */
continue;
if(!ExtractDestination(mapWallet[txin.prevout.hash].tx->vout[txin.prevout.n].scriptPubKey, address))
continue;
grouping.insert(address);
any_mine = true;
}
// group change with input addresses
if (any_mine)
{
for (CTxOut txout : pcoin->tx->vout)
if (IsChange(txout))
{
CTxDestination txoutAddr;
if(!ExtractDestination(txout.scriptPubKey, txoutAddr))
continue;
grouping.insert(txoutAddr);
}
}
if (grouping.size() > 0)
{
groupings.insert(grouping);
grouping.clear();
}
}
// group lone addrs by themselves
for (const auto& txout : pcoin->tx->vout)
if (IsMine(txout))
{
CTxDestination address;
if(!ExtractDestination(txout.scriptPubKey, address))
continue;
grouping.insert(address);
groupings.insert(grouping);
grouping.clear();
}
}
std::set< std::set<CTxDestination>* > uniqueGroupings; // a set of pointers to groups of addresses
std::map< CTxDestination, std::set<CTxDestination>* > setmap; // map addresses to the unique group containing it
for (std::set<CTxDestination> _grouping : groupings)
{
// make a set of all the groups hit by this new group
std::set< std::set<CTxDestination>* > hits;
std::map< CTxDestination, std::set<CTxDestination>* >::iterator it;
for (CTxDestination address : _grouping)
if ((it = setmap.find(address)) != setmap.end())
hits.insert((*it).second);
// merge all hit groups into a new single group and delete old groups
std::set<CTxDestination>* merged = new std::set<CTxDestination>(_grouping);
for (std::set<CTxDestination>* hit : hits)
{
merged->insert(hit->begin(), hit->end());
uniqueGroupings.erase(hit);
delete hit;
}
uniqueGroupings.insert(merged);
// update setmap
for (CTxDestination element : *merged)
setmap[element] = merged;
}
std::set< std::set<CTxDestination> > ret;
for (std::set<CTxDestination>* uniqueGrouping : uniqueGroupings)
{
ret.insert(*uniqueGrouping);
delete uniqueGrouping;
}
return ret;
}
std::set<CTxDestination> CWallet::GetAccountAddresses(const std::string& strAccount) const
{
LOCK(cs_wallet);
std::set<CTxDestination> result;
for (const std::pair<CTxDestination, CAddressBookData>& item : mapAddressBook)
{
const CTxDestination& address = item.first;
const std::string& strName = item.second.name;
if (strName == strAccount)
result.insert(address);
}
return result;
}
bool CReserveKey::GetReservedKey(CPubKey& pubkey, bool internal)
{
if (nIndex == -1)
{
CKeyPool keypool;
pwallet->ReserveKeyFromKeyPool(nIndex, keypool, internal);
if (nIndex != -1)
vchPubKey = keypool.vchPubKey;
else {
return false;
}
}
assert(vchPubKey.IsValid());
pubkey = vchPubKey;
return true;
}
void CReserveKey::KeepKey()
{
if (nIndex != -1)
pwallet->KeepKey(nIndex);
nIndex = -1;
vchPubKey = CPubKey();
}
void CReserveKey::ReturnKey()
{
if (nIndex != -1)
pwallet->ReturnKey(nIndex);
nIndex = -1;
vchPubKey = CPubKey();
}
void CWallet::GetAllReserveKeys(std::set<CKeyID>& setAddress) const
{
setAddress.clear();
CWalletDB walletdb(*dbw);
LOCK2(cs_main, cs_wallet);
for (const int64_t& id : setKeyPool)
{
CKeyPool keypool;
if (!walletdb.ReadPool(id, keypool))
throw std::runtime_error(std::string(__func__) + ": read failed");
assert(keypool.vchPubKey.IsValid());
CKeyID keyID = keypool.vchPubKey.GetID();
if (!HaveKey(keyID))
throw std::runtime_error(std::string(__func__) + ": unknown key in key pool");
setAddress.insert(keyID);
}
}
void CWallet::GetScriptForMining(std::shared_ptr<CReserveScript> &script)
{
std::shared_ptr<CReserveKey> rKey = std::make_shared<CReserveKey>(this);
CPubKey pubkey;
if (!rKey->GetReservedKey(pubkey))
return;
script = rKey;
script->reserveScript = CScript() << ToByteVector(pubkey) << OP_CHECKSIG;
}
void CWallet::LockCoin(const COutPoint& output)
{
AssertLockHeld(cs_wallet); // setLockedCoins
setLockedCoins.insert(output);
}
void CWallet::UnlockCoin(const COutPoint& output)
{
AssertLockHeld(cs_wallet); // setLockedCoins
setLockedCoins.erase(output);
}
void CWallet::UnlockAllCoins()
{
AssertLockHeld(cs_wallet); // setLockedCoins
setLockedCoins.clear();
}
bool CWallet::IsLockedCoin(uint256 hash, unsigned int n) const
{
AssertLockHeld(cs_wallet); // setLockedCoins
COutPoint outpt(hash, n);
return (setLockedCoins.count(outpt) > 0);
}
void CWallet::ListLockedCoins(std::vector<COutPoint>& vOutpts) const
{
AssertLockHeld(cs_wallet); // setLockedCoins
for (std::set<COutPoint>::iterator it = setLockedCoins.begin();
it != setLockedCoins.end(); it++) {
COutPoint outpt = (*it);
vOutpts.push_back(outpt);
}
}
/** @} */ // end of Actions
class CAffectedKeysVisitor : public boost::static_visitor<void> {
private:
const CKeyStore &keystore;
std::vector<CKeyID> &vKeys;
public:
CAffectedKeysVisitor(const CKeyStore &keystoreIn, std::vector<CKeyID> &vKeysIn) : keystore(keystoreIn), vKeys(vKeysIn) {}
void Process(const CScript &script) {
txnouttype type;
std::vector<CTxDestination> vDest;
int nRequired;
if (ExtractDestinations(script, type, vDest, nRequired)) {
for (const CTxDestination &dest : vDest)
boost::apply_visitor(*this, dest);
}
}
void operator()(const CKeyID &keyId) {
if (keystore.HaveKey(keyId))
vKeys.push_back(keyId);
}
void operator()(const CScriptID &scriptId) {
CScript script;
if (keystore.GetCScript(scriptId, script))
Process(script);
}
void operator()(const CNoDestination &none) {}
};
void CWallet::GetKeyBirthTimes(std::map<CTxDestination, int64_t> &mapKeyBirth) const {
AssertLockHeld(cs_wallet); // mapKeyMetadata
mapKeyBirth.clear();
// get birth times for keys with metadata
for (const auto& entry : mapKeyMetadata) {
if (entry.second.nCreateTime) {
mapKeyBirth[entry.first] = entry.second.nCreateTime;
}
}
// map in which we'll infer heights of other keys
CBlockIndex *pindexMax = chainActive[std::max(0, chainActive.Height() - 144)]; // the tip can be reorganized; use a 144-block safety margin
std::map<CKeyID, CBlockIndex*> mapKeyFirstBlock;
std::set<CKeyID> setKeys;
GetKeys(setKeys);
for (const CKeyID &keyid : setKeys) {
if (mapKeyBirth.count(keyid) == 0)
mapKeyFirstBlock[keyid] = pindexMax;
}
setKeys.clear();
// if there are no such keys, we're done
if (mapKeyFirstBlock.empty())
return;
// find first block that affects those keys, if there are any left
std::vector<CKeyID> vAffected;
for (std::map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); it++) {
// iterate over all wallet transactions...
const CWalletTx &wtx = (*it).second;
BlockMap::const_iterator blit = mapBlockIndex.find(wtx.hashBlock);
if (blit != mapBlockIndex.end() && chainActive.Contains(blit->second)) {
// ... which are already in a block
int nHeight = blit->second->nHeight;
for (const CTxOut &txout : wtx.tx->vout) {
// iterate over all their outputs
CAffectedKeysVisitor(*this, vAffected).Process(txout.scriptPubKey);
for (const CKeyID &keyid : vAffected) {
// ... and all their affected keys
std::map<CKeyID, CBlockIndex*>::iterator rit = mapKeyFirstBlock.find(keyid);
if (rit != mapKeyFirstBlock.end() && nHeight < rit->second->nHeight)
rit->second = blit->second;
}
vAffected.clear();
}
}
}
// Extract block timestamps for those keys
for (std::map<CKeyID, CBlockIndex*>::const_iterator it = mapKeyFirstBlock.begin(); it != mapKeyFirstBlock.end(); it++)
mapKeyBirth[it->first] = it->second->GetBlockTime() - TIMESTAMP_WINDOW; // block times can be 2h off
}
/**
* Compute smart timestamp for a transaction being added to the wallet.
*
* Logic:
* - If sending a transaction, assign its timestamp to the current time.
* - If receiving a transaction outside a block, assign its timestamp to the
* current time.
* - If receiving a block with a future timestamp, assign all its (not already
* known) transactions' timestamps to the current time.
* - If receiving a block with a past timestamp, before the most recent known
* transaction (that we care about), assign all its (not already known)
* transactions' timestamps to the same timestamp as that most-recent-known
* transaction.
* - If receiving a block with a past timestamp, but after the most recent known
* transaction, assign all its (not already known) transactions' timestamps to
* the block time.
*
* For more information see CWalletTx::nTimeSmart,
* https://bitcointalk.org/?topic=54527, or
* https://github.com/bitcoin/bitcoin/pull/1393.
*/
unsigned int CWallet::ComputeTimeSmart(const CWalletTx& wtx) const
{
unsigned int nTimeSmart = wtx.nTimeReceived;
if (!wtx.hashUnset()) {
if (mapBlockIndex.count(wtx.hashBlock)) {
int64_t latestNow = wtx.nTimeReceived;
int64_t latestEntry = 0;
// Tolerate times up to the last timestamp in the wallet not more than 5 minutes into the future
int64_t latestTolerated = latestNow + 300;
const TxItems& txOrdered = wtxOrdered;
for (auto it = txOrdered.rbegin(); it != txOrdered.rend(); ++it) {
CWalletTx* const pwtx = it->second.first;
if (pwtx == &wtx) {
continue;
}
CAccountingEntry* const pacentry = it->second.second;
int64_t nSmartTime;
if (pwtx) {
nSmartTime = pwtx->nTimeSmart;
if (!nSmartTime) {
nSmartTime = pwtx->nTimeReceived;
}
} else {
nSmartTime = pacentry->nTime;
}
if (nSmartTime <= latestTolerated) {
latestEntry = nSmartTime;
if (nSmartTime > latestNow) {
latestNow = nSmartTime;
}
break;
}
}
int64_t blocktime = mapBlockIndex[wtx.hashBlock]->GetBlockTime();
nTimeSmart = std::max(latestEntry, std::min(blocktime, latestNow));
} else {
LogPrintf("%s: found %s in block %s not in index\n", __func__, wtx.GetHash().ToString(), wtx.hashBlock.ToString());
}
}
return nTimeSmart;
}
bool CWallet::AddDestData(const CTxDestination &dest, const std::string &key, const std::string &value)
{
if (boost::get<CNoDestination>(&dest))
return false;
mapAddressBook[dest].destdata.insert(std::make_pair(key, value));
return CWalletDB(*dbw).WriteDestData(CBitcoinAddress(dest).ToString(), key, value);
}
bool CWallet::EraseDestData(const CTxDestination &dest, const std::string &key)
{
if (!mapAddressBook[dest].destdata.erase(key))
return false;
return CWalletDB(*dbw).EraseDestData(CBitcoinAddress(dest).ToString(), key);
}
bool CWallet::LoadDestData(const CTxDestination &dest, const std::string &key, const std::string &value)
{
mapAddressBook[dest].destdata.insert(std::make_pair(key, value));
return true;
}
bool CWallet::GetDestData(const CTxDestination &dest, const std::string &key, std::string *value) const
{
std::map<CTxDestination, CAddressBookData>::const_iterator i = mapAddressBook.find(dest);
if(i != mapAddressBook.end())
{
CAddressBookData::StringMap::const_iterator j = i->second.destdata.find(key);
if(j != i->second.destdata.end())
{
if(value)
*value = j->second;
return true;
}
}
return false;
}
std::vector<std::string> CWallet::GetDestValues(const std::string& prefix) const
{
LOCK(cs_wallet);
std::vector<std::string> values;
for (const auto& address : mapAddressBook) {
for (const auto& data : address.second.destdata) {
if (!data.first.compare(0, prefix.size(), prefix)) {
values.emplace_back(data.second);
}
}
}
return values;
}
std::string CWallet::GetWalletHelpString(bool showDebug)
{
std::string strUsage = HelpMessageGroup(_("Wallet options:"));
strUsage += HelpMessageOpt("-disablewallet", _("Do not load the wallet and disable wallet RPC calls"));
strUsage += HelpMessageOpt("-keypool=<n>", strprintf(_("Set key pool size to <n> (default: %u)"), DEFAULT_KEYPOOL_SIZE));
strUsage += HelpMessageOpt("-fallbackfee=<amt>", strprintf(_("A fee rate (in %s/kB) that will be used when fee estimation has insufficient data (default: %s)"),
CURRENCY_UNIT, FormatMoney(DEFAULT_FALLBACK_FEE)));
strUsage += HelpMessageOpt("-mintxfee=<amt>", strprintf(_("Fees (in %s/kB) smaller than this are considered zero fee for transaction creation (default: %s)"),
CURRENCY_UNIT, FormatMoney(DEFAULT_TRANSACTION_MINFEE)));
strUsage += HelpMessageOpt("-paytxfee=<amt>", strprintf(_("Fee (in %s/kB) to add to transactions you send (default: %s)"),
CURRENCY_UNIT, FormatMoney(payTxFee.GetFeePerK())));
strUsage += HelpMessageOpt("-rescan", _("Rescan the block chain for missing wallet transactions on startup"));
strUsage += HelpMessageOpt("-salvagewallet", _("Attempt to recover private keys from a corrupt wallet on startup"));
strUsage += HelpMessageOpt("-spendzeroconfchange", strprintf(_("Spend unconfirmed change when sending transactions (default: %u)"), DEFAULT_SPEND_ZEROCONF_CHANGE));
strUsage += HelpMessageOpt("-txconfirmtarget=<n>", strprintf(_("If paytxfee is not set, include enough fee so transactions begin confirmation on average within n blocks (default: %u)"), DEFAULT_TX_CONFIRM_TARGET));
strUsage += HelpMessageOpt("-usehd", _("Use hierarchical deterministic key generation (HD) after BIP32. Only has effect during wallet creation/first start") + " " + strprintf(_("(default: %u)"), DEFAULT_USE_HD_WALLET));
strUsage += HelpMessageOpt("-walletrbf", strprintf(_("Send transactions with full-RBF opt-in enabled (default: %u)"), DEFAULT_WALLET_RBF));
strUsage += HelpMessageOpt("-upgradewallet", _("Upgrade wallet to latest format on startup"));
strUsage += HelpMessageOpt("-wallet=<file>", _("Specify wallet file (within data directory)") + " " + strprintf(_("(default: %s)"), DEFAULT_WALLET_DAT));
strUsage += HelpMessageOpt("-walletbroadcast", _("Make the wallet broadcast transactions") + " " + strprintf(_("(default: %u)"), DEFAULT_WALLETBROADCAST));
strUsage += HelpMessageOpt("-walletnotify=<cmd>", _("Execute command when a wallet transaction changes (%s in cmd is replaced by TxID)"));
strUsage += HelpMessageOpt("-zapwallettxes=<mode>", _("Delete all wallet transactions and only recover those parts of the blockchain through -rescan on startup") +
" " + _("(1 = keep tx meta data e.g. account owner and payment request information, 2 = drop tx meta data)"));
if (showDebug)
{
strUsage += HelpMessageGroup(_("Wallet debugging/testing options:"));
strUsage += HelpMessageOpt("-dblogsize=<n>", strprintf("Flush wallet database activity from memory to disk log every <n> megabytes (default: %u)", DEFAULT_WALLET_DBLOGSIZE));
strUsage += HelpMessageOpt("-flushwallet", strprintf("Run a thread to flush wallet periodically (default: %u)", DEFAULT_FLUSHWALLET));
strUsage += HelpMessageOpt("-privdb", strprintf("Sets the DB_PRIVATE flag in the wallet db environment (default: %u)", DEFAULT_WALLET_PRIVDB));
strUsage += HelpMessageOpt("-walletrejectlongchains", strprintf(_("Wallet will not create transactions that violate mempool chain limits (default: %u)"), DEFAULT_WALLET_REJECT_LONG_CHAINS));
}
return strUsage;
}
CWallet* CWallet::CreateWalletFromFile(const std::string walletFile)
{
// needed to restore wallet transaction meta data after -zapwallettxes
std::vector<CWalletTx> vWtx;
if (GetBoolArg("-zapwallettxes", false)) {
uiInterface.InitMessage(_("Zapping all transactions from wallet..."));
std::unique_ptr<CWalletDBWrapper> dbw(new CWalletDBWrapper(&bitdb, walletFile));
CWallet *tempWallet = new CWallet(std::move(dbw));
DBErrors nZapWalletRet = tempWallet->ZapWalletTx(vWtx);
if (nZapWalletRet != DB_LOAD_OK) {
InitError(strprintf(_("Error loading %s: Wallet corrupted"), walletFile));
return NULL;
}
delete tempWallet;
tempWallet = NULL;
}
uiInterface.InitMessage(_("Loading wallet..."));
int64_t nStart = GetTimeMillis();
bool fFirstRun = true;
std::unique_ptr<CWalletDBWrapper> dbw(new CWalletDBWrapper(&bitdb, walletFile));
CWallet *walletInstance = new CWallet(std::move(dbw));
DBErrors nLoadWalletRet = walletInstance->LoadWallet(fFirstRun);
if (nLoadWalletRet != DB_LOAD_OK)
{
if (nLoadWalletRet == DB_CORRUPT) {
InitError(strprintf(_("Error loading %s: Wallet corrupted"), walletFile));
return NULL;
}
else if (nLoadWalletRet == DB_NONCRITICAL_ERROR)
{
InitWarning(strprintf(_("Error reading %s! All keys read correctly, but transaction data"
" or address book entries might be missing or incorrect."),
walletFile));
}
else if (nLoadWalletRet == DB_TOO_NEW) {
InitError(strprintf(_("Error loading %s: Wallet requires newer version of %s"), walletFile, _(PACKAGE_NAME)));
return NULL;
}
else if (nLoadWalletRet == DB_NEED_REWRITE)
{
InitError(strprintf(_("Wallet needed to be rewritten: restart %s to complete"), _(PACKAGE_NAME)));
return NULL;
}
else {
InitError(strprintf(_("Error loading %s"), walletFile));
return NULL;
}
}
if (GetBoolArg("-upgradewallet", fFirstRun))
{
int nMaxVersion = GetArg("-upgradewallet", 0);
if (nMaxVersion == 0) // the -upgradewallet without argument case
{
LogPrintf("Performing wallet upgrade to %i\n", FEATURE_LATEST);
nMaxVersion = CLIENT_VERSION;
walletInstance->SetMinVersion(FEATURE_LATEST); // permanently upgrade the wallet immediately
}
else
LogPrintf("Allowing wallet upgrade up to %i\n", nMaxVersion);
if (nMaxVersion < walletInstance->GetVersion())
{
InitError(_("Cannot downgrade wallet"));
return NULL;
}
walletInstance->SetMaxVersion(nMaxVersion);
}
if (fFirstRun)
{
// Create new keyUser and set as default key
if (GetBoolArg("-usehd", DEFAULT_USE_HD_WALLET) && !walletInstance->IsHDEnabled()) {
// ensure this wallet.dat can only be opened by clients supporting HD with chain split
walletInstance->SetMinVersion(FEATURE_HD_SPLIT);
// generate a new master key
CPubKey masterPubKey = walletInstance->GenerateNewHDMasterKey();
if (!walletInstance->SetHDMasterKey(masterPubKey))
throw std::runtime_error(std::string(__func__) + ": Storing master key failed");
}
CPubKey newDefaultKey;
if (walletInstance->GetKeyFromPool(newDefaultKey, false)) {
walletInstance->SetDefaultKey(newDefaultKey);
if (!walletInstance->SetAddressBook(walletInstance->vchDefaultKey.GetID(), "", "receive")) {
InitError(_("Cannot write default address") += "\n");
return NULL;
}
}
walletInstance->SetBestChain(chainActive.GetLocator());
}
else if (IsArgSet("-usehd")) {
bool useHD = GetBoolArg("-usehd", DEFAULT_USE_HD_WALLET);
if (walletInstance->IsHDEnabled() && !useHD) {
InitError(strprintf(_("Error loading %s: You can't disable HD on an already existing HD wallet"), walletFile));
return NULL;
}
if (!walletInstance->IsHDEnabled() && useHD) {
InitError(strprintf(_("Error loading %s: You can't enable HD on an already existing non-HD wallet"), walletFile));
return NULL;
}
}
LogPrintf(" wallet %15dms\n", GetTimeMillis() - nStart);
RegisterValidationInterface(walletInstance);
CBlockIndex *pindexRescan = chainActive.Genesis();
if (!GetBoolArg("-rescan", false))
{
CWalletDB walletdb(*walletInstance->dbw);
CBlockLocator locator;
if (walletdb.ReadBestBlock(locator))
pindexRescan = FindForkInGlobalIndex(chainActive, locator);
}
if (chainActive.Tip() && chainActive.Tip() != pindexRescan)
{
//We can't rescan beyond non-pruned blocks, stop and throw an error
//this might happen if a user uses an old wallet within a pruned node
// or if he ran -disablewallet for a longer time, then decided to re-enable
if (fPruneMode)
{
CBlockIndex *block = chainActive.Tip();
while (block && block->pprev && (block->pprev->nStatus & BLOCK_HAVE_DATA) && block->pprev->nTx > 0 && pindexRescan != block)
block = block->pprev;
if (pindexRescan != block) {
InitError(_("Prune: last wallet synchronisation goes beyond pruned data. You need to -reindex (download the whole blockchain again in case of pruned node)"));
return NULL;
}
}
uiInterface.InitMessage(_("Rescanning..."));
LogPrintf("Rescanning last %i blocks (from block %i)...\n", chainActive.Height() - pindexRescan->nHeight, pindexRescan->nHeight);
// No need to read and scan block if block was created before
// our wallet birthday (as adjusted for block time variability)
while (pindexRescan && walletInstance->nTimeFirstKey && (pindexRescan->GetBlockTime() < (walletInstance->nTimeFirstKey - TIMESTAMP_WINDOW))) {
pindexRescan = chainActive.Next(pindexRescan);
}
nStart = GetTimeMillis();
walletInstance->ScanForWalletTransactions(pindexRescan, true);
LogPrintf(" rescan %15dms\n", GetTimeMillis() - nStart);
walletInstance->SetBestChain(chainActive.GetLocator());
walletInstance->dbw->IncrementUpdateCounter();
// Restore wallet transaction metadata after -zapwallettxes=1
if (GetBoolArg("-zapwallettxes", false) && GetArg("-zapwallettxes", "1") != "2")
{
CWalletDB walletdb(*walletInstance->dbw);
for (const CWalletTx& wtxOld : vWtx)
{
uint256 hash = wtxOld.GetHash();
std::map<uint256, CWalletTx>::iterator mi = walletInstance->mapWallet.find(hash);
if (mi != walletInstance->mapWallet.end())
{
const CWalletTx* copyFrom = &wtxOld;
CWalletTx* copyTo = &mi->second;
copyTo->mapValue = copyFrom->mapValue;
copyTo->vOrderForm = copyFrom->vOrderForm;
copyTo->nTimeReceived = copyFrom->nTimeReceived;
copyTo->nTimeSmart = copyFrom->nTimeSmart;
copyTo->fFromMe = copyFrom->fFromMe;
copyTo->strFromAccount = copyFrom->strFromAccount;
copyTo->nOrderPos = copyFrom->nOrderPos;
walletdb.WriteTx(*copyTo);
}
}
}
}
walletInstance->SetBroadcastTransactions(GetBoolArg("-walletbroadcast", DEFAULT_WALLETBROADCAST));
{
LOCK(walletInstance->cs_wallet);
LogPrintf("setKeyPool.size() = %u\n", walletInstance->GetKeyPoolSize());
LogPrintf("mapWallet.size() = %u\n", walletInstance->mapWallet.size());
LogPrintf("mapAddressBook.size() = %u\n", walletInstance->mapAddressBook.size());
}
return walletInstance;
}
bool CWallet::InitLoadWallet()
{
if (GetBoolArg("-disablewallet", DEFAULT_DISABLE_WALLET)) {
LogPrintf("Wallet disabled!\n");
return true;
}
for (const std::string& walletFile : gArgs.GetArgs("-wallet")) {
CWallet * const pwallet = CreateWalletFromFile(walletFile);
if (!pwallet) {
return false;
}
vpwallets.push_back(pwallet);
}
return true;
}
std::atomic<bool> CWallet::fFlushScheduled(false);
void CWallet::postInitProcess(CScheduler& scheduler)
{
// Add wallet transactions that aren't already in a block to mempool
// Do this here as mempool requires genesis block to be loaded
ReacceptWalletTransactions();
// Run a thread to flush wallet periodically
if (!CWallet::fFlushScheduled.exchange(true)) {
scheduler.scheduleEvery(MaybeCompactWalletDB, 500);
}
}
bool CWallet::ParameterInteraction()
{
SoftSetArg("-wallet", DEFAULT_WALLET_DAT);
const bool is_multiwallet = gArgs.GetArgs("-wallet").size() > 1;
if (GetBoolArg("-disablewallet", DEFAULT_DISABLE_WALLET))
return true;
if (GetBoolArg("-blocksonly", DEFAULT_BLOCKSONLY) && SoftSetBoolArg("-walletbroadcast", false)) {
LogPrintf("%s: parameter interaction: -blocksonly=1 -> setting -walletbroadcast=0\n", __func__);
}
if (GetBoolArg("-salvagewallet", false) && SoftSetBoolArg("-rescan", true)) {
if (is_multiwallet) {
return InitError(strprintf("%s is only allowed with a single wallet file", "-salvagewallet"));
}
// Rewrite just private keys: rescan to find transactions
LogPrintf("%s: parameter interaction: -salvagewallet=1 -> setting -rescan=1\n", __func__);
}
// -zapwallettx implies a rescan
if (GetBoolArg("-zapwallettxes", false) && SoftSetBoolArg("-rescan", true)) {
if (is_multiwallet) {
return InitError(strprintf("%s is only allowed with a single wallet file", "-zapwallettxes"));
}
LogPrintf("%s: parameter interaction: -zapwallettxes=<mode> -> setting -rescan=1\n", __func__);
}
if (is_multiwallet) {
if (GetBoolArg("-upgradewallet", false)) {
return InitError(strprintf("%s is only allowed with a single wallet file", "-upgradewallet"));
}
}
if (GetBoolArg("-sysperms", false))
return InitError("-sysperms is not allowed in combination with enabled wallet functionality");
if (GetArg("-prune", 0) && GetBoolArg("-rescan", false))
return InitError(_("Rescans are not possible in pruned mode. You will need to use -reindex which will download the whole blockchain again."));
if (::minRelayTxFee.GetFeePerK() > HIGH_TX_FEE_PER_KB)
InitWarning(AmountHighWarn("-minrelaytxfee") + " " +
_("The wallet will avoid paying less than the minimum relay fee."));
if (IsArgSet("-mintxfee"))
{
CAmount n = 0;
if (!ParseMoney(GetArg("-mintxfee", ""), n) || 0 == n)
return InitError(AmountErrMsg("mintxfee", GetArg("-mintxfee", "")));
if (n > HIGH_TX_FEE_PER_KB)
InitWarning(AmountHighWarn("-mintxfee") + " " +
_("This is the minimum transaction fee you pay on every transaction."));
CWallet::minTxFee = CFeeRate(n);
}
if (IsArgSet("-fallbackfee"))
{
CAmount nFeePerK = 0;
if (!ParseMoney(GetArg("-fallbackfee", ""), nFeePerK))
return InitError(strprintf(_("Invalid amount for -fallbackfee=<amount>: '%s'"), GetArg("-fallbackfee", "")));
if (nFeePerK > HIGH_TX_FEE_PER_KB)
InitWarning(AmountHighWarn("-fallbackfee") + " " +
_("This is the transaction fee you may pay when fee estimates are not available."));
CWallet::fallbackFee = CFeeRate(nFeePerK);
}
if (IsArgSet("-paytxfee"))
{
CAmount nFeePerK = 0;
if (!ParseMoney(GetArg("-paytxfee", ""), nFeePerK))
return InitError(AmountErrMsg("paytxfee", GetArg("-paytxfee", "")));
if (nFeePerK > HIGH_TX_FEE_PER_KB)
InitWarning(AmountHighWarn("-paytxfee") + " " +
_("This is the transaction fee you will pay if you send a transaction."));
payTxFee = CFeeRate(nFeePerK, 1000);
if (payTxFee < ::minRelayTxFee)
{
return InitError(strprintf(_("Invalid amount for -paytxfee=<amount>: '%s' (must be at least %s)"),
GetArg("-paytxfee", ""), ::minRelayTxFee.ToString()));
}
}
if (IsArgSet("-maxtxfee"))
{
CAmount nMaxFee = 0;
if (!ParseMoney(GetArg("-maxtxfee", ""), nMaxFee))
return InitError(AmountErrMsg("maxtxfee", GetArg("-maxtxfee", "")));
if (nMaxFee > HIGH_MAX_TX_FEE)
InitWarning(_("-maxtxfee is set very high! Fees this large could be paid on a single transaction."));
maxTxFee = nMaxFee;
if (CFeeRate(maxTxFee, 1000) < ::minRelayTxFee)
{
return InitError(strprintf(_("Invalid amount for -maxtxfee=<amount>: '%s' (must be at least the minrelay fee of %s to prevent stuck transactions)"),
GetArg("-maxtxfee", ""), ::minRelayTxFee.ToString()));
}
}
nTxConfirmTarget = GetArg("-txconfirmtarget", DEFAULT_TX_CONFIRM_TARGET);
bSpendZeroConfChange = GetBoolArg("-spendzeroconfchange", DEFAULT_SPEND_ZEROCONF_CHANGE);
fWalletRbf = GetBoolArg("-walletrbf", DEFAULT_WALLET_RBF);
return true;
}
bool CWallet::BackupWallet(const std::string& strDest)
{
return dbw->Backup(strDest);
}
CKeyPool::CKeyPool()
{
nTime = GetTime();
fInternal = false;
}
CKeyPool::CKeyPool(const CPubKey& vchPubKeyIn, bool internalIn)
{
nTime = GetTime();
vchPubKey = vchPubKeyIn;
fInternal = internalIn;
}
CWalletKey::CWalletKey(int64_t nExpires)
{
nTimeCreated = (nExpires ? GetTime() : 0);
nTimeExpires = nExpires;
}
void CMerkleTx::SetMerkleBranch(const CBlockIndex* pindex, int posInBlock)
{
// Update the tx's hashBlock
hashBlock = pindex->GetBlockHash();
// set the position of the transaction in the block
nIndex = posInBlock;
}
int CMerkleTx::GetDepthInMainChain(const CBlockIndex* &pindexRet) const
{
if (hashUnset())
return 0;
AssertLockHeld(cs_main);
// Find the block it claims to be in
BlockMap::iterator mi = mapBlockIndex.find(hashBlock);
if (mi == mapBlockIndex.end())
return 0;
CBlockIndex* pindex = (*mi).second;
if (!pindex || !chainActive.Contains(pindex))
return 0;
pindexRet = pindex;
return ((nIndex == -1) ? (-1) : 1) * (chainActive.Height() - pindex->nHeight + 1);
}
int CMerkleTx::GetBlocksToMaturity() const
{
if (!IsCoinBase())
return 0;
return std::max(0, (COINBASE_MATURITY+1) - GetDepthInMainChain());
}
bool CMerkleTx::AcceptToMemoryPool(const CAmount& nAbsurdFee, CValidationState& state)
{
return ::AcceptToMemoryPool(mempool, state, tx, true, NULL, NULL, false, nAbsurdFee);
}
bool CalculateEstimateType(FeeEstimateMode mode, bool opt_in_rbf) {
switch (mode) {
case FeeEstimateMode::UNSET:
return !opt_in_rbf; // Allow for lower fees if RBF is an option
case FeeEstimateMode::CONSERVATIVE:
return true;
case FeeEstimateMode::ECONOMICAL:
return false;
}
return true;
}