Kevacoin source tree
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1134 lines
34 KiB

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Distributed under the MIT/X11 software license, see the accompanying
// file license.txt or http://www.opensource.org/licenses/mit-license.php.
#include "headers.h"
bool CheckSig(vector<unsigned char> vchSig, vector<unsigned char> vchPubKey, CScript scriptCode, const CTransaction& txTo, unsigned int nIn, int nHashType);
typedef vector<unsigned char> valtype;
static const valtype vchFalse(0);
static const valtype vchZero(0);
static const valtype vchTrue(1, 1);
static const CBigNum bnZero(0);
static const CBigNum bnOne(1);
static const CBigNum bnFalse(0);
static const CBigNum bnTrue(1);
bool CastToBool(const valtype& vch)
{
return (CBigNum(vch) != bnZero);
}
void MakeSameSize(valtype& vch1, valtype& vch2)
{
// Lengthen the shorter one
if (vch1.size() < vch2.size())
vch1.resize(vch2.size(), 0);
if (vch2.size() < vch1.size())
vch2.resize(vch1.size(), 0);
}
//
// Script is a stack machine (like Forth) that evaluates a predicate
// returning a bool indicating valid or not. There are no loops.
//
#define stacktop(i) (stack.at(stack.size()+(i)))
#define altstacktop(i) (altstack.at(altstack.size()+(i)))
bool EvalScript(const CScript& script, const CTransaction& txTo, unsigned int nIn, int nHashType,
vector<vector<unsigned char> >* pvStackRet)
{
CAutoBN_CTX pctx;
CScript::const_iterator pc = script.begin();
CScript::const_iterator pend = script.end();
CScript::const_iterator pbegincodehash = script.begin();
vector<bool> vfExec;
vector<valtype> stack;
vector<valtype> altstack;
if (pvStackRet)
pvStackRet->clear();
while (pc < pend)
{
bool fExec = !count(vfExec.begin(), vfExec.end(), false);
//
// Read instruction
//
opcodetype opcode;
valtype vchPushValue;
if (!script.GetOp(pc, opcode, vchPushValue))
return false;
if (fExec && opcode <= OP_PUSHDATA4)
stack.push_back(vchPushValue);
else if (fExec || (OP_IF <= opcode && opcode <= OP_ENDIF))
switch (opcode)
{
//
// Push value
//
case OP_1NEGATE:
case OP_1:
case OP_2:
case OP_3:
case OP_4:
case OP_5:
case OP_6:
case OP_7:
case OP_8:
case OP_9:
case OP_10:
case OP_11:
case OP_12:
case OP_13:
case OP_14:
case OP_15:
case OP_16:
{
// ( -- value)
CBigNum bn((int)opcode - (int)(OP_1 - 1));
stack.push_back(bn.getvch());
}
break;
//
// Control
//
case OP_NOP:
break;
case OP_VER:
{
CBigNum bn(VERSION);
stack.push_back(bn.getvch());
}
break;
case OP_IF:
case OP_NOTIF:
case OP_VERIF:
case OP_VERNOTIF:
{
// <expression> if [statements] [else [statements]] endif
bool fValue = false;
if (fExec)
{
if (stack.size() < 1)
return false;
valtype& vch = stacktop(-1);
if (opcode == OP_VERIF || opcode == OP_VERNOTIF)
fValue = (CBigNum(VERSION) >= CBigNum(vch));
else
fValue = CastToBool(vch);
if (opcode == OP_NOTIF || opcode == OP_VERNOTIF)
fValue = !fValue;
stack.pop_back();
}
vfExec.push_back(fValue);
}
break;
case OP_ELSE:
{
if (vfExec.empty())
return false;
vfExec.back() = !vfExec.back();
}
break;
case OP_ENDIF:
{
if (vfExec.empty())
return false;
vfExec.pop_back();
}
break;
case OP_VERIFY:
{
// (true -- ) or
// (false -- false) and return
if (stack.size() < 1)
return false;
bool fValue = CastToBool(stacktop(-1));
if (fValue)
stack.pop_back();
else
pc = pend;
}
break;
case OP_RETURN:
{
pc = pend;
}
break;
//
// Stack ops
//
case OP_TOALTSTACK:
{
if (stack.size() < 1)
return false;
altstack.push_back(stacktop(-1));
stack.pop_back();
}
break;
case OP_FROMALTSTACK:
{
if (altstack.size() < 1)
return false;
stack.push_back(altstacktop(-1));
altstack.pop_back();
}
break;
case OP_2DROP:
{
// (x1 x2 -- )
stack.pop_back();
stack.pop_back();
}
break;
case OP_2DUP:
{
// (x1 x2 -- x1 x2 x1 x2)
if (stack.size() < 2)
return false;
valtype vch1 = stacktop(-2);
valtype vch2 = stacktop(-1);
stack.push_back(vch1);
stack.push_back(vch2);
}
break;
case OP_3DUP:
{
// (x1 x2 x3 -- x1 x2 x3 x1 x2 x3)
if (stack.size() < 3)
return false;
valtype vch1 = stacktop(-3);
valtype vch2 = stacktop(-2);
valtype vch3 = stacktop(-1);
stack.push_back(vch1);
stack.push_back(vch2);
stack.push_back(vch3);
}
break;
case OP_2OVER:
{
// (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2)
if (stack.size() < 4)
return false;
valtype vch1 = stacktop(-4);
valtype vch2 = stacktop(-3);
stack.push_back(vch1);
stack.push_back(vch2);
}
break;
case OP_2ROT:
{
// (x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2)
if (stack.size() < 6)
return false;
valtype vch1 = stacktop(-6);
valtype vch2 = stacktop(-5);
stack.erase(stack.end()-6, stack.end()-4);
stack.push_back(vch1);
stack.push_back(vch2);
}
break;
case OP_2SWAP:
{
// (x1 x2 x3 x4 -- x3 x4 x1 x2)
if (stack.size() < 4)
return false;
swap(stacktop(-4), stacktop(-2));
swap(stacktop(-3), stacktop(-1));
}
break;
case OP_IFDUP:
{
// (x - 0 | x x)
if (stack.size() < 1)
return false;
valtype vch = stacktop(-1);
if (CastToBool(vch))
stack.push_back(vch);
}
break;
case OP_DEPTH:
{
// -- stacksize
CBigNum bn(stack.size());
stack.push_back(bn.getvch());
}
break;
case OP_DROP:
{
// (x -- )
if (stack.size() < 1)
return false;
stack.pop_back();
}
break;
case OP_DUP:
{
// (x -- x x)
if (stack.size() < 1)
return false;
valtype vch = stacktop(-1);
stack.push_back(vch);
}
break;
case OP_NIP:
{
// (x1 x2 -- x2)
if (stack.size() < 2)
return false;
stack.erase(stack.end() - 2);
}
break;
case OP_OVER:
{
// (x1 x2 -- x1 x2 x1)
if (stack.size() < 2)
return false;
valtype vch = stacktop(-2);
stack.push_back(vch);
}
break;
case OP_PICK:
case OP_ROLL:
{
// (xn ... x2 x1 x0 n - xn ... x2 x1 x0 xn)
// (xn ... x2 x1 x0 n - ... x2 x1 x0 xn)
if (stack.size() < 2)
return false;
int n = CBigNum(stacktop(-1)).getint();
stack.pop_back();
if (n < 0 || n >= stack.size())
return false;
valtype vch = stacktop(-n-1);
if (opcode == OP_ROLL)
stack.erase(stack.end()-n-1);
stack.push_back(vch);
}
break;
case OP_ROT:
{
// (x1 x2 x3 -- x2 x3 x1)
// x2 x1 x3 after first swap
// x2 x3 x1 after second swap
if (stack.size() < 3)
return false;
swap(stacktop(-3), stacktop(-2));
swap(stacktop(-2), stacktop(-1));
}
break;
case OP_SWAP:
{
// (x1 x2 -- x2 x1)
if (stack.size() < 2)
return false;
swap(stacktop(-2), stacktop(-1));
}
break;
case OP_TUCK:
{
// (x1 x2 -- x2 x1 x2)
if (stack.size() < 2)
return false;
valtype vch = stacktop(-1);
stack.insert(stack.end()-2, vch);
}
break;
//
// Splice ops
//
case OP_CAT:
{
// (x1 x2 -- out)
if (stack.size() < 2)
return false;
valtype& vch1 = stacktop(-2);
valtype& vch2 = stacktop(-1);
vch1.insert(vch1.end(), vch2.begin(), vch2.end());
stack.pop_back();
}
break;
case OP_SUBSTR:
{
// (in begin size -- out)
if (stack.size() < 3)
return false;
valtype& vch = stacktop(-3);
int nBegin = CBigNum(stacktop(-2)).getint();
int nEnd = nBegin + CBigNum(stacktop(-1)).getint();
if (nBegin < 0 || nEnd < nBegin)
return false;
if (nBegin > vch.size())
nBegin = vch.size();
if (nEnd > vch.size())
nEnd = vch.size();
vch.erase(vch.begin() + nEnd, vch.end());
vch.erase(vch.begin(), vch.begin() + nBegin);
stack.pop_back();
stack.pop_back();
}
break;
case OP_LEFT:
case OP_RIGHT:
{
// (in size -- out)
if (stack.size() < 2)
return false;
valtype& vch = stacktop(-2);
int nSize = CBigNum(stacktop(-1)).getint();
if (nSize < 0)
return false;
if (nSize > vch.size())
nSize = vch.size();
if (opcode == OP_LEFT)
vch.erase(vch.begin() + nSize, vch.end());
else
vch.erase(vch.begin(), vch.end() - nSize);
stack.pop_back();
}
break;
case OP_SIZE:
{
// (in -- in size)
if (stack.size() < 1)
return false;
CBigNum bn(stacktop(-1).size());
stack.push_back(bn.getvch());
}
break;
//
// Bitwise logic
//
case OP_INVERT:
{
// (in - out)
if (stack.size() < 1)
return false;
valtype& vch = stacktop(-1);
for (int i = 0; i < vch.size(); i++)
vch[i] = ~vch[i];
}
break;
case OP_AND:
case OP_OR:
case OP_XOR:
{
// (x1 x2 - out)
if (stack.size() < 2)
return false;
valtype& vch1 = stacktop(-2);
valtype& vch2 = stacktop(-1);
MakeSameSize(vch1, vch2);
if (opcode == OP_AND)
{
for (int i = 0; i < vch1.size(); i++)
vch1[i] &= vch2[i];
}
else if (opcode == OP_OR)
{
for (int i = 0; i < vch1.size(); i++)
vch1[i] |= vch2[i];
}
else if (opcode == OP_XOR)
{
for (int i = 0; i < vch1.size(); i++)
vch1[i] ^= vch2[i];
}
stack.pop_back();
}
break;
case OP_EQUAL:
case OP_EQUALVERIFY:
//case OP_NOTEQUAL: // use OP_NUMNOTEQUAL
{
// (x1 x2 - bool)
if (stack.size() < 2)
return false;
valtype& vch1 = stacktop(-2);
valtype& vch2 = stacktop(-1);
bool fEqual = (vch1 == vch2);
// OP_NOTEQUAL is disabled because it would be too easy to say
// something like n != 1 and have some wiseguy pass in 1 with extra
// zero bytes after it (numerically, 0x01 == 0x0001 == 0x000001)
//if (opcode == OP_NOTEQUAL)
// fEqual = !fEqual;
stack.pop_back();
stack.pop_back();
stack.push_back(fEqual ? vchTrue : vchFalse);
if (opcode == OP_EQUALVERIFY)
{
if (fEqual)
stack.pop_back();
else
pc = pend;
}
}
break;
//
// Numeric
//
case OP_1ADD:
case OP_1SUB:
case OP_2MUL:
case OP_2DIV:
case OP_NEGATE:
case OP_ABS:
case OP_NOT:
case OP_0NOTEQUAL:
{
// (in -- out)
if (stack.size() < 1)
return false;
CBigNum bn(stacktop(-1));
switch (opcode)
{
case OP_1ADD: bn += bnOne; break;
case OP_1SUB: bn -= bnOne; break;
case OP_2MUL: bn <<= 1; break;
case OP_2DIV: bn >>= 1; break;
case OP_NEGATE: bn = -bn; break;
case OP_ABS: if (bn < bnZero) bn = -bn; break;
case OP_NOT: bn = (bn == bnZero); break;
case OP_0NOTEQUAL: bn = (bn != bnZero); break;
}
stack.pop_back();
stack.push_back(bn.getvch());
}
break;
case OP_ADD:
case OP_SUB:
case OP_MUL:
case OP_DIV:
case OP_MOD:
case OP_LSHIFT:
case OP_RSHIFT:
case OP_BOOLAND:
case OP_BOOLOR:
case OP_NUMEQUAL:
case OP_NUMEQUALVERIFY:
case OP_NUMNOTEQUAL:
case OP_LESSTHAN:
case OP_GREATERTHAN:
case OP_LESSTHANOREQUAL:
case OP_GREATERTHANOREQUAL:
case OP_MIN:
case OP_MAX:
{
// (x1 x2 -- out)
if (stack.size() < 2)
return false;
CBigNum bn1(stacktop(-2));
CBigNum bn2(stacktop(-1));
CBigNum bn;
switch (opcode)
{
case OP_ADD:
bn = bn1 + bn2;
break;
case OP_SUB:
bn = bn1 - bn2;
break;
case OP_MUL:
if (!BN_mul(&bn, &bn1, &bn2, pctx))
return false;
break;
case OP_DIV:
if (!BN_div(&bn, NULL, &bn1, &bn2, pctx))
return false;
break;
case OP_MOD:
if (!BN_mod(&bn, &bn1, &bn2, pctx))
return false;
break;
case OP_LSHIFT:
if (bn2 < bnZero)
return false;
bn = bn1 << bn2.getulong();
break;
case OP_RSHIFT:
if (bn2 < bnZero)
return false;
bn = bn1 >> bn2.getulong();
break;
case OP_BOOLAND: bn = (bn1 != bnZero && bn2 != bnZero); break;
case OP_BOOLOR: bn = (bn1 != bnZero || bn2 != bnZero); break;
case OP_NUMEQUAL: bn = (bn1 == bn2); break;
case OP_NUMEQUALVERIFY: bn = (bn1 == bn2); break;
case OP_NUMNOTEQUAL: bn = (bn1 != bn2); break;
case OP_LESSTHAN: bn = (bn1 < bn2); break;
case OP_GREATERTHAN: bn = (bn1 > bn2); break;
case OP_LESSTHANOREQUAL: bn = (bn1 <= bn2); break;
case OP_GREATERTHANOREQUAL: bn = (bn1 >= bn2); break;
case OP_MIN: bn = (bn1 < bn2 ? bn1 : bn2); break;
case OP_MAX: bn = (bn1 > bn2 ? bn1 : bn2); break;
}
stack.pop_back();
stack.pop_back();
stack.push_back(bn.getvch());
if (opcode == OP_NUMEQUALVERIFY)
{
if (CastToBool(stacktop(-1)))
stack.pop_back();
else
pc = pend;
}
}
break;
case OP_WITHIN:
{
// (x min max -- out)
if (stack.size() < 3)
return false;
CBigNum bn1(stacktop(-3));
CBigNum bn2(stacktop(-2));
CBigNum bn3(stacktop(-1));
bool fValue = (bn2 <= bn1 && bn1 < bn3);
stack.pop_back();
stack.pop_back();
stack.pop_back();
stack.push_back(fValue ? vchTrue : vchFalse);
}
break;
//
// Crypto
//
case OP_RIPEMD160:
case OP_SHA1:
case OP_SHA256:
case OP_HASH160:
case OP_HASH256:
{
// (in -- hash)
if (stack.size() < 1)
return false;
valtype& vch = stacktop(-1);
valtype vchHash((opcode == OP_RIPEMD160 || opcode == OP_SHA1 || opcode == OP_HASH160) ? 20 : 32);
if (opcode == OP_RIPEMD160)
RIPEMD160(&vch[0], vch.size(), &vchHash[0]);
else if (opcode == OP_SHA1)
SHA1(&vch[0], vch.size(), &vchHash[0]);
else if (opcode == OP_SHA256)
SHA256(&vch[0], vch.size(), &vchHash[0]);
else if (opcode == OP_HASH160)
{
uint160 hash160 = Hash160(vch);
memcpy(&vchHash[0], &hash160, sizeof(hash160));
}
else if (opcode == OP_HASH256)
{
uint256 hash = Hash(vch.begin(), vch.end());
memcpy(&vchHash[0], &hash, sizeof(hash));
}
stack.pop_back();
stack.push_back(vchHash);
}
break;
case OP_CODESEPARATOR:
{
// Hash starts after the code separator
pbegincodehash = pc;
}
break;
case OP_CHECKSIG:
case OP_CHECKSIGVERIFY:
{
// (sig pubkey -- bool)
if (stack.size() < 2)
return false;
valtype& vchSig = stacktop(-2);
valtype& vchPubKey = stacktop(-1);
////// debug print
//PrintHex(vchSig.begin(), vchSig.end(), "sig: %s\n");
//PrintHex(vchPubKey.begin(), vchPubKey.end(), "pubkey: %s\n");
// Subset of script starting at the most recent codeseparator
CScript scriptCode(pbegincodehash, pend);
// Drop the signature, since there's no way for a signature to sign itself
scriptCode.FindAndDelete(CScript(vchSig));
bool fSuccess = CheckSig(vchSig, vchPubKey, scriptCode, txTo, nIn, nHashType);
stack.pop_back();
stack.pop_back();
stack.push_back(fSuccess ? vchTrue : vchFalse);
if (opcode == OP_CHECKSIGVERIFY)
{
if (fSuccess)
stack.pop_back();
else
pc = pend;
}
}
break;
case OP_CHECKMULTISIG:
case OP_CHECKMULTISIGVERIFY:
{
// ([sig ...] num_of_signatures [pubkey ...] num_of_pubkeys -- bool)
int i = 1;
if (stack.size() < i)
return false;
int nKeysCount = CBigNum(stacktop(-i)).getint();
if (nKeysCount < 0)
return false;
int ikey = ++i;
i += nKeysCount;
if (stack.size() < i)
return false;
int nSigsCount = CBigNum(stacktop(-i)).getint();
if (nSigsCount < 0 || nSigsCount > nKeysCount)
return false;
int isig = ++i;
i += nSigsCount;
if (stack.size() < i)
return false;
// Subset of script starting at the most recent codeseparator
CScript scriptCode(pbegincodehash, pend);
// Drop the signatures, since there's no way for a signature to sign itself
for (int k = 0; k < nSigsCount; k++)
{
valtype& vchSig = stacktop(-isig-k);
scriptCode.FindAndDelete(CScript(vchSig));
}
bool fSuccess = true;
while (fSuccess && nSigsCount > 0)
{
valtype& vchSig = stacktop(-isig);
valtype& vchPubKey = stacktop(-ikey);
// Check signature
if (CheckSig(vchSig, vchPubKey, scriptCode, txTo, nIn, nHashType))
{
isig++;
nSigsCount--;
}
ikey++;
nKeysCount--;
// If there are more signatures left than keys left,
// then too many signatures have failed
if (nSigsCount > nKeysCount)
fSuccess = false;
}
while (i-- > 0)
stack.pop_back();
stack.push_back(fSuccess ? vchTrue : vchFalse);
if (opcode == OP_CHECKMULTISIGVERIFY)
{
if (fSuccess)
stack.pop_back();
else
pc = pend;
}
}
break;
default:
return false;
}
}
if (pvStackRet)
*pvStackRet = stack;
return (stack.empty() ? false : CastToBool(stack.back()));
}
#undef top
uint256 SignatureHash(CScript scriptCode, const CTransaction& txTo, unsigned int nIn, int nHashType)
{
if (nIn >= txTo.vin.size())
{
printf("ERROR: SignatureHash() : nIn=%d out of range\n", nIn);
return 1;
}
CTransaction txTmp(txTo);
// In case concatenating two scripts ends up with two codeseparators,
// or an extra one at the end, this prevents all those possible incompatibilities.
scriptCode.FindAndDelete(CScript(OP_CODESEPARATOR));
// Blank out other inputs' signatures
for (int i = 0; i < txTmp.vin.size(); i++)
txTmp.vin[i].scriptSig = CScript();
txTmp.vin[nIn].scriptSig = scriptCode;
// Blank out some of the outputs
if ((nHashType & 0x1f) == SIGHASH_NONE)
{
// Wildcard payee
txTmp.vout.clear();
// Let the others update at will
for (int i = 0; i < txTmp.vin.size(); i++)
if (i != nIn)
txTmp.vin[i].nSequence = 0;
}
else if ((nHashType & 0x1f) == SIGHASH_SINGLE)
{
// Only lockin the txout payee at same index as txin
unsigned int nOut = nIn;
if (nOut >= txTmp.vout.size())
{
printf("ERROR: SignatureHash() : nOut=%d out of range\n", nOut);
return 1;
}
txTmp.vout.resize(nOut+1);
for (int i = 0; i < nOut; i++)
txTmp.vout[i].SetNull();
// Let the others update at will
for (int i = 0; i < txTmp.vin.size(); i++)
if (i != nIn)
txTmp.vin[i].nSequence = 0;
}
// Blank out other inputs completely, not recommended for open transactions
if (nHashType & SIGHASH_ANYONECANPAY)
{
txTmp.vin[0] = txTmp.vin[nIn];
txTmp.vin.resize(1);
}
// Serialize and hash
CDataStream ss(SER_GETHASH);
ss.reserve(10000);
ss << txTmp << nHashType;
return Hash(ss.begin(), ss.end());
}
bool CheckSig(vector<unsigned char> vchSig, vector<unsigned char> vchPubKey, CScript scriptCode,
const CTransaction& txTo, unsigned int nIn, int nHashType)
{
CKey key;
if (!key.SetPubKey(vchPubKey))
return false;
// Hash type is one byte tacked on to the end of the signature
if (vchSig.empty())
return false;
if (nHashType == 0)
nHashType = vchSig.back();
else if (nHashType != vchSig.back())
return false;
vchSig.pop_back();
if (key.Verify(SignatureHash(scriptCode, txTo, nIn, nHashType), vchSig))
return true;
return false;
}
bool Solver(const CScript& scriptPubKey, vector<pair<opcodetype, valtype> >& vSolutionRet)
{
// Templates
static vector<CScript> vTemplates;
if (vTemplates.empty())
{
// Standard tx, sender provides pubkey, receiver adds signature
vTemplates.push_back(CScript() << OP_PUBKEY << OP_CHECKSIG);
// Bitcoin address tx, sender provides hash of pubkey, receiver provides signature and pubkey
vTemplates.push_back(CScript() << OP_DUP << OP_HASH160 << OP_PUBKEYHASH << OP_EQUALVERIFY << OP_CHECKSIG);
}
// Scan templates
const CScript& script1 = scriptPubKey;
foreach(const CScript& script2, vTemplates)
{
vSolutionRet.clear();
opcodetype opcode1, opcode2;
vector<unsigned char> vch1, vch2;
// Compare
CScript::const_iterator pc1 = script1.begin();
CScript::const_iterator pc2 = script2.begin();
loop
{
bool f1 = script1.GetOp(pc1, opcode1, vch1);
bool f2 = script2.GetOp(pc2, opcode2, vch2);
if (!f1 && !f2)
{
// Success
reverse(vSolutionRet.begin(), vSolutionRet.end());
return true;
}
else if (f1 != f2)
{
break;
}
else if (opcode2 == OP_PUBKEY)
{
if (vch1.size() <= sizeof(uint256))
break;
vSolutionRet.push_back(make_pair(opcode2, vch1));
}
else if (opcode2 == OP_PUBKEYHASH)
{
if (vch1.size() != sizeof(uint160))
break;
vSolutionRet.push_back(make_pair(opcode2, vch1));
}
else if (opcode1 != opcode2)
{
break;
}
}
}
vSolutionRet.clear();
return false;
}
bool Solver(const CScript& scriptPubKey, uint256 hash, int nHashType, CScript& scriptSigRet)
{
scriptSigRet.clear();
vector<pair<opcodetype, valtype> > vSolution;
if (!Solver(scriptPubKey, vSolution))
return false;
// Compile solution
CRITICAL_BLOCK(cs_mapKeys)
{
foreach(PAIRTYPE(opcodetype, valtype)& item, vSolution)
{
if (item.first == OP_PUBKEY)
{
// Sign
const valtype& vchPubKey = item.second;
if (!mapKeys.count(vchPubKey))
return false;
if (hash != 0)
{
vector<unsigned char> vchSig;
if (!CKey::Sign(mapKeys[vchPubKey], hash, vchSig))
return false;
vchSig.push_back((unsigned char)nHashType);
scriptSigRet << vchSig;
}
}
else if (item.first == OP_PUBKEYHASH)
{
// Sign and give pubkey
map<uint160, valtype>::iterator mi = mapPubKeys.find(uint160(item.second));
if (mi == mapPubKeys.end())
return false;
const vector<unsigned char>& vchPubKey = (*mi).second;
if (!mapKeys.count(vchPubKey))
return false;
if (hash != 0)
{
vector<unsigned char> vchSig;
if (!CKey::Sign(mapKeys[vchPubKey], hash, vchSig))
return false;
vchSig.push_back((unsigned char)nHashType);
scriptSigRet << vchSig << vchPubKey;
}
}
}
}
return true;
}
bool IsMine(const CScript& scriptPubKey)
{
CScript scriptSig;
return Solver(scriptPubKey, 0, 0, scriptSig);
}
bool ExtractPubKey(const CScript& scriptPubKey, bool fMineOnly, vector<unsigned char>& vchPubKeyRet)
{
vchPubKeyRet.clear();
vector<pair<opcodetype, valtype> > vSolution;
if (!Solver(scriptPubKey, vSolution))
return false;
CRITICAL_BLOCK(cs_mapKeys)
{
foreach(PAIRTYPE(opcodetype, valtype)& item, vSolution)
{
valtype vchPubKey;
if (item.first == OP_PUBKEY)
{
vchPubKey = item.second;
}
else if (item.first == OP_PUBKEYHASH)
{
map<uint160, valtype>::iterator mi = mapPubKeys.find(uint160(item.second));
if (mi == mapPubKeys.end())
continue;
vchPubKey = (*mi).second;
}
if (!fMineOnly || mapKeys.count(vchPubKey))
{
vchPubKeyRet = vchPubKey;
return true;
}
}
}
return false;
}
bool ExtractHash160(const CScript& scriptPubKey, uint160& hash160Ret)
{
hash160Ret = 0;
vector<pair<opcodetype, valtype> > vSolution;
if (!Solver(scriptPubKey, vSolution))
return false;
foreach(PAIRTYPE(opcodetype, valtype)& item, vSolution)
{
if (item.first == OP_PUBKEYHASH)
{
hash160Ret = uint160(item.second);
return true;
}
}
return false;
}
bool SignSignature(const CTransaction& txFrom, CTransaction& txTo, unsigned int nIn, int nHashType, CScript scriptPrereq)
{
assert(nIn < txTo.vin.size());
CTxIn& txin = txTo.vin[nIn];
assert(txin.prevout.n < txFrom.vout.size());
const CTxOut& txout = txFrom.vout[txin.prevout.n];
// Leave out the signature from the hash, since a signature can't sign itself.
// The checksig op will also drop the signatures from its hash.
uint256 hash = SignatureHash(scriptPrereq + txout.scriptPubKey, txTo, nIn, nHashType);
if (!Solver(txout.scriptPubKey, hash, nHashType, txin.scriptSig))
return false;
txin.scriptSig = scriptPrereq + txin.scriptSig;
// Test solution
if (scriptPrereq.empty())
if (!EvalScript(txin.scriptSig + CScript(OP_CODESEPARATOR) + txout.scriptPubKey, txTo, nIn))
return false;
return true;
}
bool VerifySignature(const CTransaction& txFrom, const CTransaction& txTo, unsigned int nIn, int nHashType)
{
assert(nIn < txTo.vin.size());
const CTxIn& txin = txTo.vin[nIn];
if (txin.prevout.n >= txFrom.vout.size())
return false;
const CTxOut& txout = txFrom.vout[txin.prevout.n];
if (txin.prevout.hash != txFrom.GetHash())
return false;
if (!EvalScript(txin.scriptSig + CScript(OP_CODESEPARATOR) + txout.scriptPubKey, txTo, nIn, nHashType))
return false;
// Anytime a signature is successfully verified, it's proof the outpoint is spent,
// so lets update the wallet spent flag if it doesn't know due to wallet.dat being
// restored from backup or the user making copies of wallet.dat.
WalletUpdateSpent(txin.prevout);
return true;
}